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DNA methylation predicts infection risk in kidney
transplant recipients
Fei-Man Hsu1,2 , Harry Pickering3, Liudmilla Rubbi1, Michael Thompson1, Elaine F Reed3, Matteo Pellegrini1,2,† ,
Joanna M Schaenman4,†

Kidney transplantation (KTx) is the method of choice for treating
kidney failure. Identifying biomarkers predictive of transplant
(Tx) outcomes is critical to optimize KTx; however, the immu-
nosuppressive therapies required after KTx must also be con-
sidered. We applied targeted bisulfite sequencing (TBS-seq) to
PBMCs isolated from 90 patients, with samples collected pre- and
post-Tx (day 90), to measure DNA methylation changes. Our
findings indicate that the PBMC DNA methylome is significantly
affected by induction immunosuppression with anti-thymocyte
globulin (ATG). We discovered that the risk of infection can be
predicted using DNA methylation profiles, but not gene expres-
sion profiles. Specifically, 515 CpG loci associated with 275 genes
were significantly impacted by ATG induction, even after ac-
counting for age, sex, and cell-type composition. Notably, ATG-
associated hyper-methylation down-regulates genes critical for
immune response. In conclusion, this clinical omics study reveals
that the immunosuppressant ATG profoundly impacts the DNA
methylome of KTx recipients and identifies biomarkers that could
be used in pre-Tx screening of patients vulnerable to infection,
thereby informing immunosuppression strategies post-Tx.
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Introduction

Kidney transplantation (KTx) is the optimal treatment for kidney
failure, which improves survival while maintaining the quality of life
over dialysis (Hariharan et al, 2021). According to the Centers for
Disease Control and Prevention, one in seven adults, about 35.5
million people, are estimated to have chronic kidney disease (CKD),
and there were ~25,000 KTx in the United States in the year 2022. The
aging population and the rising incidences of diseases such as
diabetes and hypertension lead to increased incidence of CKD, as
well as increased demand for KTx (Moeller et al, 2002). Long-term

allograft and patient survival are limited by infections and chronic
rejection (Martin-Gandul et al, 2015; Wu et al, 2021). Given the in-
creased vulnerability to infection in older patients with demon-
strated immune senescence, there is a currently unmet need in the
field to measure immune function at the cellular level to determine
the impact of immunosuppression and develop predictors of post-
transplant infection.

Anti-thymocyte globulin (ATG) is the primary lymphodepleting
induction regimen for preventing or treating acute rejection (AR)
after solid organ transplantation (Swanson et al, 2002; Pearl et al,
2005; Lim et al, 2017). This purified immunoglobulin G from rabbits
immunized with human T cells and their precursor thymocytes
induces immune cell depletion, particularly T-cell senescence and
exhaustion immediately through complement-dependent cell lysis
and phagocytosis (Mohty, 2007; Bamoulid et al, 2017). During ATG
production, the cell types present in normal human thymus, for
example, thymocytes, were used to inoculate rabbits in the pro-
duction of thymoglobulin. T lymphocyte (72%) dominates the cell-
type composition, with B cells (6%), APC, and stromal cells (22%)
contributing to the rest (Zand et al, 2005). This antibody-dependent
lymphodepletion mechanism targets cells expressing antigens that
are used to prepare ATG in a dosage-dependent manner (Mohty,
2007), and it has been reported to result in inversion of the CD4+/
CD8+ ratio after ATG treatment with a decline in the frequency of
naı̈ve CD4+ and CD8+ T cells (Mourad et al, 2012). T-cell reconsti-
tution by homeostatic lymphocyte proliferation occurs by around
6 mo, depending on the patients’ age and baseline T-cell numbers
(Gurkan et al, 2010). Impaired CD4+ T-cell reconstitution after ATG
induction is a major cause of morbidity and mortality and leads to
opportunistic infections and atherosclerosis in KTx recipients
(Ducloux et al, 2010; Pham et al, 2020). Previous studies suggested
that ATG has a greater impact on older individuals (>= 65 yr old)
because of T-cell senescence that impedes lymphocyte prolifer-
ation (Krenzien et al, 2015). While remaining a powerful immuno-
suppressant for induction and treatment of rejection, ATG’s long-
term consequences and the optimal dosing scheme need to be
further explored to optimize the benefits over risks. This is
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especially true for patients with older biological age as measured
by DNA methylation, which was demonstrated in our previous
research to be a better predictor of infection than chronologic ß
(Schaenman et al, 2020). KTx recipients not receiving ATG typically
receive induction of basiliximab (SIMULECT), an interleukin-2 re-
ceptor inhibitor without the lymphodepleting impact of ATG (Hill
et al, 2017). Maintenance immunosuppression typically consists of
tacrolimus (TAC), a calcineurin inhibitor, or belatacept (BELA), an
inhibitor of the second signal, plus mycophenolate mofetil and
prednisone (Lentine et al, 2021).

DNA methylation is an epigenetic modification associated with
cumulative events such as environmental exposures, smoking,
chronic diseases such as diabetes and its complications, neuro-
degenerative diseases, cardiovascular diseases, and CKDs (Zhang
et al, 2016; Wahl et al, 2017; Witasp et al, 2022; Smyth et al, 2023). It
has been shown that the end-stage CKD patients have blood DNA
methylation patterns associated with inflammation (Stenvinkel
et al, 2007; Wing et al, 2014). Several lines of evidence suggest
that DNA methylation is associated with post-renal transplant
(post-Tx) complications such as ischemia–reperfusion injury (Zhao
et al, 2017), graft fibrosis (Ko et al, 2013; Sagy et al, 2024), and
alloimmune response (Braza et al, 2015; Hu et al, 2016; Cristoferi
et al, 2022). However, the ability to predict the occurrence of these
KTx complications remains poor, possibly because of limits of bi-
opsies, prophylaxes, and high variability in human populations.

Here, we present a cohort with 90 subjects who received KTx at
the Ronald Reagan Medical Center, at the University of California,
Los Angeles. We used targeted bisulfite sequencing (TBS-seq) and
RNA-seq to characterize the epigenome and transcriptome dy-
namics pre- and post-Tx. We trained machine learning models with
DNA methylation to predict outcomes, and the results indicate that
ATG induction and risk of infection could be predicted by DNA
methylation. The predicted epi-infection score is significantly
correlated to the time to infection within the 1-yr follow-up window
in this cohort.

Results

DNA methylation is correlated with ATG induction

This study examined patients receiving KTx enrolled at the Uni-
versity of California, Los Angeles, between April 2015 and September
2021. The study design is shown in Fig 1A. Patients received im-
munosuppression medication immediately after KTx (day 0), in-
cluding induction therapy (ATG or SIMULECT) during days 1–3 and
long-term maintenance (TAC or BELA). All patients had prednisone
doses tapered to 5 mg prednisone by mouth daily by 3 mo of KTx.

We collected patients’ PBMCs on the day of KTx (pre-Tx) and
~90 d after the surgery (post-Tx) for TBS-seq and RNA-seq analyses.
In total, 122 TBS-seq and 78 RNA-seq libraries were generated
(Table 1). We further followed these patients in the post-Tx visits for
365 d and noted the occurrence of infection and acute rejection.

We first asked whether DNA methylation is associated with any
demographic or clinical traits by performing principal component
analysis (PCA). In addition to age and sex that are known to be
associated with DNA methylation (Gatev et al, 2021), we found that

ATG induction is correlated with the PC1 axis, whereas Transplant
(Pre/Post) and Infection Risk were not correlated with the top PCs
(Fig 1B and C). This suggests that ATG induction impacts the re-
cipient PBMC methylomes.

ATG induction depletes CD4+ and naı̈ve T cells

Because ATG causes depletion of T-cell subtypes (Mohty, 2007), we
sought to estimate T-cell composition within our samples from DNA
methylation profiles. Immune cell-type methylomes were collected
as references, and the coefficients of the constructed nonnegative
least squares regression model were estimated as the fractions of
specific cell types (see the Materials and Methods section). We
found ATG induction reduced the fractions of non-naı̈ve CD4+ T-cell
and the naı̈ve T-cell populations, whereas the non-naı̈ve CD8+ T-cell
fraction remained unchanged (Figs 2A and S1A and B).

The DNA methylation–estimated cell composition was validated
by flow cytometry, which also showed that non-naı̈ve CD4+ and the
naı̈ve T cells are highly impacted by ATG compared to induction
immunosuppression with SIMULECT (basiliximab), which acts as an
interleukin-2 receptor antagonist blocking T-cell proliferation (Figs
2B and S1A and B) (Amlot et al, 1995). We note that our post-Tx
samples were collected around 90 d after the KTx and the induction
prophylaxes, suggesting that T-cell reconstitution is not completed
by 90 d in this KTx cohort.

Predicting ATG induction and infection risk with DNA methylation

Next, we sought to predict clinical outcomes with DNA methylation
profiles and identify associated genomic loci. We built a penalized
logistic regression model with CpG sites as covariates and the log
odds of each trait as the dependent variable. When predicting
whether the sample is collected pre-Tx or post-Tx, the area under
the curve (AUC) was only 0.67 (Fig S2). ATG treatment is predictable
from DNA methylation profiles with an AUC of 0.85 (Fig S2). The
prediction of whether the individual is going to develop infection
was not significant with an AUC of 0.52 (Fig S2). These results are
consistent with the PCA results, showing that ATG is more strongly
associated with DNA methylation principal components (PCs),
compared with other variables such as transplant and infection.

Given the impact of ATG on cell composition, we used the es-
timated cell-type PCs together with other demographic and clinical
outcomes to construct a multivariate multiple linear regression
(MMLR) model (Fig 3A). This model considers the contribution per
CpG locus of each trait. Using leave-one-out cross-validation, the
refined MMLR model could predict ATG induction (P < 0.001***) and
infection (P < 0.001***) (Fig 3B). ATG prediction has a 0.90 AUC, and
infection has a 0.79 AUC (Fig 3C). These results suggest that ATG
induction and vulnerability to infection are significantly associated
with epigenetic profiles in addition to the standard covariates such
as age, sex, CMV serostatus, and cell-type composition.

Site-specific DNA methylation impact of ATG induction

We next asked which CpG loci are significantly associated with ATG
induction or risk of infection. A multiple linear regression model
was constructed per CpG to test for association, while controlling
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for age, sex, CMV serostatus, and cell-type composition. 515 CpG loci
whose methylation levels are significantly positively associated with
ATG induction were identified (Fig 3D, Table S1). Gene ontology (GO)
analysis shows that these hyper-methylated CpG loci are enriched in
leukocyte migration, phagocytic cup component, and CD4 receptor
binding (Fig 3E). Because hyper-methylation is typically associated
with the silencing of the proximal genes, the GO result suggests an
overall immunosuppression of CD4-related lymphocytes. An example
of a hyper-methylated site near ZBTB7B, a transcription factor (TF)
critical for CD4 T-cell commitment, is shown in Fig S3 (Sun et al, 2005).
This result reveals epigenetic changes caused by ATG induction are
consistent with CD4+ T-cell depletion.

However, we found no CpG loci significantly associated with
categorical determination of development of infection. We then
measured whether the predicted epi-infection score has clinical
implications by performing time-to-infection analysis using Cox
proportional hazard regression. Fig 4A shows that the epi-infection
score is a statistically significant covariate predicting the time to
infection (HR 3.21, 95% CI 1.06–9.72, P < 0.05*). The epi-ATG score,

however, can predict ATG use but is not associated with the time to
infection (Fig 4B), which is consistent with the time-to-infection
analysis with induction therapies (ATG/SIMULECT, Fig S4).

Transplant and ATG induction accelerate epigenetic aging

Age-related DNA methylation changes have been shown to affect
renal histology and post-Tx allograft fibrosis (Heylen et al, 2019).
DNA methylation age is closely associated with Infection Risk
(Schaenman et al, 2020). Given the known association between DNA
methylation age and infection in KTx recipients, we sought to
identify factors that accelerate epigenetic aging.

We used moderation analysis to determine whether certain
factors impact the EpiAge derived from the MMLR model in Fig 3. Fig
S5 shows that Transplant (Fig S5A), ATG (Fig S5B), Infection Risk (Fig
S5C), and CMV serostatus (Fig S5D) all accelerate epigenetic aging,
that is, increased the slope in the age regression models, but only
Transplant (P < 0.05*) and ATG (P < 0.05*) were statistically sig-
nificant moderators.

Figure 1. Study overview.
(A) Schematic workflow of sample collection. Blood was collected before KTx at day 0 (pre-Tx) and then at day 90 (post-Tx). Data on infection and rejection during the
first year after KTx were collected. (B) DNA methylation PCA color-coded with the demographic and clinical traits. CMV indicates negative or positive recipient serostatus,
Transplant indicates pre- or post-Tx, ATG indicates whether patients received ATG at the time of sampling, and infection risk indicates those who did or did not experience
infection in the first year after transplant. (C) Correlation matrix of the top 5 DNA methylation PCs with each trait.
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Gene expression is impacted by ATG and complements DNA
methylation alterations

To explore the transcriptional changes associated with KTx, we
profiled 37 pairs of pre- and post-Tx RNA-seq (Table 1). Among the
top 5 PCs, PC1 and PC3 are negatively correlated with Transplant
(Pre/Post) and ATG (Fig S6A and B). This might result from the fact
that among the 37 post-Tx samples, 34 have been treated with ATG.
Nonetheless, the PCA suggests that KTx and ATG induction alter
gene expression in a synergistic manner.

We identified 63 genes up-regulated and 84 genes down-
regulated by ATG induction with the criteria of fold change
greater than two and adjusted P < 0.05 (Fig 5A and Tables S2 and S3).
GO analysis shows that the up-regulated genes are enriched in
regulation of anti-inflammation cytokine interleukin-10 and im-
munological synapse formation (Fig 5B). This result is consistent
with the effects of ATG as an immunosuppressant.

The down-regulated genes are enriched for vasculature devel-
opment and cell migration, and the latter is in line with the hyper-
methylated CpG GO that leukocyte mobility is attenuated (Figs 3E
and 5B).

We further built a gene expression MMLR model, which includes
covariates such as age, sex, and cell types, and successfully dis-
criminate ATG induction with an AUC of 0.95 (Fig 5C). In contrast to
the DNA methylation MMLR model, the transcriptomic profiles

cannot predict the infection risk (AUC = 0.55) (Fig 5D). This result
further strengthens the conclusion that DNA methylation is more
significantly associated with infection risk than gene expression.

Next, we sought to characterize genes whose expression is cor-
related with ATG-associated proximal CpG sites. DNA methylation
pattern is correlated with gene expression. The 515 CpG loci asso-
ciated with ATG were mapped to 275 genes (Fig 3D), and those whose
expression is correlated with expression (Pearson’s |R| > 0.3, P < 0.05)
were characterized. Genes related to immune response such as
retinoid acid, NF-κB, cytokine production, and T-cell proliferation
were down-related by hyper-methylation (Table 2 and Fig S7A), and
virus defense–related genes were up-regulated (Table 2 and Fig S7B).
Differential gene expression analysis was performed between pre-
and post-Tx (Fig S8A–C and Tables S4 and S5), and the results suggest
that ATG has a more profound impact on gene expression than KTx.

Discussion

Here, wepresent aKTx cohort study covering 90 individuals, andprofiled
their PBMC DNA methylation and gene expression. We found that in-
duction therapy with ATG has a profound impact on the methylome
(Fig 1B). Comparing with a nondepleting immunosuppressant SIMULECT,
we confirmed that naı̈ve T cells and non-naı̈ve CD4+, but not non-naı̈ve

Table 1. Patient characteristics.

All subjects
TBS-seq RNA-seq

Pre Post Pre/Post

n (%) 90 72 (80) 50 (56) 37/37 (41)

Age median [IQR] 52 (41, 60) 52 (40, 59) 50 (41, 59) 54 (42, 63)

Sex, n (%)

Male 55 (61) 43 (60) 30 (60) 24 (65)

Female 35 (39) 29 (40) 20 (40) 13 (35)

CMV, n (%)

Positive 65 (72) 49 (68) 40 (80) 23 (62)

Negative 25 (28) 23 (32) 10 (20) 14 (38)

First transplant, n (%) 78 (87) 62 (86) 43 (86) 34 (92)

Donor type, n (%)

Deceased 77 (86) 60 (83) 39 (78) 37 (100)

Live 13 (14) 12 (17) 11 (22) 0 (0)

Infection, n (%) 45 (50) 34 (47) 24 (48) 23 (62)

Induction, n (%)

ATG 60 (67) 44 (61) 23 (46) 30 (82)

SIMULECT 30 (33) 28 (39) 27 (54) 7 (19)

Maintenance, n (%)

TAC 86 (96) 69 (96) 48 (96) 34 (92)

BELA 4 (4) 3 (4) 2 (4) 3 (8)

Acute rejection, n (%) 11 (12) 9 (13) 7 (14) 3 (8)

Death, n (%) 0 (0) 0 (0) 0 (0) 0 (0)
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CD8+ T cells, are depletedbyATG, and fail to reconstitute after 3mopost-
Tx (Fig 2). Because there are very few studies in KTx that havemeasured
the effective window of the impact of induction therapies (Gurkan et al,
2010), our study provides a reference for clinicians considering the use
of ATG. Future studies can evaluate DNA methylation at 12 mo and
beyond to determine whether full immune reconstitution occurs, or
whether these depletion-induced changes persist long term after ATG
use.

When we corrected for several covariates, we found that (1) ATG
induction and (2) infection risk were predictable from the recipi-
ents’ DNA methylome using an MMLR model. Further statistical
analysis identified 515 ATG-associated hyper-methylated CpG loci
located near genes functioning in leukocyte migration, phagocy-
tosis, and CD4 receptor binding (Fig 3D and E). This observation
suggests that the impact of ATG extends beyond simple depletion,
leading to functional changes in immune cell function that may
explain the long-term impact of ATG.

Although infection was predictable from the recipients’ DNA
methylome, we were not able to identify individual statistically

significant loci associated with infection risk. Nonetheless, the
predicted epi-infection score could project time to infection (Fig 4A),
whereas the epi-ATG score could not (Fig 4B). This suggests that the
methylome harbors widespread but weak signals that are predictive
of infection risk. Patients with an epi-infection score suggestive of
infection risk could have their medical care adapted in several ways
to try to prevent infection after transplantation. Surveillance testing
for opportunistic infections such as CMV and BK could be carried out.
PCR testing could be extended beyond the conventional period of
testing for patients identified to be at high risk. Similarly, antibiotic
prophylaxis could be extended for patients identified to be at in-
creased risk. Finally, patients with methylation signals indicative of
infection before immunosuppression start could receive individu-
alized immunosuppression such as lower doses of mycophenolate
mofetil maintenance immunosuppression.

We have characterized 4 CpG loci in DNMT3A hyper-methylated
after ATG treatment (Fig 3D and Table S1). This could partially ex-
plain why the DNA methylome changes after ATG treatment, but
there also could be other indirect mechanisms regulating DNA

Figure 2. ATG induction reduces CD4 T-cell population.
(A) Cell composition estimated by DNA methylation. (B) Cell composition measured by flow cytometry.
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methylation. CD4+ T cells orchestrate immunity and help activate
other immune cells, which could include epigenetic reprogramming
(Fanucchi et al, 2021). When depleted of CD4+ T cells, the body’s

ability to respond to infection is severely compromised, and au-
toimmune reactions may rise; that is, a subset of CD4+ T cells are
self-reactive and differentiate into Tregs that help suppress other

Figure 3. Multivariate multiple linear regression model.
(A) Spearman correlation matrix of actual-prediction traits. (B) Distribution of predicted values of ATG (left) and Infection Risk (right). (C) ROC curves of ATG (left) and
Infection Risk (right). (D) Manhattan plot shows the 515 hyper-methylated CpG sites with ATG treatment. (E) Gene ontology of genes covered by the 515 hyper-methylated
CpG sites with ATG treatment.
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immune cells from attacking the body’s own tissues (Marrack &
Kappler, 2004; McKinney et al, 2015; Saggau et al, 2024), and evidence
has been proposed linking DNA methylation and autoimmune
diseases (Ballestar et al, 2020). We observed that immunity-related
genes such as FYN, TNF, and IL-6R are hyper-methylated, suggesting
dysregulated immunity after ATG treatment. We hypothesize that
the cumulative effect of these changes leads to the DNAmethylome
perturbations we observe.

CKD is an age-related disease that accelerates aging in multiorgan
disease networks (Benzing & Schumacher, 2023; Tian et al, 2023). A
recent cross-cohort study showed that kidney failure patients have
higher epigenetic age than the population-based control, and in a 1-yr
window, patients who received KTx had reduced epigenetic age ac-
celeration than the dialysis group (Neytchev et al, 2024). We measured
epigenetic aging within our cohort. Our data show that KTx accelerates
epigenetic aging, so does the ATG induction (Fig S5). This analysis
highlighted the impact of KTx surgery andpost-Tx immunosuppression
on epigenetic age. Whether the age acceleration will slow down or
reverse with longer time of follow-up needs to be investigated.

The transcriptome is altered by ATG induction (Fig 5). We found
the ATG-associated hyper-methylated genes are enriched in im-
mune response pathways such as retinoic acid, NF-κB, cytokine
production, whereas T-cell proliferation genes are down-regulated.
A knockout study in mice suggested that TNFRSF25, a member of
TNF receptor superfamily, is associated with T-cell reduction in the
thymus (Wang et al, 2001). Our finding suggests that ATG treatment
leads to the hyper-methylation of TNFRSF25 and results in CD4+

T-cell depletion. The down-regulation of CD6’s can lead to
impaired lymphocyte activation (Gimferrer et al, 2004; Zimmerman
et al, 2006). EDAR, which encodes a receptor for ectodysplasin A that
can activate NF-κB, was down-regulated through hyper-methyla-
tion (Döffinger et al, 2001). These results all support the compro-
mised immunity caused by ATG-induced CD4+ T-cell depletion.

Finally, the transcriptomic MMLR model can classify ATG in-
duction but not the infection risk (Fig 5C). This difference from the
DNA methylation MMLR model further emphasizes the predictive
power of DNA methylation.

These results provide an epigenetic characterization of ATG’s
lymphodepletion capability and potential long-term impact on
T-cell function. The ability to use noninvasive testing strategies to
analyze the impact of induction therapy and identify patients at
increased risk of infection can be leveraged to create tools for
individualization of immunosuppression to prevent outcomes of
infection and rejection after KTx.

Limitations of the study

Our study has a few limitations. First, this is a single-center cohort
study. The variance of treatment effects could be minimal with the
compensation of significance. The second limitation is the lack of
full RNA-seq assessment of the cohort that underwent TBS-seq
measurement. However, strengths of the findings are the large
number of patients evaluated, representing the largest DNA
methylation cohort of KTx recipients. Another limitation is the lack
of assessment beyond 3 mo post-Tx. Future studies will extend to
6 and 12 mo and beyond to determine the persistence of ATG-
induced changes.

Materials and Methods

Human subjects

The study procedures, informed consent, and data collection
documents were reviewed and approved by the Institutional

Figure 4. Time-to-infection survival analyses with DNA methylation–estimated covariates.
(A) Epi-infection score from the MMLR model is statistically associated with time to infection. (B) Epi-ATG score is not associated with time to infection.
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Review Board of UCLA (IRB#11-001387). Informed consent was ob-
tained from all participants. A chart review was performed to ac-
quire demographic and clinical data. Participants provided blood
samples on the day of transplantation (pre-Tx) and 3 mo after
transplantation (post-Tx). Protocol for immunosuppression taper
and prophylaxis against infection was described previously
(Pickering et al, 2022). This cohort was treated on azathioprine-free
regime, and by 3 mo post-Tx, all patients were receiving 5 mg
prednisone by mouth daily. Patients with evidence of pre-Tx

sensitization by single antigen testing received ATG induction;
other patients received basiliximab. Biopsy was performed for
cause, and acute rejection (AR) was defined as biopsy-proven as
defined by the Banff criteria (Nickeleit et al, 2018) and the days from
Tx to AR are recorded in Table S6. Patient infection includes
bacterial (e.g., Enterococcus faecalis, Klebsiella pneumoniae, E.coli,
Clostridium difficile, and Staphylococcus epidermidis), viral (e.g.,
respiratory syncytial virus, BK virus, cytomegalovirus, herpes sim-
plex virus, rhinovirus, varicella-zoster virus, and COVID-19), and

Table 2. Top enriched pathways of gene expression through ATG-induced DNA methylation alterations.

Pathway P Genes Direction

Response to Retinoic Acid (GO:0032526) 1.44 × 10−4 LTK; RARA; PTK6

Down-regulation

Regulationof I-kappaBKinase/NF-kappaBSignaling (GO:0043122) 6.23 × 10−4 EDAR; TNFRSF25; TRAF1; LTB

Positive Regulation of Interleukin-12 Production (GO:0032735) 1.43 × 10−3 IL-23A; LTB

Positive Regulation of Cytokine Production (GO:0001819) 2.04 × 10−3 CD6; IL-23A; RARA; LTB

Positive Regulation of T Cell Proliferation (GO:0042102) 5.46 × 10−3 CD6; IL-23A

Regulation of Defense Response To Virus by Host (GO:0050691) 3.93 × 10−4 APOBEC3G; IFNLR1 Up-regulation

Figure 5. ATG induction alters gene expression.
(A) Differential gene expression analysis of ATG induction. (B) GO analyses of up-regulated (left) and down-regulated (right) genes by ATG induction. (C, D)
Transcriptomic MMLR model predicts ATG induction (C) but not Infection Risk (D).
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fungal (e.g., Candida albicans and Aspergillus niger) infections.
Incidence of infection was determined by chart review of the
electronic medical record, with infection defined based on Infec-
tious Diseases Society of America criteria as previously described
(Schaenman et al, 2021).

Blood samples

8 ml of blood was drawn into an ACD tube. After Ficoll density
gradient centrifugation, PBMCs were separated, isolated, and cry-
opreserved in FCS/DMSO.

TBS-seq

Probe design
The probe panel design is based on the following criteria to include
CpG loci that (1) cover sites used in DNA methylation clock age
estimators (Hannum et al, 2013; Horvath 2013), (2) cover cell
type–specific sites, and (3) are located in the promoter regions
(−1,000 to +250 bp from TSS) of viral response genes (Morselli et al,
2021). 6,803 biotinylated probes covering the selected CpG loci were
synthesized by IDT (Integrated DNA Technologies). Probe coordi-
nates are listed in Table S7.

Library preparation
Genomic DNA was extracted from PBMCs using the phenol–
chloroform method (Guha et al, 2018). 500 ng genomic DNA was
sheared and subject to end-repair, A-tailing, and ligated with
methylated adapters. Purified libraries were hybridized to bio-
tinylated probes and subjected to bisulfite conversion (Cat# D5030;
Zymo). Captured DNA was PCR-amplified with KAPA HiFi HotStart
Uracil+ (Cat# KK2801) into a final TBS-seq library. Library quality was
evaluated using TapeStation with the high-sensitivity D1000 tape
(Cat# 5067-5584; Agilent). A comprehensive TBS-seq protocol is
described in Morselli et al (2021).

TBS-seq data processing
Cutadapt (Martin, 2011) was used for adapter trimming, and only
reads with a minimum of 30 bp were kept for downstream analysis.
Reads were aligned to the indexed GRCh38 reference genome using
the BSBolt align function, and the duplicated reads were marked
with the samtools markdup function before calling methylation
using the BSBolt callmethylation function (Farrell et al, 2021).
CGmaps from all samples were aggregated into one methylation
count matrix using the BSBolt aggregatematrix function with pa-
rameters -min-coverage 20 -min-sample 1.0.

Cell-type deconvolution

A reference-based cell-type deconvolution approach was used to
estimate cell-type composition from DNA methylation profiles
(Morselli et al, 2022). To estimate cell-type composition of PBMCs,
WGBS datasets from six cell types were used: B cell, CD4 T cell, CD8
T cell, NK cell, naı̈ve T cell, monocyte (from GSE186458 [Loyfer et al,
2023]), and neutrophil band cells (from the BLUEPRINT database
[Martens & Stunnenberg, 2013]) (Table S8). Cell type–specific

differentially methylated regions were identified by one-vs-all
comparisons using metilene (Jühling et al, 2016) with the criteria
to find differentially methylated regions that are (1) at least 500 bp,
(2) with the delta methylation level < −30%, and (3) with a false
discovery rate < 0.05. Cell type–specific CpG sites were extracted
from each TBS-seq sample with the bedtools intersect function and
used as input files for deconvolution. Nonnegative least squares
regression was used to estimate coefficients.

Methylation modeling

MMLR
For each individual i, the methylation status of a targeted locus j is
denoted as Mij. Suppose every Mij is described by k methylation-
associated traits, Tik, that are weighted by a coefficient Ckj, the
methylation model is formulated as Equation (1):

Mij = Tik × Ckj

8>><
>>:

i2number of individuals
j2number of CpG loci
k2number of traits

: 1

This model represents a system of equations in which Tik andMij

are known variables. Our goal is to estimate Ckj, which represents
characteristics of sites, and can be achieved by solving Equation (1)
as

Ckj = T†ik × Mij: 2

Here, T†ik is derived through theMoore–Penrose pseudoinverse of
Tik.

Leave-one-out cross-validation
To avoid overfitting, for each biological sample, a separate MMLR
model was trained with the rest samples to derive C, and the trait
prediction is made as

Tik = Mij × C†
kj: 3

Here, C†
kj is the Moore–Penrose pseudoinverse of Ckj.

Epi scores
For each trait k, the individual iwill have a predictive value Tikwhich

we term an epi score. For instance, if k =
( 0 ðNo infectionÞ

1 ðInfectionÞ , the

predicted value Tik is the epi-infection score of this patient. We note
that the prediction is independent of the observation; for example,
if the patients are not included in this cohort, once their DNA
methylation profile is established, their epi scores could still be
acquired by the MMLR model trained with this cohort.

Identification of ATG-associated CpG sites
To identify statistically significant associations between trait and
per-site methylation, we estimated the significance of the coeffi-
cients using the following equation:
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ym = β0 + β1xm1 + β2xm2 + … +βnxmn + ε: 4

Here, ym is the methylation level at locus m, xn are the ex-
planatory variables including age, sex, cytomegalovirus (CMV)
serostatus, ATG induction (Yes/No), Infection Risk (Yes/No),
Transplant (Pre/Post), cell-type PCs, and ancestry PCs. β0 is the
y-intercept, βn is the coefficient for each explanatory variable, and ε
is the error. For each CpG site ym, P-values from the model per
explanatory variable xn were derived and adjusted for multiple
hypothesis testing using the Benjamini–Hochberg correction. CpG
sites with adjusted P < 0.05 for ATG (Yes/No) were defined as ATG-
associated sites.

Cox proportional hazards (Coxph) model
Only patients with CMV seropositive status are included in the
analysis. The epi-infection score derived from the MMLR prediction
of Infection Risk was treated as a covariate of the Coxph model to
estimate the rate of infection over the tracking time of 365 d. The
Coxph regression analysis was performed with the R package
“survival” and plotted with the R package “ggsurvplot.”

Functional enrichment analysis

Site-level GO enrichment analysis was performed using GREAT
(McLean et al, 2010) with CMV-associated sites’ coordinates as
foreground and all TBS-seq–captured CpG sites as background.
Gene-level GO enrichment analysis was conducted with Enrichr
(Chen et al, 2013).

Flow cytometry

PBMCs were thawed and stained with fluorochrome-conjugated
monoclonal antibodies, then fixed in FluoroFix buffer (Cat# 422101;
BioLegend) using standard procedures as previously described
(Schaenman et al, 2022). Antibodies used in the CD4+ and CD8+ T-cell
panels includedCD3, CD4, CD8, CD45RA, CCR7, CD57, CD28, KLRG1, andPD1.

RNA-seq

Library preparation
RNA was extracted from PBMCs. mRNA libraries were constructed
using KAPA RNA HyperPrep Kit following the manufacturer’s in-
struction (Cat# KK8540). RNA was sheared and primed with oligos
for cDNA synthesis. After adapter ligation and PCR amplification, the
final library was quantified, and quality was assessed using a
TapeStation.

RNA-seq data processing
Reads were aligned to reference genome GRCh38 using STAR using
default parameters (Dobin et al, 2013). A gene count table was
generated using featurecount (Liao et al, 2013). The gene count
matrix was first normalized, and DEGs were identified using the R
package DESeq2 (Love et al, 2014). Genes with adjusted P < 0.05 and
at least twofold difference between CMV serostatus groups were
considered differentially expressed.

Data Availability

TBS-seq and RNA-seq data from this study are deposited to Gene
Expression Omnibus under the accession number GSE250536.
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Zhang Y, Schöttker B, Florath I, Stock C, Butterbach K, Holleczek B, Mons U,
Brenner H (2016) Smoking-associated DNA methylation biomarkers
and their predictive value for all-cause and cardiovascular mortality.
Environ Health Perspect 124: 67–74. doi:10.1289/ehp.1409020

Zhao Y, Ding C, Xue W, Ding X, Zheng J, Gao Y, Xia X, Li S, Liu J, Han F, et al (2017)
Genome-wide DNA methylation analysis in renal ischemia
reperfusion injury. Gene 610: 32–43. doi:10.1016/j.gene.2017.02.005

Zimmerman AW, Joosten B, Torensma R, Parnes JR, van Leeuwen FN, Figdor CG
(2006) Long-term engagement of CD6 and ALCAM is essential for T-cell
proliferation induced by dendritic cells. Blood 107: 3212–3220.
doi:10.1182/blood-2005-09-3881

License: This article is available under a Creative
Commons License (Attribution 4.0 International, as
described at https://creativecommons.org/
licenses/by/4.0/).

DNA methylation in kidney transplant patients Hsu et al. https://doi.org/10.26508/lsa.202403124 vol 8 | no 7 | e202403124 12 of 12

https://doi.org/10.1093/ndt/17.12.2071
https://doi.org/10.1038/sj.leu.2404683
https://doi.org/10.1038/sj.leu.2404683
https://doi.org/10.1016/j.ymeth.2020.07.006
https://doi.org/10.1080/15592294.2022.2051862
https://doi.org/10.1111/ctr.12021
https://doi.org/10.1111/joim.13724
https://doi.org/10.1111/joim.13724
https://doi.org/10.1681/ASN.2017050477
https://doi.org/10.1111/j.1600-6143.2005.00759.x
https://doi.org/10.1111/tid.13257
https://doi.org/10.1016/j.humimm.2022.01.016
https://doi.org/10.1016/j.humimm.2022.01.016
https://doi.org/10.1016/j.immuni.2024.08.005
https://doi.org/10.1186/s13148-024-01642-w
https://doi.org/10.1186/s13148-024-01642-w
https://doi.org/10.1097/TXD.0000000000001020
https://doi.org/10.1097/TXD.0000000000001020
https://doi.org/10.1111/ctr.14252
https://doi.org/10.1016/j.ekir.2022.10.015
https://doi.org/10.1016/j.ekir.2022.11.001
https://doi.org/10.1111/j.1365-2796.2007.01777.x
https://doi.org/10.1111/j.1365-2796.2007.01777.x
https://doi.org/10.1038/ni1183
https://doi.org/10.1016/S0140-6736(02)11606-0
https://doi.org/10.1038/s41591-023-02296-6
https://doi.org/10.1038/nature20784
https://doi.org/10.1128/MCB.21.10.3451-3461.2001
https://doi.org/10.1093/ndt/gft537
https://doi.org/10.1038/s41598-021-04321-5
https://doi.org/10.1038/s41598-021-04321-5
https://doi.org/10.3390/jcm11010199
https://doi.org/10.1097/01.tp.0000164159.20075.16
https://doi.org/10.1289/ehp.1409020
https://doi.org/10.1016/j.gene.2017.02.005
https://doi.org/10.1182/blood-2005-09-3881
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26508/lsa.202403124


Advertisement 

PellegriniJoanna M Schaenman
Fei-Man Hsu, Harry Pickering, Liudmilla Rubbi, Michael Thompson, Elaine F Reed, Matteo
  
DNA methylation predicts infection risk in kidney transplant recipients

http://doi.org/10.26508/lsa.202403124
Vol 8 | No 7 | e202403124

http://www.life-science-alliance.org/cgi/adclick/?ad=57964&adclick=true&url=https%3A%2F%2Fwww.life-science-alliance.org%2F
http://doi.org/10.26508/lsa.202403124

	DNA methylation predicts infection risk in kidney transplant recipients
	Introduction
	Results
	DNA methylation is correlated with ATG induction
	ATG induction depletes CD4+ and naïve T cells
	Predicting ATG induction and infection risk with DNA methylation
	Site-specific DNA methylation impact of ATG induction
	Transplant and ATG induction accelerate epigenetic aging
	Gene expression is impacted by ATG and complements DNA methylation alterations

	Discussion
	Limitations of the study

	Materials and Methods
	Human subjects
	Blood samples
	TBS-seq
	Probe design
	Library preparation
	TBS-seq data processing

	Cell-type deconvolution
	Methylation modeling
	MMLR
	Leave-one-out cross-validation
	Epi scores
	Identification of ATG-associated CpG sites
	Cox proportional hazards (Coxph) model

	Functional enrichment analysis
	Flow cytometry
	RNA-seq
	Library preparation
	RNA-seq data processing


	Data Availability
	Ethics declarations
	Ethics approval and consent to participate
	Consent for publication


	Supplementary Information
	Acknowledgements
	Author Contributions
	Conflict of Interest Statement
	Amlot PL, Rawlings E, Fernando ON, Griffin PJ, Heinrich G, Schreier MH, Castaigne J-P, Moore R, Sweny P (1995) Prolonged ac ...


