PT - JOURNAL ARTICLE AU - Kentaro Kajiwara AU - Shotaro Yamano AU - Kazuhiro Aoki AU - Daisuke Okuzaki AU - Kunio Matsumoto AU - Masato Okada TI - CDCP1 promotes compensatory renal growth by integrating Src and Met signaling AID - 10.26508/lsa.202000832 DP - 2021 Apr 01 TA - Life Science Alliance PG - e202000832 VI - 4 IP - 4 4099 - https://www.life-science-alliance.org/content/4/4/e202000832.short 4100 - https://www.life-science-alliance.org/content/4/4/e202000832.full SO - Life Sci. Alliance2021 Apr 01; 4 AB - Compensatory growth of organs after loss of their mass and/or function is controlled by hepatocyte growth factor (HGF), but the underlying regulatory mechanisms remain elusive. Here, we show that CUB domain-containing protein 1 (CDCP1) promotes HGF-induced compensatory renal growth. Using canine kidney cells as a model of renal tubules, we found that HGF-induced temporal up-regulation of Src activity and its scaffold protein, CDCP1, and that the ablation of CDCP1 robustly abrogated HGF-induced phenotypic changes, such as morphological changes and cell growth/proliferation. Mechanistic analyses revealed that up-regulated CDCP1 recruits Src into lipid rafts to activate STAT3 associated with the HGF receptor Met, and activated STAT3 induces the expression of matrix metalloproteinases and mitogenic factors. After unilateral nephrectomy in mice, the Met-STAT3 signaling is transiently up-regulated in the renal tubules of the remaining kidney, whereas CDCP1 ablation attenuates regenerative signaling and significantly suppresses compensatory growth. These findings demonstrate that CDCP1 plays a crucial role in controlling compensatory renal growth by focally and temporally integrating Src and Met signaling.