Skip to main content

Cytobank: Providing an Analytics Platform for Community Cytometry Data Analysis and Collaboration

  • Chapter
  • First Online:
Book cover High-Dimensional Single Cell Analysis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 377))

Abstract

Cytometry is used extensively in clinical and laboratory settings to diagnose and track cell subsets in blood and tissue. High-throughput, single-cell approaches leveraging cytometry are developed and applied in the computational and systems biology communities by researchers, who seek to improve the diagnosis of human diseases, map the structures of cell signaling networks, and identify new cell types. Data analysis and management present a bottleneck in the flow of knowledge from bench to clinic. Multi-parameter flow and mass cytometry enable identification of signaling profiles of patient cell samples. Currently, this process is manual, requiring hours of work to summarize multi-dimensional data and translate these data for input into other analysis programs. In addition, the increase in the number and size of collaborative cytometry studies as well as the computational complexity of analytical tools require the ability to assemble sufficient and appropriately configured computing capacity on demand. There is a critical need for platforms that can be used by both clinical and basic researchers who routinely rely on cytometry. Recent advances provide a unique opportunity to facilitate collaboration and analysis and management of cytometry data. Specifically, advances in cloud computing and virtualization are enabling efficient use of large computing resources for analysis and backup. An example is Cytobank, a platform that allows researchers to annotate, analyze, and share results along with the underlying single-cell data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR (2011) Rapid cell population identification in flow cytometry data. Cytometry A 79:6–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Aghaeepour N, Chattopadhyay PK, Ganesan A, O’Neill K, Zare H, Jalali A et al (2012) Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays. Bioinformatics 28:1009–1016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • America tCotUSo HITECH Act of 2009

    Google Scholar 

  • Amir el AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31:545–552

    Article  Google Scholar 

  • Bagwell CB (2005) Hyperlog-a flexible log-like transform for negative, zero, and positive valued data. Cytometry A 64:34–42

    Article  PubMed  Google Scholar 

  • Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822

    Article  CAS  PubMed  Google Scholar 

  • Bashashati A, Lo K, Gottardo R, Gascoyne RD, Weng A, Brinkman R (2009) A pipeline for automated analysis of flow cytometry data: preliminary results on lymphoma sub-type diagnosis. Conf Proc IEEE Eng Med Biol Soc 2009:4945–4948

    PubMed  Google Scholar 

  • Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bjornson ZB, Nolan GP, Fantl WJ (2013) Single-cell mass cytometry for analysis of immune system functional states. Curr Opin Immunol 25:484–494

    Article  CAS  PubMed  Google Scholar 

  • Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV et al (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30:858–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • CDC/National Center for Health Statistics, O. o. I. S. (2009) International classification of diseases, ninth revision (ICD-9). Retrieved 24 Dec 2013 from http://www.cdc.gov/nchs/icd/icd9.htm

  • Christine MM, Sharly JN, Gilbert SO (Eds) (2012) Evolution of translational omics: lessons learned and the path forward, The National Academies Press

    Google Scholar 

  • Congress U (2009) American recovery and reinvestment act of 2009. Public Law (111–5):111

    Google Scholar 

  • Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fantl W et al (2013) Normalization of mass cytometry data with bead standards. Cytometry A 83:483–494

    Article  PubMed Central  PubMed  Google Scholar 

  • Frelinger J, Kepler TB, Chan C (2008) Flow: Statistics, visualization and informatics for flow cytometry. Source Code Biol Med 3:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Ge Y, Sealfon SC (2012) flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics 28:2052–2058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

  • Gremse M, Chang A, Schomburg I, Grote A, Scheer M, Ebeling C et al (2011) The BRENDA tissue ontology (BTO): the first all-integrating ontology of all organisms for enzyme sources. Nucleic Acids Res 39:D507–D513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D et al (2009) flowCore: a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10:106

    Article  PubMed Central  PubMed  Google Scholar 

  • http://www.cytobank.org/nolanlab/ Nolan Lab Signaling-Based (Fluorescence & Mass) Cytometry Resource

  • Immport. Retrieved 24 December 2014, from https://www.immport.niaid.nih.gov/

  • Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud O, Gjertsen BT et al (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:217–228

    Article  CAS  PubMed  Google Scholar 

  • Kotecha N, Krutzik PO, Irish JM (2010) Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom Chapter 10(Unit10):7

    Google Scholar 

  • Lee JA, Spidlen J, Boyce K, Cai J, Crosbie N, Dalphin M et al (2008) MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73:926–930

    Article  PubMed Central  PubMed  Google Scholar 

  • Linderman MD, Bjornson Z, Simonds EF, Qiu P, Bruggner RV, Sheode K et al (2012) CytoSPADE: high-performance analysis and visualization of high-dimensional cytometry data. Bioinformatics 28:2400–2401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lo K, Brinkman RR, Gottardo R (2008) Automated gating of flow cytometry data via robust model-based clustering. Cytometry A 73:321–332

    Article  PubMed  Google Scholar 

  • Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36:142–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • NIST (2013) Federal information security management act (fisma) implementation project. Retrieved 24 Dec 2013, from http://www.csrc.nist.gov/groups/SMA/fisma/.

  • Parks DR, Roederer M, Moore WA (2006) A new “Logicle” display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A 69:541–551

    Article  PubMed  Google Scholar 

  • Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier LM et al (2009) Automated high-dimensional flow cytometric data analysis. Proc Natl Acad Sci U S A 106:8519–8524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA et al (2010) Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin Cytom 78(Suppl 1):S69–S82

    Article  PubMed Central  PubMed  Google Scholar 

  • Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29:886–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roederer M, Treister A, Moore W, Herzenberg LA (2001) Probability binning comparison: A metric for quantitating univariate distribution differences. Cytometry 45:37–46

    Article  CAS  PubMed  Google Scholar 

  • Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM et al (2010) Cell type-specific gene expression differences in complex tissues. Nat Methods 7:287–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W et al (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25:1251–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Society, F. I. a. C. C. (2013) Flow standards. Retrieved 24 Dec 2013, from http://www.ficcs.org/data/flow-standards/.

  • Spidlen J, Moore W, Parks D, Goldberg M, Bray C, Bierre P et al (2010) Data file standard for flow cytometry, version FCS 3.1. Cytometry A 77:97–100

    PubMed Central  PubMed  Google Scholar 

  • Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR (2012) FlowRepository: a resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry A 81:727–731

    Article  PubMed  Google Scholar 

  • Spidlen J, Barsky A, Breuer K, Carr P, Nazaire MD, Hill BA et al (2013) GenePattern flow cytometry suite. Source Code Biol Med 8:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Tung JW, Parks DR, Moore WA, Herzenberg LA, Herzenberg LA (2004) New approaches to fluorescence compensation and visualization of FACS data. Clin Immunol 110:277–283

    Article  CAS  PubMed  Google Scholar 

  • UniProt C (2010) The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 38:D142–D148

    Article  Google Scholar 

  • Vines TH, Albert AY, Andrew RL, Debarre F, Bock DG, Franklin MT et al (2014) The availability of research data declines rapidly with article age. Curr Biol 24:94–97

    Article  CAS  PubMed  Google Scholar 

  • Walther G, Zimmerman N, Moore W, Parks D, Meehan S, Belitskaya I et al. (2009a) Automatic clustering of flow cytometry data with density-based merging. Adv Bioinformatics 686759

    Google Scholar 

  • Walther G, Zimmerman N, Moore W, Parks D, Meehan S, Belitskaya I et al (2009b) Automatic clustering of flow cytometry data with density-based merging. Adv Bioinform 2009:7

    Article  Google Scholar 

  • Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V et al (2008) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 36:D13–D21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wodak S, O’Neill K, Aghaeepour N, Špidlen J, Brinkman R (2013) Flow cytometry bioinformatics. PLoS Comput Biol 9:e1003365

    Article  Google Scholar 

  • Zare H, Shooshtari P, Gupta A, Brinkman RR (2010) Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinform 11:403

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank J. Irish and P. Krutzik for continued discussions and G. Kraker for help with analyses. The Cytobank project has been funded in part by the NIH including NHLBI Contract No. HHSN268201300037C, NIGMS Grant No. GM096579 and NIAID Grant No. AI094929.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikesh Kotecha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, T.J., Kotecha, N. (2014). Cytobank: Providing an Analytics Platform for Community Cytometry Data Analysis and Collaboration. In: Fienberg, H., Nolan, G. (eds) High-Dimensional Single Cell Analysis. Current Topics in Microbiology and Immunology, vol 377. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2014_364

Download citation

Publish with us

Policies and ethics