Skip to main content

Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins

  • Chapter
  • First Online:
Book cover Protein Reviews – Purinergic Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 1111))

Abstract

Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 19 July 2019

    This chapter was inadvertently published with an incorrect copyright holder. It has now been updated as below

References

Download references

Disclosures Statement

The authors have nothing to disclose.

Sources of Research Support

TB is supported by the National Institutes of Health (NIH) Intramural Research Program (IRP). JGP is supported by an NICHD Visiting Fellowship and a Natural Sciences and Engineering Research Council of Canada (NSERC) Banting Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas Balla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pemberton, J.G., Balla, T. (2019). Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. In: Atassi, M. (eds) Protein Reviews – Purinergic Receptors. Advances in Experimental Medicine and Biology(), vol 1111. Springer, Cham. https://doi.org/10.1007/5584_2018_288

Download citation

Publish with us

Policies and ethics