Skip to main content

Molecular Probes for Imaging the Sigma-2 Receptor: In Vitro and In Vivo Imaging Studies

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 244))

Abstract

The sigma-2 (σ2) receptor has been validated as a biomarker of the proliferative status of solid tumors. Therefore, radiotracers having a high affinity and high selectivity for σ2 receptors have the potential to assess the proliferative status of human tumors using noninvasive imaging techniques such as Positron Emission Tomography (PET). Since the σ2 receptor has not been cloned, the current knowledge of this receptor has relied on receptor binding studies with the radiolabeled probes and investigation of the effects of the σ2 receptor ligands on tumor cells. The development of the σ2 selective fluorescent probes has proven to be useful for studying subcellular localization and biological functions of the σ2 receptor, for revealing pharmacological properties of the σ2 receptor ligands, and for imaging cell proliferation. Preliminary clinical imaging studies with [18F]ISO-1, a σ2 receptor probe, have shown promising results in cancer patients. However, the full utility of imaging the σ2 receptor status of solid tumors in the diagnosis and prediction of cancer therapeutic response will rely on elucidation of the functional role of this protein in normal and tumor cell biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abate C, Hornick JR, Spitzer D, Hawkins WG, Niso M, Perrone R, Berardi F (2011) Fluorescent derivatives of sigma receptor ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) as a tool for uptake and cellular localization studies in pancreatic tumor cells. J Med Chem 54(16):5858–5867. doi:10.1021/jm200591t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abate C, Niso M, Infantino V, Menga A, Berardi F (2015) Elements in support of the ‘non-identity’ of the PGRMC1 protein with the sigma2 receptor. Eur J Pharmacol 758:16–23. doi:10.1016/j.ejphar.2015.03.067

    Article  CAS  PubMed  Google Scholar 

  • Al-Nabulsi I, Mach RH, Wang LM, Wallen CA, Keng PC, Sten K, Childers SR, Wheeler KT (1999) Effect of ploidy, recruitment, environmental factors, and tamoxifen treatment on the expression of sigma-2 receptors in proliferating and quiescent tumour cells. Br J Cancer 81(6):925–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariazi EA, Ariazi JL, Cordera F, Jordan VC (2006) Estrogen receptors as therapeutic targets in breast cancer. Curr Top Med Chem 6(3):181–202

    Article  CAS  PubMed  Google Scholar 

  • Arttamangkul S, Alvarez-Maubecin V, Thomas G, Williams JT, Grandy DK (2000) Binding and internalization of fluorescent opioid peptide conjugates in living cells. Mol Pharmacol 58(6):1570–1580

    CAS  PubMed  Google Scholar 

  • Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F, Nathrath W, Schwaiger M (2001) Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 42(1):9–16

    CAS  PubMed  Google Scholar 

  • Azzariti A, Colabufo NA, Berardi F, Porcelli L, Niso M, Simone GM, Perrone R, Paradiso A (2006) Cyclohexylpiperazine derivative PB28, a sigma2 agonist and sigma1 antagonist receptor, inhibits cell growth, modulates P-glycoprotein, and synergizes with anthracyclines in breast cancer. Mol Cancer Ther 5(7):1807–1816. doi:10.1158/1535-7163.MCT-05-0402

    Article  CAS  PubMed  Google Scholar 

  • Balakumaran BS, Porrello A, Hsu DS, Glover W, Foye A, Leung JY, Sullivan BA, Hahn WC, Loda M, Febbo PG (2009) MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy. Cancer Res 69(19):7803–7810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaver JA, Amiri-Kordestani L, Charlab R, Chen W, Palmby T, Tilley A, Zirkelbach JF, Yu J, Liu Q, Zhao L, Crich J, Chen XH, Hughes M, Bloomquist E, Tang S, Sridhara R, Kluetz PG, Kim G, Ibrahim A, Pazdur R, Cortazar P (2015) FDA approval: palbociclib for the treatment of postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res 21(21):4760–4766. doi:10.1158/1078-0432.ccr-15-1185

    Article  CAS  PubMed  Google Scholar 

  • Bem WT, Thomas GE, Mamone JY, Homan SM, Levy BK, Johnson FE, Coscia CJ (1991) Overexpression of sigma receptors in nonneural human tumors. Cancer Res 51(24):6558–6562

    CAS  PubMed  Google Scholar 

  • Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32(5-6):235–249

    Article  CAS  PubMed  Google Scholar 

  • Bertha CM, Mattson MV, Flippen-Anderson JL, Rothman RB, Xu H, Cha XY, Becketts K, Rice KC (1994) A marked change of receptor affinity of the 2-methyl-5-(3-hydroxyphenyl)morphans upon attachment of an (E)-8-benzylidene moiety: synthesis and evaluation of a new class of sigma receptor ligands. J Med Chem 37(19):3163–3170. doi:10.1021/jm00045a022

    Article  CAS  PubMed  Google Scholar 

  • Bonhaus DW, Loury DN, Jakeman LB, To Z, DeSouza A, Eglen RM, Wong EH (1993) [3H]BIMU-1, a 5-hydroxytryptamine3 receptor ligand in NG-108 cells, selectively labels sigma-2 binding sites in guinea pig hippocampus. J Pharmacol Exp Ther 267(2):961–970

    CAS  PubMed  Google Scholar 

  • Bowen WD (2000) Sigma receptors: recent advances and new clinical potentials. Pharm Acta Helv 74(2–3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Bowen WD, Bertha CM, Vilner BJ, Rice KC (1995a) CB-64D and CB-184: ligands with high sigma 2 receptor affinity and subtype selectivity. Eur J Pharmacol 278(3):257–260

    Article  CAS  PubMed  Google Scholar 

  • Bowen WD, Vilner BJ, Williams W, Bertha CM, Kuehne ME, Jacobson AE (1995b) Ibogaine and its congeners are sigma 2 receptor-selective ligands with moderate affinity. Eur J Pharmacol 279(1):R1–R3

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  • Carey LA, Perou CM (2015) Palbociclib – taking breast-cancer cells out of gear. N Engl J Med 373(3):273–274. doi:10.1056/NEJMe1506680

    Article  CAS  PubMed  Google Scholar 

  • Chu UB, Mavlyutov TA, Chu ML, Yang H, Schulman A, Mesangeau C, McCurdy CR, Guo LW, Ruoho AE (2015) The sigma-2 receptor and progesterone receptor membrane component 1 are different binding sites derived from independent genes. EBioMedicine 2(11):1806–1813. doi:10.1016/j.ebiom.2015.10.017

    Article  PubMed  PubMed Central  Google Scholar 

  • Chwieralski CE, Welte T, Buhling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11(2):143–149

    Article  CAS  PubMed  Google Scholar 

  • Dehdashti F, Laforest R, Gao F, Shoghi KI, Aft RL, Nussenbaum B, Kreisel FH, Bartlett NL, Cashen A, Wagner-Johnston N, Mach RH (2013) Assessment of cellular proliferation in tumors by PET using 18F-ISO-1. J Nucl Med 54(3):350–357. doi:10.2967/jnumed.112.111948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontanilla D, Hajipour AR, Pal A, Chu UB, Arbabian M, Ruoho AE (2008) Probing the steroid binding domain-like I (SBDLI) of the sigma-1 receptor binding site using N-substituted photoaffinity labels. Biochemistry 47(27):7205–7217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebreselassie D, Bowen WD (2004) Sigma-2 receptors are specifically localized to lipid rafts in rat liver membranes. Eur J Pharmacol 493(1–3):19–28

    Article  CAS  PubMed  Google Scholar 

  • Ghelardini C, Galeotti N, Bartolini A (2000) Pharmacological identification of SM-21, the novel sigma(2) antagonist. Pharmacol Biochem Behav 67(3):659–662

    Article  CAS  PubMed  Google Scholar 

  • Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E, Glossmann H (1996) Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A 93(15):8072–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellewell SB, Bruce A, Feinstein G, Orringer J, Williams W, Bowen WD (1994) Rat liver and kidney contain high densities of sigma 1 and sigma 2 receptors: characterization by ligand binding and photoaffinity labeling. Eur J Pharmacol 268(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Izzo NJ, Xu J, Zeng C, Kirk MJ, Mozzoni K, Silky C, Rehak C, Yurko R, Look G, Rishton G, Safferstein H, Cruchaga C, Goate A, Cahill MA, Arancio O, Mach RH, Craven R, Head E, LeVine H 3rd, Spires-Jones TL, Catalano SM (2014) Alzheimer’s therapeutics targeting amyloid beta 1-42 oligomers II: sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity. PLoS One 9(11):e111899. doi:10.1371/journal.pone.0111899

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106

    Article  CAS  PubMed  Google Scholar 

  • Klintman M, Dowsett M (2015) Early surrogate markers of treatment activity: where are we now? J Natl Cancer Inst Monogr 2015(51):24–28. doi:10.1093/jncimonographs/lgv002

    Article  PubMed  Google Scholar 

  • Mach RH, Smith CR, Childers SR (1995) Ibogaine possesses a selective affinity for sigma 2 receptors. Life Sci 57(4):PL57–PL62

    Article  CAS  PubMed  Google Scholar 

  • Mach RH, Smith CR, al-Nabulsi I, Whirrett BR, Childers SR, Wheeler KT (1997) Sigma 2 receptors as potential biomarkers of proliferation in breast cancer. Cancer Res 57(1):156–161

    CAS  PubMed  Google Scholar 

  • Mach RH, Wu L, West T, Whirrett BR, Childers SR (1999) The analgesic tropane analogue (+/-)-SM 21 has a high affinity for sigma2 receptors. Life Sci 64(10):PL131–PL137

    Article  CAS  PubMed  Google Scholar 

  • Mach RH, Wheeler KT, Blair S, Yang B, Day CS, Blair JB, Choi SR, Kung HF (2001) Preparation of a technetium-99m SPECT agent for imaging the sigma-2 receptor status of solid tumors. J Label Compd Radiopharm 44(13):899–908

    Article  CAS  Google Scholar 

  • Mach RH, Huang Y, Freeman RA, Wu L, Vangveravong S, Luedtke RR (2004) Conformationally-flexible benzamide analogues as dopamine D3 and sigma-2 receptor ligands. Bioorg Med Chem Lett 14(1):195–202

    Article  CAS  PubMed  Google Scholar 

  • Mankoff DA, Shields AF, Krohn KA (2005) PET imaging of cellular proliferation. Radiol Clin North Am 43(1):153–167

    Article  PubMed  Google Scholar 

  • Marinovich ML, Macaskill P, Irwig L, Sardanelli F, von Minckwitz G, Mamounas E, Brennan M, Ciatto S, Houssami N (2013) Meta-analysis of agreement between MRI and pathologic breast tumour size after neoadjuvant chemotherapy. Br J Cancer 109(6):1528–1536. doi:10.1038/bjc.2013.473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurice T, Roman FJ, Privat A (1996) Modulation by neurosteroids of the in vivo (+)-[3H]SKF-10,047 binding to sigma 1 receptors in the mouse forebrain. J Neurosci Res 46(6):734–743

    Article  CAS  PubMed  Google Scholar 

  • Maurice T, Junien JL, Privat A (1997) Dehydroepiandrosterone sulfate attenuates dizocilpine-induced learning impairment in mice via sigma 1-receptors. Behav Brain Res 83(1–2):159–164

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio I, Di Leo A, Malorni L (2014) Cyclin-dependent kinase 4/6 inhibitors in breast cancer therapy. Curr Opin Oncol 26(6):568–575. doi:10.1097/cco.0000000000000129

    Article  CAS  PubMed  Google Scholar 

  • Moltzen EK, Perregaard J, Meier E (1995) Sigma ligands with subnanomolar affinity and preference for the sigma 2 binding site. 2. Spiro-joined benzofuran, isobenzofuran, and benzopyran piperidines. J Med Chem 38(11):2009–2017

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VH, Kassiou M, Johnston GA, Christie MJ (1996) Comparison of binding parameters of sigma 1 and sigma 2 binding sites in rat and guinea pig brain membranes: novel subtype-selective trishomocubanes. Eur J Pharmacol 311(2–3):233–240

    Article  CAS  PubMed  Google Scholar 

  • Niso M, Riganti C, Pati ML, Ghigo D, Berardi F, Abate C (2015) Novel and selective fluorescent sigma2-receptor ligand with a 3,4-dihydroisoquinolin-1-one scaffold: a tool to study sigma2 receptors in living cells. Chembiochem 16(7):1078–1083. doi:10.1002/cbic.201402712

    Article  CAS  PubMed  Google Scholar 

  • Ostenfeld MS, Fehrenbacher N, Hoyer-Hansen M, Thomsen C, Farkas T, Jaattela M (2005) Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res 65(19):8975–8983

    Article  CAS  PubMed  Google Scholar 

  • Ostenfeld MS, Hoyer-Hansen M, Bastholm L, Fehrenbacher N, Olsen OD, Groth-Pedersen L, Puustinen P, Kirkegaard-Sorensen T, Nylandsted J, Farkas T, Jaattela M (2008) Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy 4(4):487–499

    Article  CAS  PubMed  Google Scholar 

  • Perregaard J, Moltzen EK, Meier E, Sanchez C (1995) Sigma ligands with subnanomolar affinity and preference for the sigma 2 binding site. 1. 3-(omega-aminoalkyl)-1H-indoles. J Med Chem 38(11):1998–2008

    Article  CAS  PubMed  Google Scholar 

  • Romieu P, Martin-Fardon R, Bowen WD, Maurice T (2003) Sigma 1 receptor-related neuroactive steroids modulate cocaine-induced reward. J Neurosci 23(9):3572–3576

    CAS  PubMed  Google Scholar 

  • Rothman RB, Reid A, Mahboubi A, Kim CH, De Costa BR, Jacobson AE, Rice KC (1991) Labeling by [3H]1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands. Mol Pharmacol 39(2):222–232

    CAS  PubMed  Google Scholar 

  • Seth P, Leibach FH, Ganapathy V (1997) Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor. Biochem Biophys Res Commun 241(2):535–540

    Article  CAS  PubMed  Google Scholar 

  • Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336. doi:10.1038/3337

    Article  CAS  PubMed  Google Scholar 

  • Shoghi KI, Xu J, Su Y, He J, Rowland D, Yan Y, Garbow JR, Tu Z, Jones LA, Higashikubo R, Wheeler KT, Lubet RA, Mach RH, You M (2013) Quantitative receptor-based imaging of tumor proliferation with the sigma-2 ligand [(18)F]ISO-1. PLoS One 8(9):e74188. doi:10.1371/journal.pone.0074188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Soby KK, Mikkelsen JD, Meier E, Thomsen C (2002) Lu 28-179 labels a sigma(2)-site in rat and human brain. Neuropharmacology 43(1):95–100

    Article  CAS  PubMed  Google Scholar 

  • Tsai SY, Hayashi T, Mori T, Su TP (2009) Sigma-1 receptor chaperones and diseases. Cent Nerv Syst Agents Med Chem 9(3):184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Z, Dence CS, Ponde DE, Jones L, Wheeler KT, Welch MJ, Mach RH (2005) Carbon-11 labeled sigma2 receptor ligands for imaging breast cancer. Nucl Med Biol 32(5):423–430

    Article  CAS  PubMed  Google Scholar 

  • Tu Z, Xu J, Jones LA, Li S, Dumstorff C, Vangveravong S, Chen DL, Wheeler KT, Welch MJ, Mach RH (2007) Fluorine-18-labeled benzamide analogues for imaging the sigma-2 receptor status of solid tumors with positron emission tomography. J Med Chem 50(14):3194–3204

    Article  CAS  PubMed  Google Scholar 

  • Vangveravong S, Xu J, Zeng C, Mach RH (2006) Synthesis of N-substituted 9-azabicyclo[3.3.1]nonan-3alpha-yl carbamate analogs as sigma2 receptor ligands. Bioorg Med Chem 14(20):6988–6997

    Article  CAS  PubMed  Google Scholar 

  • Vilner BJ, Bowen WD (2000) Modulation of cellular calcium by sigma-2 receptors: release from intracellular stores in human SK-N-SH neuroblastoma cells. J Pharmacol Exp Ther 292(3):900–911

    CAS  PubMed  Google Scholar 

  • Vilner BJ, John CS, Bowen WD (1995) Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res 55(2):408–413

    CAS  PubMed  Google Scholar 

  • Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice KC (1990) Sigma receptors: biology and function. Pharmacol Rev 42(4):355–402

    CAS  PubMed  Google Scholar 

  • Wallen CA, Higashikubo R, Dethlefsen LA (1984a) Murine mammary tumour cells in vitro. I. The development of a quiescent state. Cell Tissue Kinet 17(1):65–77

    CAS  PubMed  Google Scholar 

  • Wallen CA, Higashikubo R, Dethlefsen LA (1984b) Murine mammary tumour cells in vitro. II. Recruitment of quiescent cells. Cell Tissue Kinet 17(1):79–89

    CAS  PubMed  Google Scholar 

  • Wheeler KT, Wang LM, Wallen CA, Childers SR, Cline JM, Keng PC, Mach RH (2000) Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br J Cancer 82(6):1223–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zeng C, Chu W, Pan F, Rothfuss JM, Zhang F, Tu Z, Zhou D, Zeng D, Vangveravong S, Johnston F, Spitzer D, Chang KC, Hotchkiss RS, Hawkins WG, Wheeler KT, Mach RH (2011) Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat Commun 2:380. doi:10.1038/ncomms1386

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng C, Vangveravong S, Xu J, Chang KC, Hotchkiss RS, Wheeler KT, Shen D, Zhuang ZP, Kung HF, Mach RH (2007) Subcellular localization of sigma-2 receptors in breast cancer cells using two-photon and confocal microscopy. Cancer Res 67(14):6708–6716. doi:10.1158/0008-5472.CAN-06-3803

    Article  CAS  PubMed  Google Scholar 

  • Zeng C, Vangveravong S, Jones LA, Hyrc K, Chang KC, Xu J, Rothfuss JM, Goldberg MP, Hotchkiss RS, Mach RH (2011) Characterization and evaluation of two novel fluorescent sigma-2 receptor ligands as proliferation probes. Mol Imaging 10(6):420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng C, Garg N, Mach RH (2015) The PGRMC1 protein level correlates with the binding activity of a sigma-2 fluorescent probe (SW120) in rat brain cells. Mol Imaging Biol. doi:10.1007/s11307-015-0891-z

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Hank Kung for providing the SPECT image in Fig. 8b. ESM was partially supported by Department of Energy training grant number: DE-FOA-0001075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Mach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Zeng, C., McDonald, E.S., Mach, R.H. (2016). Molecular Probes for Imaging the Sigma-2 Receptor: In Vitro and In Vivo Imaging Studies. In: Kim, F., Pasternak, G. (eds) Sigma Proteins: Evolution of the Concept of Sigma Receptors. Handbook of Experimental Pharmacology, vol 244. Springer, Cham. https://doi.org/10.1007/164_2016_96

Download citation

Publish with us

Policies and ethics