Skip to main content

Searching for Splicing Motifs

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 623))

Abstract

Intron removal during pre-mRNA splicing in higher eukaryotes requires the accurate identification of the two splice sites at the ends of the exons, or exon definition. The sequences constituting the splice sites provide insufficient information to distinguish true splice sites from the greater number of false splice sites that populate transcripts. Additional information used for exon recognition resides in a large number of positively or negatively acting elements that lie both within exons and in the adjacent introns. The identification of such sequence motifs has progressed rapidly in recent years, such that extensive lists are now available for exonic splicing enhancers and exonic splicing silencers. These motifs have been identified both by empirical experiments and by computational predictions, the validity of the latter being confirmed by experimental verification. Molecular searches have been carried out either by the selection of sequences that bind to splicing factors, or enhance or silence splicing in vitro or in vivo. Computational methods have focused on sequences of 6 or 8 nucleotides that are over- or under-represented in exons, compared to introns or transcripts that do not undergo splicing. These various methods have sought to provide global definitions of motifs, yet the motifs are distinctive to the method used for identification and display little overlap. Astonishingly, at least three-quarters of a typical mRNA would be comprised of these motifs. A present challenge lies in understanding how the cell integrates this surfeit of information to generate what is usually a binary splicing decision.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Senapathy F, Shapiro MB, Harris NL. Splice junctions, branch point sites and exons: sequence statistics, identification and applications to genome project. Methods Enzymol 1990; 183:252–278.

    CAS  PubMed  Google Scholar 

  2. Zhang XH, Leslie CS, Chasin LA. Computational searches for splicing signals. Methods 2005; 37(4):292–305.

    CAS  PubMed  Google Scholar 

  3. Sickmier EA, Frato KE, Shen H et al. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol Cell. Vol 23; 2006:49–59.

    CAS  PubMed  Google Scholar 

  4. Roca X, Sachidanandam R, Krainer AR. Intrinsic differences between authentic and cryptic 5′ splice sites. Nucleic Acids Res 2003; 31(215):6321–6333.

    CAS  PubMed  Google Scholar 

  5. Thanaraj TA, Stamm S. Prediction and statistical analysis of alternatively spliced exons. Prog Mol Subcell Biol 2003; 31:1–31.

    CAS  PubMed  Google Scholar 

  6. Zheng CL, Fu XD, Gribskov M. Characteristics and regulatory elements defining constitutive splicing and different modes of alternative splicing in human and mouse. RNA 2005; 11(125):1777–1787.

    CAS  PubMed  Google Scholar 

  7. Itoh H, Washio T, Tomita M. Computational comparative analyses of alternative splicing regulation using fall-length cDNA of various eukaryotes. RNA 2004; 10(7):1005–1018.

    CAS  PubMed  Google Scholar 

  8. Lear AL, Eperon LP, Wheatley IM et al. Hierarchy for 5′ splice site preference determined in vivo. J Mol Biol. Vol 211; 1990:103–115.

    CAS  PubMed  Google Scholar 

  9. Carothers AM, Urlaub G, Grunbergcr D et al. Splicing mutants and their second-site suppressors at the dihydrofolate reductase locus in Chinese hamster ovary cells. Mol Cell Biol 1993; 13(8):5085–5098.

    CAS  PubMed  Google Scholar 

  10. Schneider TD. Information content of individual genetic sequences. J Theor Biol 1997; 189(4):427–441.

    CAS  PubMed  Google Scholar 

  11. Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol 1997; 268(1):78–94.

    CAS  PubMed  Google Scholar 

  12. Zhang XH, Heller KA, Hefter I et al. Sequence information for the splicing of human pre-mRNA identified by support vector machine classification. Genome Res 2003; 13(12):2637–2650.

    CAS  PubMed  Google Scholar 

  13. Green MR. Biochemical mechanisms of constitutive and regulated prc-mRNA splicing. Annu Rev Cell Biol 1991; 7:559–599.

    CAS  PubMed  Google Scholar 

  14. Smith CW, Nadal-Ginard B. Mutually exclusive splicing of alpha-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell 1989; 56(5):749–758.

    CAS  PubMed  Google Scholar 

  15. Sun H, Chasin LA, Multiple splicing defects in an intronic false exon. Mol Cell Biol 2000; 20(17):6414–6425.

    CAS  PubMed  Google Scholar 

  16. Krawczak M, Reiss J, Cooper DN. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 1992; 90(1–2):41–54.

    CAS  PubMed  Google Scholar 

  17. Berget SM. Exon recognition in vertebrate splicing. J Biol Chem 1995; 270(6):2411–2414.

    CAS  PubMed  Google Scholar 

  18. Robberson BL, Cote GJ, Berget SM. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol 1990; 10(1):84–94.

    CAS  PubMed  Google Scholar 

  19. Lewis JD, Izaurralde E, Jarmolowski A et al. A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5′ splice site. Genes Der 1996; 10(13):1683–1698.

    CAS  Google Scholar 

  20. Zeng C, Berget SM. Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing. Mol Cell Biol 2000; 20(21):8290–8301.

    CAS  PubMed  Google Scholar 

  21. Cooke C, Hans H, Alwine JC. Utilization of splicing elements and polyadenylation signal elements in the coupling of polyadenylation and last-intron removal Mol Cell Biol 1999; 19(7):4971–4979.

    CAS  PubMed  Google Scholar 

  22. Query CC, McCaw PS, Sharp PA. A minimal spliceosomal complex A recognizes the branch site and polypyrimidine tract. Mol Cell Biol 1997; 17(5):2944–2953.

    CAS  PubMed  Google Scholar 

  23. Zhang MQ. Statistical features of human exons and their flanking regions. Hum Mol Genet 1998; 7(5):919–932.

    CAS  PubMed  Google Scholar 

  24. Cooper TA, Ordahl CP. Nucleotide substitutions within the cardiac troponin T alternative exon disrupt pre-mRNA alternative splicing. Nucleic Acids Res 1989; 17(19):7905–7921.

    CAS  PubMed  Google Scholar 

  25. Streuli M, Saito H. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA. EMBO J 1989; 8(3):787–796.

    CAS  PubMed  Google Scholar 

  26. Watakabe A, Tanaka K, Shimura Y. The role of exon sequences in splice site selection. Genes Dev 1993; 7(3):407–418.

    CAS  PubMed  Google Scholar 

  27. Schaal TD, Maniatis T. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol 1999; 19(1):261–273.

    CAS  PubMed  Google Scholar 

  28. Zhang XH, Kangsamaksin T, Chao MS et al. Exon inclusion is dependent on predictable exonic splicing enhancers. Mol Cell Biol 2005; 25(16):7323–7332.

    CAS  PubMed  Google Scholar 

  29. Graveley BR. Sorting out the complexity of SR protein functions. RNA 2000; 6(9):1197–1211.

    CAS  PubMed  Google Scholar 

  30. Kohtz JD, Jamison SF, Will CL, et al. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 1994; 368(6467):119–124.

    CAS  PubMed  Google Scholar 

  31. Shen H, Green MR. RS domains contact splicing signals and promote splicing by a common mechanism fa yeast through humans. Genes Dev. Vol 20; 2006:1755–1765.

    CAS  PubMed  Google Scholar 

  32. Tacke R, Manley JL. Determinants of SR protein specificity. Curr Opin Cell Biol 1999; 11(3):358–362.

    CAS  PubMed  Google Scholar 

  33. Pozzoli U, Sironi M. Silencers regulate both constitutive and alternative splicing events in mammals. Cell Mol Life Sci 2005; 62(14):1579–1604.

    CAS  PubMed  Google Scholar 

  34. Abdul-Manan N, Williams KR. hnRNP A1 binds promiscuously to oligoribonucleotides: utilization of random and homo-oligonucleotides to discriminate sequence from base-specific binding. Nucleic Acids Res 1996; 24(20):4063–4070.

    CAS  PubMed  Google Scholar 

  35. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003; 72:291–336.

    CAS  PubMed  Google Scholar 

  36. Zheng ZM. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci 2004; 11(3):278–294.

    CAS  PubMed  Google Scholar 

  37. Fu XD. Towards a splicing code. Cell 2004; 119:736–738.

    CAS  PubMed  Google Scholar 

  38. Fedorov A, Saxonov S, Fedorova L et al. Comparison of intron-containing and intron-lacking human genes elucidates putative exonic splicing enhancers. Nucleic Acids Res 2001; 29(7):1464–1469.

    CAS  PubMed  Google Scholar 

  39. Fairbrother WG, Yeh RF, Sharp PA et al. Predictive identification of exonic splicing enhancers in human genes. Science 2002; 297(5583):1007–1013.

    CAS  PubMed  Google Scholar 

  40. Fairbrother WG, Holste D, Burge CB et al. Single nucleotide polymorphism-based validation of exonic splicing enhancers. PLoS Biol 2004; 2(9):E268.

    PubMed  Google Scholar 

  41. Zhang XH, Chasin LA. Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 2004; 18(11):1241–1250.

    CAS  PubMed  Google Scholar 

  42. Davuluri RV, Grosse I, Zhang MQ. Computational identification of promoters and first exons in the human genome. Nat Genet 2001; 29(4):412–417.

    CAS  PubMed  Google Scholar 

  43. Majewski J, Ott J. Distribution and characterization of regulatory elements in the human genome. Genome Res 2002; 12(12):1827–1836.

    CAS  PubMed  Google Scholar 

  44. Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 2006; 103(5):1412–1417.

    CAS  PubMed  Google Scholar 

  45. Grellscheid SN, Smith CW. An apparent pseudo-exon acts both as an alternative exon that leads to nonsense-mediated decay and as a zero-length exon. Mol Cell Biol 2006; 26(6):2237–2246.

    CAS  PubMed  Google Scholar 

  46. Sironi M, Menozzi G, Riva L et al. Silencer elements as possible inhibitors of pseudoexon splicing. Nucleic Acids Res 2004; 32(5):1783–1791.

    CAS  PubMed  Google Scholar 

  47. Goten A, Ram O, Amit M et al. Comparative analysis identifies exonic splicing regulatory sequences—The comptez definition of enhancers and silencers. Mol Cell. Vol 22; 2006:769–781.

    Google Scholar 

  48. Graveley BR, Hertel KJ, Maniatis T. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J 1998; 17(22):6747–6756.

    CAS  PubMed  Google Scholar 

  49. Shen H, Green MR. RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans. Genes Dev 2006; 20(13):1755–1765.

    CAS  PubMed  Google Scholar 

  50. Kanopka A, Muhlemann O, Akusjarvi G. Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 1996; 381(6582):535–538.

    CAS  PubMed  Google Scholar 

  51. Wu JY, Kar A, Ruo D et al. SRpS4 (SFRS11), a Regulator for tau Earn 10 Alternative Splicing Identified by an Expression Cloning Strategy. Mol Cell Biol 2006; 26(18):6739–6747.

    CAS  PubMed  Google Scholar 

  52. Cartegni L, Hastings ML, Calarco JA et al. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 2006; 78(1):63–77.

    CAS  PubMed  Google Scholar 

  53. Kashima T, Manley JL. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 2003; 34(4):460–463.

    CAS  PubMed  Google Scholar 

  54. Goren A, Ram O, Amit M et al. Comparative analysis identifies exonic splicing regulatory sequences—The complex definition of enhancers and silencers. Mol Cell 2006; 22(6):769–781.

    CAS  PubMed  Google Scholar 

  55. Wang Z, Xiao X, Van Nostrand E et al. General and specific functions of exonic splicing silencers in splicing control. Mol Cell 2006; 23(1):61–70.

    CAS  PubMed  Google Scholar 

  56. Smith PJ, Zhang C, Wang J et al. An increased specificity score matrix for the prediction of SF2/ ASF-specific exonic splicing enhancers. Hum Mol Genet 2006; 15(16):2490–2508.

    CAS  PubMed  Google Scholar 

  57. Eszterhas SK, Bouhassira EE, Martin DI et al. Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol 2002; 22(2):469–479.

    CAS  PubMed  Google Scholar 

  58. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249(4968):505–510.

    CAS  PubMed  Google Scholar 

  59. Tacke R, Manley JL. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J 1995; 14(14):3540–3551.

    CAS  PubMed  Google Scholar 

  60. Kim S, Shi H, Lee DK et al. Specific SR protein-dependent splicing substrates identified through genomic SELEX. Nucleic Acids Res 2003; 31(7):1955–1961.

    CAS  PubMed  Google Scholar 

  61. Hui J, Hung LH, Heiner M et al. Intronic CA-repeat and CA-rich elements: a new class of regulators of mammalian alternative splicing. EMBO J 2005; 24(11):1988–1998.

    CAS  PubMed  Google Scholar 

  62. Amarasinghe AK, MacDiarmid R, Adams MD et al. An in vitro-selected RNA-binding site for the KH domain protein PSI acts as a splicing inhibitor element. RNA 2001; 7(9):1239–1253.

    CAS  PubMed  Google Scholar 

  63. Cavaloc Y, Bourgeois CF, Kister L et al. The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers. RNA 1999; 5(3):468–483.

    CAS  PubMed  Google Scholar 

  64. Wang J, Dong Z, Bell LR. Sex-lethal interactions with protein and RNA. Roles of glycine-rich and RNA binding domains. J Biol Chem 1997; 272(35):22227–22235.

    CAS  PubMed  Google Scholar 

  65. Buckanovich RJ, Darnell RB. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol Cell Biol 1997; 17(6):3194–3201.

    CAS  PubMed  Google Scholar 

  66. Tacke R, Chen Y, Manley JL. Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc Natl Acad Sci USA 1997; 94(4):1148–1153.

    CAS  PubMed  Google Scholar 

  67. Faustino NA, Cooper TA. Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol Cell Biol 2005; 25(3):879–887.

    CAS  PubMed  Google Scholar 

  68. Bourgeois CF, Lejeune F, Stevenin J. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. Prog Nucleic Acid Res Mol Biol 2004; 78:37–88.

    CAS  PubMed  Google Scholar 

  69. Sickmier EA, Frato KE, Shen H et al. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol Cell 2006; 23(1):49–59.

    CAS  PubMed  Google Scholar 

  70. Sanford JR, Ellis J, Caceres JF. Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem Soc Trans 2005; 33(Pt 3):443–446.

    CAS  PubMed  Google Scholar 

  71. Boukis LA, Liu N, Furuyama S et al. Ser/Arg-rich protein-mediated communication between U1 and U2 small nuclear ribonucleoprotein particles. J Biol Chem 2004; 279(28):29647–29653.

    CAS  PubMed  Google Scholar 

  72. MacMillan AM, McCaw PS, Crispino JD et al. SC35-mediated reconstitution of splicing in U2AF-depleted nuclear extract. Proc Natl Acad Sci USA 1997; 94(1):133–136.

    CAS  PubMed  Google Scholar 

  73. Shen H, Green MR. A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly. Mol Cell 2004; 16(3):663–673.

    Google Scholar 

  74. Shen H, Kan JL, Green MR. Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly. Mol Cell 2004; 13(3):367–376.

    CAS  PubMed  Google Scholar 

  75. Chew SL, Liu HX, Mayeda A et al. Evidence for the function of an exonic splicing enhancer after the first catalytic step of pre-mRNA splicing. Proc Natl Acad Sci USA 1999; 96(19):10655–10660.

    CAS  PubMed  Google Scholar 

  76. Tian H, Kole R. Selection of novel exon recognition elements from a pool of random sequences. Mol Cell Biol 1995: 15(11):6291–6298.

    CAS  PubMed  Google Scholar 

  77. Tian H, Kole R. Strong RNA splicing enhancers identified by a modified method of cycled selection interact with SR protein. J Biol Chem 2001; 276(36):33833–33839.

    CAS  PubMed  Google Scholar 

  78. Liu HX, Chew SL, Cartegni L et al. Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol 2000; 20(3):1063–1071.

    CAS  PubMed  Google Scholar 

  79. Liu HX, Zhang M, Krainer AR. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 1998; 12(13):1998–2012.

    CAS  PubMed  Google Scholar 

  80. Cartegni L, Wang J, Zhu Z et al. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res 2003; 31(13):3568–3571.

    CAS  PubMed  Google Scholar 

  81. Wang J, Smith PJ, Krainer AR et al. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes. Nucleic Acids Res 2005; 33(16):5053–5062.

    CAS  PubMed  Google Scholar 

  82. Wu Y, Zhang Y, Zhang J. Distribution of exonic splicing enhancer elements in human genes. Genomics 2005; 86(3):329–336.

    CAS  PubMed  Google Scholar 

  83. Schaal TD, Maniatis T. Selection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences. Mol Cell Biol 1999; 19(3):1705–1719.

    CAS  PubMed  Google Scholar 

  84. Coulter LR, Landree MA, Cooper TA. Identification of a new class of exonic splicing enhancers by in two selection. Mol Cell Biol 1997; 17(4):2143–2150.

    CAS  PubMed  Google Scholar 

  85. Stickeler E, Fraser SD, Honig A et al. The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v.4 EMBO J 2001; 20(14):3821–3830.

    CAS  PubMed  Google Scholar 

  86. Woerfel G, Bindereif A. In vitro selection of exonic splicing enhancer sequences: identification of novel CD44 enhancers. Nucleic Acids Res 2001; 29(15):3204–3211.

    CAS  PubMed  Google Scholar 

  87. Wang Z, Rolish ME, Yeo G et al. Systematic identification and analysis of exonic splicing silencers. Cell 2004; 119(6):831–845.

    CAS  PubMed  Google Scholar 

  88. Wagner EJ, Garcia-Blanco MA. Polypyrimidine tract binding protein antagonizes exon definition. Mol Cell Biol 2001; 21(10):3281–3288.

    CAS  PubMed  Google Scholar 

  89. Dredge BK, Darnell RB. Nova regulates GABA(A) receptor gamma2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer. Mol Cell Biol 2003; 23(13):4687–4700.

    CAS  PubMed  Google Scholar 

  90. Singh NN, Androphy EJ, Singh RN. In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes. RNA 2004; 10(8):1291–1305.

    CAS  PubMed  Google Scholar 

  91. Nussinov R. Conserved signals around the 5′ splice sites in eukaryotic nuclear precursor mRNAs: G-runs are frequent in the introns and C in the exons near both 5′ and 3′ splice sites. J Biomol Struct Dyn 1989; 6(5):985–1000.

    CAS  PubMed  Google Scholar 

  92. McCullough AJ, Berget SM. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol Cell Biol 1997; 17(8):4562–4571.

    CAS  PubMed  Google Scholar 

  93. McCullough AJ, Berget SM. An intronic splicing enhancer binds U1 snRNPs to enhance splicing and select 5′ splice sites. Mol Cell Biol 2000; 20(24):9225–9235.

    CAS  PubMed  Google Scholar 

  94. Louie F, Ott J, Majewski J. Nucleotide frequency variation across human genes. Genome Res 2003; 13(12):2594–2601.

    CAS  PubMed  Google Scholar 

  95. Sorek R, Ast G. Intronic sequences flanking alternatively spliced exons are conserved between human and mouse. Genome Res 2003; 13(7):1631–1637.

    CAS  PubMed  Google Scholar 

  96. Lim LP, Burge CB. A computational analysis of sequence features involved in recognition of short introns. Proc Natl Acad Sci USA 2003; 98(20):11193–11198.

    Google Scholar 

  97. Brudno M, Gelfand MS, Spengler S et al. Computational analysis of candidate intron regulatory elements for tissue-specific alternative pre-mRNA splicing. Nucleic Acids Res 2001; 29(11):2338–2348.

    CAS  PubMed  Google Scholar 

  98. Minovitsky S, Gee SL, Schokrpur S et al. The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons. Nucleic Acids Res 2005; 33(2):714–724.

    CAS  PubMed  Google Scholar 

  99. Auweter SD, Fasan R, Reymond L et al. Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J 2006; 25(1):163–173.

    CAS  PubMed  Google Scholar 

  100. Zhou HL, Baraniak AP, Lou H. A role for Fox-1/Fox-2 in mediating the neuronal pathway of calcitonin/CGRP alternative RNA processing. Mol Cell Biol 2006.

    Google Scholar 

  101. Nakahata S, Kawamoto S. Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res 2005; 33(7):2078–2089.

    CAS  PubMed  Google Scholar 

  102. Jin Y, Suzuki H, Maegawa S et al. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J 2003; 22(4):905–912.

    CAS  PubMed  Google Scholar 

  103. Han K, Yeo G, An P et al A combinatorial code for splicing silencing: UAGG and GGGG motifs. PLoS Biol 2005; 3(5):e158.

    PubMed  Google Scholar 

  104. Zhang XH, Leslie CS, Chasin LA. Dichotomous splicing signals in exon flanks. Genome Res 2005; 15(6):768–779.

    CAS  PubMed  Google Scholar 

  105. Lund M, Tange TO, Dyhr-Mikkelsen H et al. Characterization of human RNA splice signals by iterative functional selection of splice sites. RNA 2000; 6(4):528–544.

    CAS  PubMed  Google Scholar 

  106. Buvoli M, Mayer SA, Patton JG. Functional crosstalk between exon enhancers, polypyrimidine tracts and branchpoint sequences. EMBO J 1997; 16(23):7174–7183.

    CAS  PubMed  Google Scholar 

  107. Lund M, Kjems J. Defining a 5′ splice site by functional selection in the presence and absence of U1 snRNA 5′ end. RNA 2002; 8(2):166–179.

    CAS  PubMed  Google Scholar 

  108. Lorincz MC, Dickerson DR, Schmitt M et al. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 2004; 11(11):1068–1075.

    CAS  PubMed  Google Scholar 

  109. Listerman I, Sapra AK, Neugebauer KM. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 2006; 13(9):815–822.

    CAS  PubMed  Google Scholar 

  110. Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 2005; 6(5):386–398.

    CAS  PubMed  Google Scholar 

  111. Fu XD. Towards a splicing code. Cell 2004; 119(6):736–738.

    CAS  PubMed  Google Scholar 

  112. Stadler MB, Shomron N, Yeo GW et al Inference of splicing regulatory activities by sequence neighborhood analysis. PLoS Genet 2006; 2(11):e191.

    PubMed  Google Scholar 

  113. Buratti E, Bandle M, Baralle FE, Defective splicing, disease and therapy: searching for master checkpoints fa exon definition. Nucleic Adds Res 2006; 34(12):3494–3510.

    CAS  Google Scholar 

  114. Varani G, Nagai K. RNA recognition by RNP proteins during RNA processing. Annu Rev Biophys Biomol Struct 1998; 27:407–445.

    CAS  PubMed  Google Scholar 

  115. Buratti E, Muro AF, Giombi M et al. RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol Cell Biol 2004; 24(3):1387–1400.

    CAS  PubMed  Google Scholar 

  116. Buratti E, Baralle FE. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol 2004; 24(24):10505–10514.

    CAS  PubMed  Google Scholar 

  117. Bennett M, Pinol-Roma S, Staknis D et al. Differential binding of heterogeneous nuclear ribonucleoprotcins to mRNA precursors prior to spliceosome assembly in vitro. Mol Cell Biol 1992; 12(7):3165–3175.

    CAS  PubMed  Google Scholar 

  118. Fairbrother WG, Chasin LA. Human genomic sequences that inhibit splicing. Mol Cell Biol 2000; 20(18):6816–6825.

    CAS  PubMed  Google Scholar 

  119. Chen IT, Chasin LA. Large exon size does not limit splicing in vivo. Mol Cell Biol 1994; 14(3):2140–2146.

    CAS  PubMed  Google Scholar 

  120. Shen H, Kan JL, Ghigna C et al. A single polypyrimidine tract binding protein (PTB) binding site mediates splicing inhibition at mouse IgM earns M1 and M2. RNA 2004; 10(5):787–794.

    CAS  PubMed  Google Scholar 

  121. Zahler AM, Damgaard CK, Kjems J et al. SC35 and heterogeneous nuclear ribonucleoprotein A/B proteins bind to a juxtaposed exonic splicing enhancer/exonic splicing silencer element to regulate HIV-1 tat exon 2 splicing. J Biol Chem 2004; 279(11):10077–10084.

    CAS  PubMed  Google Scholar 

  122. Bonnal S, Pileur F, Orsini C et al. Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 2005; 280(6):4144–4153.

    CAS  PubMed  Google Scholar 

  123. Valcarcel J, Gebauer F. Posrtranscriptional regulation: the dawn of PTB. Curr Bid 1997; 7(11):R705–R708.

    CAS  Google Scholar 

  124. Zhu J, Mayeda A, Krainer AR. Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell 2001; 8(6):1351–1361.

    CAS  PubMed  Google Scholar 

  125. Pagani F, Buratti E, Stuani C et al. A new type of mutation causes a splicing defect in ATM. Nat Genet 2002; 30(4):426–429.

    CAS  PubMed  Google Scholar 

  126. Sorek R, Lev-Maor G, Reznik M et al. Minimal conditions for exonization of intronic sequences: 5′ splice site formation in alu exons. Mol Cell 2004; 14(2):221–231.

    CAS  PubMed  Google Scholar 

  127. Zhang XH, Chasin LA. Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons. Proc Natl Acad Sci USA 2006; 103(36):13427–13432.

    CAS  PubMed  Google Scholar 

  128. Jurica MS, Licklider LJ, Gygi SR et al. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 2002; 8(4):426–439.

    CAS  PubMed  Google Scholar 

  129. Blanchette M, Green RE, Brenner SE et al. Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev 2005; 19(11):1306–1314.

    CAS  PubMed  Google Scholar 

  130. Ule J, Jensen KB, Ruggiu M et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 2003; 302(5648):1212–1215.

    CAS  PubMed  Google Scholar 

  131. Ule J, Stefani G, Mele A et al. An RNA map predicting Nova-dependent splicing regulation. Nature 2006; 444(7119):580–586.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Chasin, L.A. (2007). Searching for Splicing Motifs. In: Blencowe, B.J., Graveley, B.R. (eds) Alternative Splicing in the Postgenomic Era. Advances in Experimental Medicine and Biology, vol 623. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77374-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77374-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-77373-5

  • Online ISBN: 978-0-387-77374-2

Publish with us

Policies and ethics