TY - JOUR T1 - Tamoxifen blocks retrograde trafficking of Shiga toxin 1 and 2 and protects against lethal toxicosis JF - Life Science Alliance JO - Life Sci. Alliance DO - 10.26508/lsa.201900439 VL - 2 IS - 3 SP - e201900439 AU - Andrey S Selyunin AU - Steven Hutchens AU - Stanton F McHardy AU - Somshuvra Mukhopadhyay Y1 - 2019/06/01 UR - https://www.life-science-alliance.org/content/2/3/e201900439.abstract N2 - Shiga toxin 1 (STx1) and 2 (STx2), produced by Shiga toxin–producing Escherichia coli, cause lethal untreatable disease. The toxins invade cells via retrograde trafficking. Direct early endosome-to-Golgi transport allows the toxins to evade degradative late endosomes. Blocking toxin trafficking, particularly at the early endosome-to-Golgi step, is appealing, but transport mechanisms of the more disease-relevant STx2 are unclear. Using data from a genome-wide siRNA screen, we discovered that disruption of the fusion of late endosomes, but not autophagosomes, with lysosomes blocked the early endosome-to-Golgi transport of STx2. A subsequent screen of clinically approved lysosome-targeting drugs identified tamoxifen (TAM) to be a potent inhibitor of the trafficking and toxicity of STx1 and STx2 in cells. The protective effect was independent of estrogen receptors but dependent on the weak base property of TAM, which allowed TAM to increase endolysosomal pH and alter endosomal dynamics. Importantly, TAM treatment enhanced survival of mice injected with a lethal dose of STx1 or STx2. Thus, it may be possible to repurpose TAM for treating Shiga toxin–producing E. coli infections. ER -