Skip to main content

Human Keratinocyte Cultures in the Investigation of Early Steps of Human Papillomavirus Infection

  • Protocol
  • First Online:
Book cover Epidermal Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1195))

Abstract

Human papillomaviruses (HPVs) are non-enveloped DNA viruses that are highly tropic for mucosal and cutaneous epithelia. The HPV life cycle is tightly linked to epithelial cell differentiation, where HPVs only infect the basal proliferating keratinocytes, and progeny virus assembly and release only occurs in differentiated upper-layer keratinocytes. Therefore, human keratinocyte monolayer cultures provide a useful model to study the early stages of HPV infection. However, previous reports have shown some conflicting results of virus–host interactions during HPV entry, which may be partly attributable to the different cell culture models used to examine these steps of HPV infection. Thus, there is a need to have a standardized in vitro model system to study virus–host interactions during HPV entry. Here, we describe the three most widely accepted keratinocyte models for studying HPV infection: primary human foreskin keratinocytes, normal immortalized keratinocytes, and transformed HaCaT keratinocytes. We also describe methods to genetically manipulate these cells, enabling the study of candidate host genes that may be important during HPV infection. Lastly, we outline simple and robust methods to assay HPV infectivity, which can be used to determine whether knockdown or overexpression of a particular gene affects HPV entry.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/7651_2013_65

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. zur Hausen H (1996) Papillomavirus infections—a major cause of human cancers. Biochim Biophys Acta 1288:F55–F78

    PubMed  Google Scholar 

  2. Gillison ML, Shah KV (2001) Human papillomavirus-associated head and neck squamous cell carcinoma: mounting evidence for an etiologic role for human papillomavirus in a subset of head and neck cancers. Curr Opin Oncol 13:183–188

    Article  CAS  PubMed  Google Scholar 

  3. zur Hausen H (1999) Viruses in human cancers. Eur J Cancer 35:1174–1181

    Article  CAS  PubMed  Google Scholar 

  4. Burd EM (2003) Human papillomavirus and cervical cancer. Clin Microbiol Rev 16:1–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gillison ML, Lowy DR (2004) A causal role for human papillomavirus in head and neck cancer. Lancet 363:1488–1489

    Article  CAS  PubMed  Google Scholar 

  6. Modis Y, Trus BL, Harrison SC (2002) Atomic model of the papillomavirus capsid. EMBO J 21:4754–4762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application, Nature reviews. Cancer 2:342–350

    CAS  PubMed  Google Scholar 

  8. Stubenrauch F, Laimins LA (1999) Human papillomavirus life cycle: active and latent phases. Semin Cancer Biol 9:379–386

    Article  CAS  PubMed  Google Scholar 

  9. Joyce JG, Tung JS, Przysiecki CT et al (1999) The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem 274:5810–5822

    Article  CAS  PubMed  Google Scholar 

  10. Giroglou T, Florin L, Schafer F et al (2001) Human papillomavirus infection requires cell surface heparan sulfate. J Virol 75:1565–1570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Pyeon D, Pearce SM, Lank SM et al (2009) Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog 5:e1000318

    Article  PubMed Central  PubMed  Google Scholar 

  12. Buck CB, Pastrana DV, Lowy DR et al (2004) Efficient intracellular assembly of papillomaviral vectors. J Virol 78:751–757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pyeon D, Lambert PF, Ahlquist P (2005) Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proc Natl Acad Sci U S A 102:9311–9316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bousarghin L, Touzé A, Sizaret P-Y et al (2003) Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol 77:3846–3850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Day PM, Lowy DR, Schiller JT (2003) Papillomaviruses infect cells via a clathrin-dependent pathway. Virology 307:1–11

    Article  CAS  PubMed  Google Scholar 

  16. Abban CY, Bradbury NA, Meneses PI (2008) HPV16 and BPV1 infection can be blocked by the dynamin inhibitor dynasore. Am J Ther 15:304–311

    Article  PubMed Central  PubMed  Google Scholar 

  17. Laniosz V, Dabydeen SA, Havens MA et al (2009) Human papillomavirus type 16 infection of human keratinocytes requires clathrin and caveolin-1 and is brefeldin a sensitive. J Virol 83:8221–8232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Schelhaas M, Shah B, Holzer M et al (2012) Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 8:e1002657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Spoden G, Freitag K, Husmann M et al (2008) Clathrin- and caveolin-independent entry of human papillomavirus type 16–involvement of tetraspanin-enriched microdomains (TEMs). PLoS ONE 3:e3313

    Article  PubMed Central  PubMed  Google Scholar 

  20. Spoden G, Kühling L, Cordes N et al (2013) Human papillomavirus types 16, 18, and 31 share similar endocytic requirements for entry. J Virol 87:7765–7773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Griffin LM, Cicchini L, Pyeon D (2013) Human papillomavirus infection is inhibited by host autophagy in primary human keratinocytes. Virology 437:12–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Day PM, Lowy DR, Schiller JT (2008) Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids. J Virol 82:12565–12568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ozbun MA (2002) Human papillomavirus type 31b infection of human keratinocytes and the onset of early transcription. J Virol 76:11291–11300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Allen-Hoffmann BL, Schlosser SJ, Ivarie CA et al (2000) Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS. J Invest Dermatol 114:444–455

    Article  CAS  PubMed  Google Scholar 

  25. Johnson KM, Kines RC, Roberts JN et al (2009) Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol 83:2067–2074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lambert PF, Ozbun MA, Collins A et al (2005) Using an immortalized cell line to study the HPV life cycle in organotypic “raft” cultures. Methods Mol Med 119:141–155

    CAS  PubMed  Google Scholar 

  27. Buck CB, Thompson CD, Pang Y-YS et al (2005) Maturation of papillomavirus capsids. J Virol 79:2839–2846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xu T, Griffin LM, Guo K et al. APOBEC3A functions as a restriction factor of Human Papillomavirus. (Manuscript submitted)

    Google Scholar 

  29. Fu B, Quintero J, Baker CC (2003) Keratinocyte growth conditions modulate telomerase expression, senescence, and immortalization by human papillomavirus type 16 E6 and E7 oncogenes. Cancer Res 63:7815–7824

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Paul Lambert and Denis Lee for technical assistance regarding NIKS cell culture and for providing NIKS and HaCaT keratinocytes as well as the 293FT packaging cells. We acknowledge John Schiller for providing pLucF and p16Shell plasmids and Jerry Schaack for providing pMDG.2 and useful suggestions for lentivirus production and purification. We also thank Paul Lambert, Zhaohui Qian, and members of the Pyeon laboratory for useful support and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dohun Pyeon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Griffin, L.M., Cicchini, L., Xu, T., Pyeon, D. (2013). Human Keratinocyte Cultures in the Investigation of Early Steps of Human Papillomavirus Infection. In: Turksen, K. (eds) Epidermal Cells. Methods in Molecular Biology, vol 1195. Springer, New York, NY. https://doi.org/10.1007/7651_2013_49

Download citation

  • DOI: https://doi.org/10.1007/7651_2013_49

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1223-0

  • Online ISBN: 978-1-4939-1224-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics