Skip to main content

Sensing Necrotic Cells

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 738))

Abstract

Multicellular organisms have developed ways to recognize potentially life-threatening events (danger signals). Classically, danger signals have been defined as exogenous, pathogen-associated molecular patterns (PAMPs) such as bacterial cell wall components (e.g., lipopolysaccharide and peptideglycan) or viral DNA/RNA. PAMPs interact with dedicated receptors on immune cells, so-called pattern recognition receptors (PRRs) and activate immune systems. A well-known family of PRRs is the toll-like receptors (TLRs) in which each member recognizes a specific set of PAMPs. However, not only exogenous pathogens but also several endogenous molecules released from necrotic cells (damaged self) also activate immune systems. These endogenous adjuvants are called damage-associated molecular patterns (DAMPs). It has been reported that high-mobility group box 1 protein (HMGB1), uric acid, heat shock proteins (HSPs) and nucleotides act as endogenous adjuvants. DAMPs are recognized by specific receptors (danger receptors) expressed mainly on antigen-presenting cells such as dendritic cells and macrophages and induce cell maturation and the production of inflammatory cytokines by activating the NF-kB pathway. In this chapter, we will review danger signals released from necrotic cells and its recognition receptors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nagata S. Apoptosis by death factor. Cell 1997; 88:355–365.

    Article  PubMed  CAS  Google Scholar 

  2. Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999; 96:245–254.

    Article  PubMed  CAS  Google Scholar 

  3. Henson PM, Bratton DL, Fadok VA. Apoptotic cell removal. Curr Biol 2001; 11:R795–R805.

    Article  PubMed  CAS  Google Scholar 

  4. Hengartner MO. Apoptosis: corralling the corpses. Cell 2001; 104:325–328.

    Article  PubMed  CAS  Google Scholar 

  5. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 2000; 407:784–788.

    Article  PubMed  CAS  Google Scholar 

  6. Fadok VA, Bratton DL, Konowal A et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2 and PAF. J Clin Invest 1998; 101:890–898.

    Article  PubMed  CAS  Google Scholar 

  7. Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002; 109:41–50.

    PubMed  CAS  Google Scholar 

  8. Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007; 32:37–43.

    Article  PubMed  CAS  Google Scholar 

  9. do Vale A, Costa-Ramos C, Silva A et al. Systemic macrophage and neutrophil destruction by secondary necrosis induced by a bacterial exotoxin in a Gram-negative septicaemia. Cell Microbiol 2007; 9:988–1003.

    Article  PubMed  Google Scholar 

  10. Brennan MA, Cookson BT. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol 2000; 38:31–40.

    Article  PubMed  CAS  Google Scholar 

  11. Lenardo MJ, Angleman SB, Bounkeua V et al. Cytopathic killing of peripheral blood CD4(+) T-lymphocytes by human immunodeficiency virus type 1 appears necrotic rather than apoptotic and does not require env. J Virol 2002; 76:5082–5093.

    Article  PubMed  CAS  Google Scholar 

  12. Borthwick NJ, Wickremasinghe RG, Lewin J et al. Activation-associated necrosis in human immunodeficiency virus infection. J Infect Dis 1999; 179:352–360.

    Article  PubMed  CAS  Google Scholar 

  13. Benchoua A, Guegan C, Couriaud C et al. Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 2001; 21:7127–7134.

    PubMed  CAS  Google Scholar 

  14. Unal-Cevik I, Kilinc M, Can A et al. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke 2004; 35:2189–2194.

    Article  PubMed  Google Scholar 

  15. Bobryshev YV, Babaev VR, Lord RS et al. Cell death in atheromatous plaque of the carotid artery occurs through necrosis rather than apoptosis. In Vivo 1997; 11:441–452.

    PubMed  CAS  Google Scholar 

  16. James TN. The variable morphological coexistence of apoptosis and necrosis in human myocardial infarction: significance for understanding its pathogenesis, clinical course, diagnosis and prognosis. Coron Artery Dis 1998; 9:291–307.

    Article  PubMed  CAS  Google Scholar 

  17. Silva MT, do Vale A, dos Santos NM. Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 2008; 13:463–482.

    Article  PubMed  Google Scholar 

  18. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007; 81:1–5.

    Article  PubMed  CAS  Google Scholar 

  19. Thomas JO, Travers AA. HMG1 and 2 and related ‘architectural’ DNA-binding proteins. Trends Biochem Sci 2001; 26:167–174.

    Article  PubMed  CAS  Google Scholar 

  20. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418:191–195.

    Article  PubMed  CAS  Google Scholar 

  21. Park JS, Svetkauskaite D, He Q et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004; 279:7370–7377.

    Article  PubMed  CAS  Google Scholar 

  22. Muller S, Scaffidi P, Degryse B et al. New EMBO members’ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 2001; 20:4337–4340.

    Article  PubMed  CAS  Google Scholar 

  23. Andersson U, Wang H, Palmblad K et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 2000; 192:565–570.

    Article  PubMed  CAS  Google Scholar 

  24. Messmer D, Yang H, Telusma G et al. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 2004; 173:307–313.

    PubMed  CAS  Google Scholar 

  25. Wang H, Bloom O, Zhang M et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285:248–251.

    Article  PubMed  CAS  Google Scholar 

  26. Yang H, Ochani M, Li J et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA 2004; 101:296–301.

    Article  PubMed  CAS  Google Scholar 

  27. Rouhiainen A, Tumova S, Valmu L et al. Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J Leukoc Biol 2007; 81:49–58.

    Article  PubMed  CAS  Google Scholar 

  28. Tian J, Avalos AM, Mao SY et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007; 8:487–496.

    Article  PubMed  CAS  Google Scholar 

  29. Bianchi ME. HMGB1 loves company. J Leukoc Biol 2009; 86:573–576.

    Article  PubMed  CAS  Google Scholar 

  30. Yanai H, Ban T, Wang Z et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 2009; 462:99–103.

    Article  PubMed  CAS  Google Scholar 

  31. Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425:516–521.

    Article  PubMed  CAS  Google Scholar 

  32. Shi Y, Galusha SA, Rock KL. Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T-lymphocytes to transplanted cells and in an autoimmune diabetes model. J Immunol 2006; 176:3905–3908.

    PubMed  CAS  Google Scholar 

  33. Martinon F, Petrilli V, Mayor A et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440:237–241.

    Article  PubMed  CAS  Google Scholar 

  34. Basu S, Binder RJ, Suto R et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 2000; 12:1539–1546.

    Article  PubMed  CAS  Google Scholar 

  35. Singh-Jasuja H, Toes RE, Spee P et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 2000; 191:1965–1974.

    Article  PubMed  CAS  Google Scholar 

  36. Asea A, Kraeft SK, Kurt-Jones EA et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000; 6:435–442.

    Article  PubMed  CAS  Google Scholar 

  37. Kol A, Lichtman AH, Finberg RW et al. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 2000; 164:13–17.

    PubMed  CAS  Google Scholar 

  38. Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol 2000; 1:151–155.

    Article  PubMed  CAS  Google Scholar 

  39. Basu S, Binder RJ, Ramalingam T et al. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70 and calreticulin. Immunity 2001; 14:303–313.

    Article  PubMed  CAS  Google Scholar 

  40. Wang Y, Kelly CG, Karttunen JT et al. CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 2001; 15:971–983.

    Article  PubMed  CAS  Google Scholar 

  41. Becker T, Hartl FU, Wieland F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 2002; 158:1277–1285.

    Article  PubMed  CAS  Google Scholar 

  42. Millar DG, Garza KM, Odermatt B et al. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 2003; 9:1469–1476.

    Article  PubMed  CAS  Google Scholar 

  43. Theriault JR, Mambula SS, Sawamura T et al. Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 2005; 579:1951–1960.

    Article  PubMed  CAS  Google Scholar 

  44. Delneste Y, Magistrelli G, Gauchat J et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 2002; 17:353–362.

    Article  PubMed  CAS  Google Scholar 

  45. Theriault JR, Adachi H, Calderwood SK. Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 2006; 177:8604–8011.

    PubMed  CAS  Google Scholar 

  46. Multhoff G. Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 2002; 18:576–585.

    Article  PubMed  CAS  Google Scholar 

  47. Alexopoulou L, Holt AC, Medzhitov R et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413:732–738.

    Article  PubMed  CAS  Google Scholar 

  48. Kariko K, Ni H, Capodici J et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 2004; 279:12542–12550.

    Article  PubMed  CAS  Google Scholar 

  49. Ishii KJ, Suzuki K, Coban C et al. Genomic DNA released by dying cells induces the maturation of APCs. J Immunol 2001; 167:2602–2607.

    PubMed  CAS  Google Scholar 

  50. Lazarowski ER, Homolya L, Boucher RC et al. Direct demonstration of mechanically induced release of cellular UTP and its implication for uridine nucleotide receptor activation. J Biol Chem 1997; 272:24348–24354.

    Article  PubMed  CAS  Google Scholar 

  51. Iyer SS, Pulskens WP, Sadler JJ et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 2009; 106:20388–20393.

    Article  PubMed  CAS  Google Scholar 

  52. Marriott I, Inscho EW, Bost KL. Extracellular uridine nucleotides initiate cytokine production by murine dendritic cells. Cell Immunol 1999; 195:147–156.

    Article  PubMed  CAS  Google Scholar 

  53. Schnurr M, Then F, Galambos P et al. Extracellular ATP and TNF-alpha synergize in the activation and maturation of human dendritic cells. J Immunol 2000; 165:4704–4709.

    PubMed  CAS  Google Scholar 

  54. Mutini C, Falzoni S, Ferrari D et al. Mouse dendritic cells express the P2X7 purinergic receptor: characterization and possible participation in antigen presentation. J Immunol 1999; 163:1958–1965.

    PubMed  CAS  Google Scholar 

  55. Huysamen C, Willment JA, Dennehy KM et al. CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem 2008; 283:16693–16701.

    Article  PubMed  CAS  Google Scholar 

  56. Sancho D, Mourao-Sa D, Joffre OP et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 2008; 118:2098–2110.

    Article  PubMed  CAS  Google Scholar 

  57. Iyoda T, Shimoyama S, Liu K et al. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 2002; 195:1289–1302.

    Article  PubMed  CAS  Google Scholar 

  58. Qiu CH, Miyake Y, Kaise H et al. Novel subset of CD8 alpha+ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J Immunol 2009; 182:4127–4136.

    Article  PubMed  CAS  Google Scholar 

  59. Robinson MJ, Sancho D, Slack EC et al. Myeloid C-type lectins in innate immunity. Nat Immunol 2006; 7:1258–1265.

    Article  PubMed  CAS  Google Scholar 

  60. Cavassani KA, Ishii M, Wen H et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med 2008; 205:2609–2621.

    Article  PubMed  CAS  Google Scholar 

  61. Flornes LM, Bryceson YT, Spurkland A et al. Identification of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex. Immunogenetics 2004; 56:506–517.

    Article  PubMed  CAS  Google Scholar 

  62. Matsumoto M, Tanaka T, Kaisho T et al. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol 1999; 163:5039–5048.

    PubMed  CAS  Google Scholar 

  63. Yamasaki S, Ishikawa E, Sakuma M et al. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 2008; 9:1179–1188.

    Article  PubMed  CAS  Google Scholar 

  64. Mimori T, Hinterberger M, Pettersson I et al. Autoantibodies to the U2 small nuclear ribonucleoprotein in a patient with scleroderma-polymyositis overlap syndrome. J Biol Chem 1984; 259:560–565.

    PubMed  CAS  Google Scholar 

  65. Iyoda T, Nagata K, Akashi M et al. Neutrophils accelerate macrophage-mediated digestion of apoptotic cells in vivo as well as in vitro. J Immunol 2005; 175:3475–3483.

    PubMed  CAS  Google Scholar 

  66. Yamasaki S, Matsumoto M, Takeuchi O et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci USA 2009; 106:1897–1902.

    Article  PubMed  CAS  Google Scholar 

  67. Ishikawa E, Ishikawa T, Morita YS et al. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 2009; 206:2879–2888.

    Article  PubMed  CAS  Google Scholar 

  68. Azuma I, Seya T. Development of immunoadjuvants for immunotherapy of cancer. Int Immunopharmacol 2001; 1:1249–1259.

    Article  PubMed  CAS  Google Scholar 

  69. Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989; 54 Pt 1:1–13.

    Article  PubMed  CAS  Google Scholar 

  70. Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science 2002; 296:298–300.

    Article  PubMed  CAS  Google Scholar 

  71. Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 2004; 4:469–478.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho Yamasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Miyake, Y., Yamasaki, S. (2012). Sensing Necrotic Cells. In: López-Larrea, C. (eds) Self and Nonself. Advances in Experimental Medicine and Biology, vol 738. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1680-7_9

Download citation

Publish with us

Policies and ethics