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Accessory genes define species-specific routes to
antibiotic resistance
Lucy Dillon1 , Nicholas J Dimonaco1,2,3 , Christopher J Creevey1

A deeper understanding of the relationship between the anti-
microbial resistance (AMR) gene carriage and phenotype is
necessary to develop effective response strategies against this
global burden. AMR phenotype is often a result of multi-gene
interactions; therefore, we need approaches that go beyond
current simple AMR gene identification tools. Machine-learning
(ML) methods may meet this challenge and allow the develop-
ment of rapid computational approaches for AMR phenotype
classification. To examine this, we appliedmultiple ML techniques
to 16,950 bacterial genomes across 28 genera, with corresponding
MICs for 23 antibiotics with the aim of training models to accu-
rately determine the AMR phenotype from sequenced genomes.
This resulted in a >1.5-fold increase in AMR phenotype prediction
accuracy over AMR gene identification alone. Furthermore, we
revealed 528 unique (often species-specific) genomic routes to
antibiotic resistance, including genes not previously linked to the
AMR phenotype. Our study demonstrates the utility of ML in
predicting AMR phenotypes across diverse clinically relevant
organisms and antibiotics. This research proposes a rapid com-
putational method to support laboratory-based identification of
the AMR phenotype in pathogens.
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Introduction

The overuse and misuse of antibiotics has escalated the rate at
which many bacteria have evolved and acquired resistance to
multiple antibiotics (Byrne et al, 2019; Sabino et al, 2019), including
last-resort treatments (Andrade et al, 2021). This has led to
growing prevalence of antimicrobial-resistant infections world-
wide (Kwon & Powderly, 2021), which can be challenging to treat
(Brauner et al, 2016). This has caused antimicrobial resistance
(AMR) to become an increasing burden on society from a global
health, agricultural, and financial perspective (Huws et al, 2018;
VanOeffelen et al, 2021; WHO, 2021). If the rate of AMR continues as
projected, it is estimated that by the year 2050, there will be >10

million deaths annually as a result of AMR-related infections
(Kumar et al, 2021).

The AMR phenotype is typically distinguished through laboratory-
based approaches such as broth microdilution, E-tests, or disc
diffusion assays (van Belkum et al, 2020). However, it typically takes
a minimum of 2–4 d to culture the bacteria and then complete the
test (Berglund et al, 2019). More rapid testing is available through
automated instruments for antibiotic susceptibility testing, such as
commercial automated antimicrobial susceptibility tests (i.e., VITEK
2 system and MicroScan WalkAway) (van Belkum et al, 2020; Khan
et al, 2021) or isothermal microcalorimetry to accurately determine
MIC values (i.e., Symcel) (Tellapragada et al, 2020), which is often
used in clinical environments. However, although these assays are
usually a good estimate of the AMR phenotype in culture, this
does not always translate to clinical settings. This is further
complicated by the difficulty in culturing many organisms, espe-
cially when assessing species directly from microbiome samples
(Raymond et al, 2019). Besides the importance of understanding
the role of the AMR phenotype in microbiomes from an AMR
reservoir perspective (Sabino et al, 2019), it also has the potential
to reveal the mechanisms underpinning AMR-driven dysbiosis
(Miyoshi et al, 2017) within humans and animals and potentially
aid in preventing disease while concomitantly slowing the spread
of AMR.

Recently, computational methods to identify AMR-causing genes
in genomic data have become widely available (McArthur et al, 2013;
Hunt et al, 2017; Bortolaia et al, 2020) and are often used to assess
the potential antibiotic resistance phenotype of an organism
(Sabino et al, 2019) or even entire microbiomes (Zaheer et al, 2019).
These AMR gene identification tools run relatively quickly, espe-
cially compared with laboratory-based assays. Still, different tools
can provide varying results (Feldgarden et al, 2019), likely driven by
differences in the databases and varying methods to detect AMR
genes (Doster et al, 2020). Very often microbiomes harbour AMR
genes even when antibiotic usage is absent (Zhou et al, 2020; Gupta
et al, 2021; Ma et al, 2022). Why these bacteria harbour AMR genes
within the microbiome is unclear, and although several AMR genes
have been reported to have alternative functions, such as trans-
porters (Cudkowicz & Schuldiner, 2019), this is not the case for all.
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Most importantly, the use of AMR gene identification tools to
predict the AMR phenotype represents what in many cases is likely
to be an oversimplification of the mechanisms underpinning AMR:
that a single gene or mutation is solely responsible for the pre-
sentation of the AMR phenotype. In this situation, other non–AMR-
associated genesmay be required to confer resistance (or susceptibility)
of an organism to an antibiotic (de Korne-Elenbaas et al, 2022). In
the rest of this study, we refer to these non-classical AMR genes that
are important to the presentation of the AMR phenotype as AMR
“accessory” genes.

Previous studies attempting to use machine learning as a way of
predicting the AMR phenotype from the genotype (Nguyen et al,
2019, 2020) have been limited by only studying a specific species,
and/or using a single antibiotic (Nguyen et al, 2018; Macesic et al, 2020;
Wang et al, 2022; Yasir et al, 2022) or non-interpretable methods
such as neural networks (Avershina et al, 2021), thereby limiting the
ability to understand the biological processes involved. Using a
more interpretable method such as decision trees, as applied to a
wide range of taxa and antibiotics, has the potential to provide
a unique biological understanding of antibiotic resistance and
allow the identification of accessory gene involvement in alternative
“routes” to phenotypic resistance.

To address this, we set out to identify whether careful curation of
data combined with the use of interpretable ML methods could
elucidate the role of “accessory” genes in the presentation of an
AMR phenotype.

Our underlying hypothesis is that focusing solely on classic AMR
genes misses vital information needed to evaluate AMR phenotypes
accurately. We address this through the application of multiple
machine-learning (ML) models to a dataset of 16,950 genomes from
microbial isolates representing 28 different genera with 1.9 million
corresponding laboratory-determined MICs for 79 different antibi-
otics. These data were filtered by matching to EUCAST breakpoints
(EUCAST, 2021) to ensure more balanced datasets according to the
AMR phenotype. The filtering resulted in 5,990 genomes across 19
genera, with 47,711 EUCAST classified MICs for subsequent analysis
(28,480 resistant and 19,231 susceptibleMICs) of 23 antibiotics.We then
elucidate the genomic routes (combinations of genes present and/or
absent in genomes) involved in phenotypic antimicrobial resistance
with the aim of allowing for the development of rapid determination
of the AMR phenotype from genomes or even whole microbiomes.

Results

Machine-learning approaches vastly improve AMR phenotype
prediction from the AMR genotype

Within this study, we analysed several techniques for predicting the
AMR phenotype from genomic data, including a naı̈ve analysis of
AMR genes, logistic regression of AMR genes, J48 decision tree,
random forest, support vector machine (SVM), and logistic model
tree (LMT) models.

Even though AMR gene identification tools are designed to
identify the presence of AMR genes in genomic data, their results
are frequently used to directly infer the AMR phenotype (Bortolaia
et al, 2020; Tan et al, 2020; Florensa et al, 2022; Verschuuren et al,

2022). We examined the accuracy of predicting the AMR phenotype
solely based on the presence/absence of known AMR genes for 23
antibiotics and 16,950 genomes, from organisms with laboratory-
derived MIC data. This naı̈ve model assumed an antibiotic-resistant
phenotype when an AMR gene, which targets a particular antibiotic
(as defined in the CARD), was found in a genome.

The average prediction accuracy of this naı̈ve (Resistance Gene
Identifier [RGI]-specific) analysis (as defined by the number of
genomes correctly predicted to be susceptible or resistant to an
antibiotic divided by the total number of genomes tested) was
57.6% and ranged from 3.5% (clindamycin) to 100% (moxifloxacin)
(Fig 1A). Clindamycin had quite a poor ratio of susceptible to re-
sistant genomes (273:10) in comparison with moxifloxacin, which,
while having far fewer genomes for training, had a better ratio of
susceptible to resistant genomes (4:10), which may have led to the
higher accuracy observed. The precision and recall were calculated
using a confusion matrix (Tables S1 and S2). The average prediction
precision was 56.2% and ranged from 46.3% (fosfomycin) to 100.0%
(moxifloxacin) (Tables S2 and S3). The average prediction recall for
all 23 antibiotics was 61.2% and ranged from 24.6% (ertapenem) to
100.0% (moxifloxacin).

When logistic regression approaches were applied, the resulting
models of the RGI genes had an average accuracy of 73.9% and
ranged from 50.96% (erythromycin) to 97.44% (amoxicillin). How-
ever, >50% of themodels only predicted one phenotype (either only
susceptible or only resistant predictions), resulting in an average
recall of 52.3% (ranging from 48.5% [doripenem] to 75.0% [amoxi-
cillin]) and the average precision of 53.6% (ranging from 31.5%
[doripenem] to 74.5% [erythromycin]) (Tables S2 and S4).

When a decision tree approach (using the WEKA J48 model) was
applied to the RGI-specific dataset, the resulting models were
highly accurate in predicting the correct AMR phenotype: 10-fold
cross-validation resulted in an average accuracy of 91.1% ranging
from 74.85% (tigecycline) to 100% (moxifloxacin) (Fig 1A and Tables
S4 and S5). The average recall of the RGI-specific decision tree
models was 76.8% (ranging from 50.0% for amoxicillin, aztreonam,
clindamycin, colistin, fosfomycin, and nitrofurantoin to 100.0% for
moxifloxacin) (Fig 1C). The average precision was 86.2% (ranging
from 43.0% for colistin to 100.0% for moxifloxacin) (Fig 1B). Fur-
thermore, the traversal of the resulting decision trees indicated
different genomic routes to resistance and susceptibility (see Fig 2),
highlighting the importance of both the presence and the absence
of multiple genes in predicting the AMR phenotype from genomic
data.

The average accuracy of the J48 model (91.0%) was comparable
to that of the random forest (92.0%), SVM (86.3%), and LMT (92.2%)
models (Table S6 and Fig S1). The decision tree models had the
advantage over the other models of allowing biological interpre-
tation of the genes driving the AMR phenotype/genotype rela-
tionship. For this reason, we focused further analysis on the
decision tree models.

Model accuracy is not reliant on specific taxonomy

To investigate the ability of the decision tree models to predict
the AMR phenotype for groups of organisms that were not in-
cluded in the training data, for each antibiotic model, we
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generated multiple sub-datasets where for each we excluded all
genomes (and MIC data) from a selected genus from the training
data and regenerated the model. The excluded genus and as-
sociated MIC data were then used to test the accuracy of the
regenerated model for predicting the AMR phenotype across
taxonomic groups. Overall, the average accuracy of models to
predict the AMR phenotype for a genus that was excluded from
the training data was 80.3% (ranging from 0% to 100%) (Table S3).
This varied depending on the taxa excluded; for instance, when
152 Streptococcus genomes and MICs were excluded from the
meropenem data, the resulting models were able to predict 100%
of Streptococcus AMR phenotypes. However, in the ampicillin

model, Salmonella phenotypes were not predicted well (34%
accuracy) when all 1,048 Salmonella genomes and MICs were left
out of the training data. This variation in performance across taxa
may be due to an uneven distribution of susceptible versus
resistant data in some of the training data (for instance, for
testing the Streptococcus AMR phenotype, there were 383 re-
sistant genomes versus 1,807 susceptible genomes, compared
with 2,364 resistant genomes versus 13 susceptible genomes for
testing the Salmonella AMR phenotype). Klebsiella had the most
genomes for each antibiotic model tested (at least 1,248 genomes
in each model), yet models that excluded them still performed
relatively well (with an average accuracy of 84.4%). However,

Figure 1. Comparison of techniques used predict AMR phenotype from genomic data.
(A, B, C) Model average accuracy (A), average precision (B), and average recall (C). The boxplots represent the following methods used in this study to predict the AMR
phenotype in the following order: naı̈ve RGI analyses (orange), logistic regression using the RGI data (blue), J48 decision trees using RGI genes specific to the antibiotic
(green), J48 decision trees using all RGI genes regardless of the antibiotic model (yellow), and J48 decision trees using eggNOG gene families (pink). The statistical
significances are the result of a pairwise Wilcoxon signed-rank test adjusted for multiple testing using the Benjamini–Hochberg method (q < 0.05). No significant
difference between distributions is indicated by a shared letter above their respective boxplot (see Table S7 for more details). Outliers are represented with a triangle-
shaped point.
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sometimes when the genus with the second largest number of
genomes for an antibiotic was excluded from the training data,
the resulting models predicted their AMR phenotype poorly. For
example, with ampicillin when the second largest genus Sal-
monella (i.e., 1,048 Salmonella genomes versus 1,923 Klebsiella
genomes) was excluded, the resulting model had an accuracy of
only 34.3% when predicting the Salmonella AMR phenotypes. For
Ciprofloxacin, however, when Salmonella (which was the second
largest genus in this model after Klebsiella) was excluded from
the data, the resulting models had an accuracy of 97.7% when
predicting the Salmonella AMR phenotypes. This may be due to
some genera being more closely related than others, such as
Klebsiella and Escherichia compared with Neisseria. However,
this does not account for all cases and higher accuracy of pre-
dicting the AMR phenotype using models trained on more dis-
tantly related organisms may be driven by other factors, such as
convergent evolution in species exposed to similar conditions or
horizontal gene transfer, resulting in similar resistance mecha-
nisms between the species. Investigation of the decision tree
models supports this theory: for Ceftriaxone, ciprofloxacin, and
gentamicin where the models performed well in predicting the
Salmonella AMR phenotype when Salmonella was excluded from
the training data, the tree traversals identified that each route to
phenotype resistance was supported by data from multiple
genera (Fig S6). However, for ampicillin where the models per-
formed poorly in predicting Salmonella AMR phenotypes when
the Salmonella data were excluded from the training data, the
tree traversals showed that most of the routes to AMR were
dominated by a single genus. Therefore, when Salmonella was
excluded from the training data, the routes to resistance for
Salmonella were lost from the model, resulting in low accuracy.

This insight into the mechanics of the models is only possible
because of the use of an interpretable ML model, which not only
highlights the often species-specific routes to AMR that exist, but
also hints at those routes to resistance that are readily shared
between taxa and may be important to monitor for early-warning
surveillance programmes.

ML models identify putative additional antibiotic targets of
AMR genes

To investigate the role of AMR genes in antibiotic resistance to
which they are not indicated in the CARD, we generated decision
trees, which included all AMR genes regardless of the antibiotic
target listed in the CARD. This resulted in 17 antibiotic models
improving in accuracy, and across all models, a significant increase
in accuracy was observed compared with the models using only the
AMR genes specific to the antibiotic that is listed in CARD (Wil-
coxon’s signed-rank test [q = 8.27 × 10−4] [Table S7]). Results of
investigations of model prediction accuracies for one AMR phe-
notype over the other can be found in confusion matrices in Tables
S1, S5, S8, S9, and S10. The average accuracy of the models using all
AMR genes regardless of the antibiotic to which they were indicated
to provide resistance was 92.5% (ranging from 79.7% [tigecycline] to
100.0% [moxifloxacin]). The average recall and precision were 83.5%
(ranging from 50.0% [fosfomycin] to 100.0% [moxifloxacin]) and
87.5% (ranging from 65.0% [nitrofurantoin] to 100.0% [moxi-
floxacin]), respectively (Fig 1B and C and Table S2). A significant
increase in average recall and precision was also observed (recall,
q = 4.39 × 10−4; and precision, q = 0.04) (Table S7). This suggests that
some AMR genes may have additional antibiotic targets not an-
notated in the databases. One example of this can be seen in the

Figure 2. Example of a decision tree with
two routes to resistance, indicated by the
red and blue lines.
For example, in the red route, if more than one
copy of Gene A, D, and E is present, the
genome will be resistant, but if one of those
genes is not present (i.e., Gene E), the organism
will be susceptible.
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Figure 3. Predicting tetracycline resistance using eggNOG gene family copy number or absence.
(A) J48 decision treemodel to predict the tetracycline AMR phenotype. RGI-associated gene families have been highlighted with a thick black outline. COG0480 relates to
gene tet(44), COG0642 relates to gene adeS, and COG2946 relates to gene tetU. The decision trees have numbers in the phenotype boxes to represent the number of
genomes. This may include two numbers in some cases, the first number indicates the total number of genomes, and the second number is the number of incorrectly
classified genomes.* (B) Stacked bar chart showing the routes to susceptibility and resistance for tetracycline. This is a genus-level analysis; the species, family, order,
class, and phylum analysis can be found in Fig S6. The route numbers relate to the numbers on the decision tree (part (A)). Note: route 9 is not for 100% Campylobacter, but
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gentamicin RGI-all model, which shows the presence of >1 TEM-185
gene confers resistance to gentamicin (Fig S2). This gene is not
indicated to confer resistance to aminoglycoside antibiotics in the
CARD.

Accessory genes have a key role in AMR phenotype prediction

To see whether this observation extended to non-classical AMR
genes, decision trees were generated for the 23 antibiotics using
eggNOG gene family functional profiles generated for all 16,950
genomes. The average accuracy of thesemodels was 92.2% (ranging
from 74.0% [tigecycline] to 100.0% [moxifloxacin]). In the compar-
ison of the eggNOG models with the RGI models, the mean value
was 0.3% higher for RGI-all analysis (92.5%) (Tables S4 and S10). The
difference between the RGI decision tree models and eggNOG gene
families was not significant overall (RGI-specific genes versus
eggNOG, q = 3.66 × 10−1; RGI-all-gene models versus eggNOG, q =
2.49 × 10−1) (Table S7). Overall, the inclusion of AMR accessory genes
in the models did not reduce the accuracy, precision, or recall
compared with the AMR gene–based decision trees; however, their
inclusion allowed the identification of putative accessory genes
involved in species-specific routes to antibiotic resistance (Fig
1A–C). Using the eggNOG decision trees, we identified an addi-
tional 675 gene families across all 23 antibiotic models, which are
not in the RGI database but were indicated as linked to the AMR
phenotype.

Decision trees identify species-specific biological routes
to resistance

The use of decision trees allowed biological interpretation of
routes to resistance and susceptibility predicted by the models
(428 susceptible routes and 528 resistant routes across all the
eggNOG models, Figs 3, S2, S3, and S4 and Table S11). In some
cases, putative novel roles of known AMR genes were identified;
for instance, in the eggNOG-based amikacin model, COG0050 is
matched to a multi-drug–resistant gene (Escherichia coli acrA—as
named in the CARD), but this AMR gene is not involving in ami-
noglycoside resistance, suggesting that this gene may have ad-
ditional targets. The routes also highlighted not only the
importance of the presence (and number of copies) of key AMR
and accessory genes to antibiotic susceptibility and/or resistance
of an organism but critically also the importance of the absence of
certain genes to these phenotypes. It is possible that the inclusion
of information about genes not present in a genome and/or the
co-occurrence of particular genes may have played an important
role in the observed increase in model accuracy over the naı̈ve
approaches that simply use the presence of a known AMR gene
to indicate the AMR phenotype (Fig 1). Although this highlights
key genes involved in the AMR phenotype that are not classic AMR
genes (Fig S1), reassuringly, when RGI genes were matched to the

gene families in the decision treemodels, we found that most of the
models also contained known AMR (RGI) gene families. An in-
teresting insight that was only possible because of the use of
decision trees was the sometimes large number of different
resistance routes possible for a single antibiotic. For example, the
tetracycline decision tree model using eggNOG gene families
identified six different routes to resistance across all genomes
analysed. As can be seen in Fig 3A, the leaves of decision trees
have values for each phenotype representing the number of
genomes in the training set that take that route to resistance (in
the case in which there are two numbers, the first is the total
number of genomes and the second is the number of incorrectly
classified genomes). The most common route to tetracycline
resistance involves COG0480 and COG0765 (both positive and
negative involvement with resistance). The gene family COG0480
is a known key gene family involved in tetracycline resistance
(tet(44)); however, Fig 3A also shows that this gene does not have
to be present for an organism to be resistant.

The fact that known AMR genes (RGI gene families) did not
dominate the trees and routes to resistance suggests that acces-
sory genes have an important role in the AMR phenotype. For
example, the eggNOG-based decision tree using the tetracycline
phenotypic data had three known AMR gene families tet(44), tetU,
and adeS (COG0480, COG2946, and COG0642, respectively), yet their
presence did not always guarantee resistance to tetracycline (Fig
3A). Therefore, the presence or absence of certain accessory genes
is necessary to confer the resistant phenotype.

STRING (version 11.5) (Snel et al, 2000) was used to identify
predictions of putative protein–protein interactions between
genes within each route to resistance under the hypothesis that if
these routes and especially the involvement of non-classical AMR
genes are valid, they should be enriched in predicted protein–
protein interactions. Of the 23 models, 18 contained eggNOG gene
families, which were predicted to have protein–protein interac-
tions, predicted from co-occurrence and co-expression in STRING.
The tetracycline decision tree using eggNOG gene families showed
that 63.6% of the gene families had predicted protein–protein
interactions (Fig S5). In addition to the evidence-based predicted
protein–protein interactions across each decision tree model, we
analysed each route to resistance within the models. For each
route to resistance, we determined the predicted protein–protein
interactions using edges based on confidence (strength of data
support) rather than based on evidence (indicates the type of
interaction) (Fig 3C). The individual routes to resistance had an
average of 1.2 predicted protein–protein interactions ranging from
0 to 7.6 (Table S11) (we included connections based on low
confidence to provide further evidence that these putative con-
nections that may not be well documented in the database may
have a role in the AMR phenotype). This investigation also
highlighted that many of the routes are taxonomically dependent.
This was evident in the decision tree models using both AMR and

0.4% for Neisseria. (C) Protein–protein interactions between gene families for each route to resistance. The lines (edges) represent the protein–protein interactions
from STRING, and the thicker the line, the higher the confidence (see Table S11 for details). See part (A) for details of each route (the route numbers 10/27 correspond to the
numbers on the phenotype boxes in part (A)).* Note*: eggNOG gene families 28JVV and 2EFWV correspond to NOG242629 and COG5525 in the STRING database,
respectively.
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accessory genes. As an example, in Fig 3A we can see 12 distinct
routes to the AMR phenotype (either susceptibility or resistance);
routes 4–6 were only found in the Neisseria genus. Route 10 was
only found in Campylobacter, and route 9 was dominated by
Campylobacter (99.4% Campylobacter, 0.6% Neisseria) (Fig 3B).
Although this is not the case for every route in the trees (i.e., route
1 is very mixed taxonomically), many of the branches in the trees
could predict species of the genome analysed and the AMR
phenotype. Interestingly, for those routes to resistance that were
found in multiple different taxa (e.g., route 11 in Fig 3B), this might
suggest routes to resistance that are more easily shared between
species by mechanisms such as horizontal gene transfer. Addi-
tional antibiotic model routes for species–phylum can be found in
Fig S6. Details on all other routes to resistance can be found in
Table S11.

Resistance routes to different antibiotics are distinct from each
other but share some key genes

Using the decision trees, we can work out which combinations of
genes are involved in resistance (see an example decision tree [Fig
2] for reference). Understanding which genes are key to resistance
in particular antibiotics or shared across different antibiotics could
help provide insight into novel approaches to combat AMR in fu-
ture. To investigate whether there was an overlap in the genes
involved in resistance to different antibiotics, we combined gene
families present in all decision trees. The eggNOG gene family
distribution across the different models was analysed resulting in
723 unique eggNOG gene families in total for all the models. Of
these unique eggNOG gene families, only 48 were linked to RGI AMR
genes (Table S12). The distribution of functional categories assigned
to the eggNOG gene families (also known as COG categories) varied
across all models, suggesting that resistance to different antibiotics
was driven by distinct mechanisms (Fig S7).

To investigate possible connections between the networks of
genes involved in resistance across different antibiotic models,
we identified putative protein–protein interactions between all
genes from all routes to resistance for all the antibiotic models
using STRING. The resulting STRING network had 450 nodes and
10,786 edges. This included all evidence types in STRING at a
medium level of confidence (0.4). We then reduced the network to
include only those connections between genes where the genes
were also found together in at least one decision tree model. The
resulting reduced network had 247 nodes and 1,300 edges, which
showed clear clusters linking gene families to specific antibiotic
models (Fig 4). The network highlighted several key gene families,
which are involved in many different antibiotic gene clusters (the
larger nodes in Fig 4). This suggests these genes may have an
important role in the AMR phenotype across multiple antibiotics.
The largest node in the graph represents COG2367, which played a
role in seven different antibiotic models. This gene is annotated
as part of the defence mechanism group of eggNOG gene families,
labelled as beta-lactamase. This may be expected as six of the
models were built using the MICs of the beta-lactam antibiotics,
but COG2367 was also part of the Nitrofurantoin model, which is
distinct from the beta-lactam drug class. The nitrofurantoin

model predicts that it is possible to have up to four copies of
COG2367 and still be susceptible (which according to the labels
accounts for most of the genomes on this route through the
decision tree); if more than four copies are present, then the
model predicts that the organism can be resistant to nitro-
furantoin. In the gene network, we can also see how different
antibiotics have distinct genes, which are only associated with
that particular antibiotic (indicated by the colours in Figs 4 and
S8). This highlights those genes that are involved in unique routes
to resistance to each antibiotic. Although the network in Fig 4 was
generated without prior knowledge of the antibiotic drug classes
that the genes were predicted to be associated with, we see clear
sub-clusters of genes according to the antibiotic drug class.
However, most interesting is how connected all these sub-
clusters are even though some represent very distinct antibi-
otic drug classes including carbapenems and aminoglycosides
(Fig S9). This suggests the possibility that certain key genes are
important to the establishment of routes to resistance against
multiple antibiotics leading to multi-drug resistance phenotypes
and should be monitored in AMR surveillance initiatives.

Discussion

Within this study, we have shown that machine learning can vastly
improve the prediction of the AMR phenotype from genomic data
and the inclusion of accessory genes with AMR genes in these
analyses provides valuable biological insights into the routes to
AMR and susceptibility.

Although AMR gene identification tools like RGI are not designed
to identify the AMR phenotype but rather the AMR genotype, their
results are often inferred as phenotypic resistance for genomes
(Bortolaia et al, 2020; Tan et al, 2020; Florensa et al, 2022;
Verschuuren et al, 2022) and metagenomes (Zaheer et al, 2018;
Jankowski et al, 2022). Our results demonstrate how this naı̈ve
approach to AMR phenotype prediction results in an average ac-
curacy of only 57.58%, which is comparable to a game of chance. The
average precision was 56.2%, and the average recall was 61.2%,
which highlights key flaws in using these tools to predict the AMR
phenotype (Fig 1B and C).

Overall, although results from the logistic regression analysis
were significantly better than those from RGI-only analysis (Fig 1), it
is still underperformed, which could suggest there are not enough
data to make an accurate model, there is not a strong enough link
between the phenotype and the genes to be able to classify ac-
curately using this approach, or the model is not complex enough.
However, decision trees show over 17% increase (statistically sig-
nificant, q = 6.03 × 10−5, Table S7) in accuracy compared with logistic
regression, suggesting that the poor performance of logistic re-
gression may be due to the limitation of using only presence/
absence information rather than the number of copies of genes
that the decision trees are capable of using it.

The decision tree results have shown that both the presence
(including the number of copies) and the absence of different gene
families are key in the accurate prediction of the AMR phenotype.
Biologically, this makes sense as we know that genes perform their
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function most often as an ensemble with other genes. Supporting
this, the decision trees show that even when a known AMR gene is
present, it does not necessarily mean that the organism is resistant
(Figs S2, S3, and S4). Interestingly, the decision tree models, which
included all known AMR genes (and not just those thought to be
involved in resistance to the antibiotic being examined: RGI-all
models), showed an increase in accuracy compared with the
models that were generated using only those AMR genes known to
provide resistance to the specific antibiotic. This suggests that
some of the AMR genes within the CARD may be involved in pro-
viding resistance to a broader range of antibiotics than what is
annotated. However, AMR genes may need additional genes
present to confer resistance to particular antibiotics, which are not
identified in any commonly used AMR gene identification tool.

The use of eggNOG gene families has shown the importance of
accessory genes in the role of the AMR phenotype. Accessory genes
are generally ignored when determining the AMR phenotype of an
organism when using computational techniques to predict the AMR
phenotype. Therefore, studies that rely on AMR gene identification
tools to determine resistance could be misleading as the full ge-
nomic picture is not described. All the eggNOG decision treemodels
are dominated by non-AMR genes (Fig S4) and show in which
contexts the presence of an AMR gene does not guarantee resis-
tance to a particular antibiotic. Almost 30,000 gene families were
used to train the eggNOG-based J48 models, in comparison with the
1,424 RGI AMR genes used to train the RGI-all gene J48 models. The
accuracy, precision, and recall did not differ significantly between
these models, suggesting that the inclusion of the extra non-
classical AMR genes did not affect the ability of the J48 model to
accurately predict the AMR phenotype. However, their inclusion did
allow a better biological understanding of the routes to AMR used
by different species.

Analysis of the protein–protein interaction networks of indi-
vidual routes to resistance showed high levels of predicted

interactions, which would be expected if all the genes identified
were involved in a shared process, such as establishing resistance
to an antibiotic. Yet, when all the protein–protein interactions were
examined across all the antibiotic models, clear connections be-
tween them were evident, suggesting there are key non-AMR an-
notated genes involved across many antibiotic resistance
mechanisms (Fig 4).

Identifying taxonomically dependent routes to resistance within
the decision trees highlights key genes that could be targeted for
particular pathogens. Conversely, routes to resistance with multiple
taxa involved could suggest a route that is more transmissible
between species and may pose a greater risk in clinical settings.
Overall, the routes to resistance provide unique biological insights
into AMR mechanisms, many of which are understudied.

Althoughmore data and improvedmodels are needed to provide
accurate predictions for wider taxonomic diversity than available
for this study, it is clear that the AMR phenotype cannot be clearly
explained by the use of AMR gene identification tools alone, and a
more complex approach, such as the one implemented in machine
learning, is required. Although we concentrated on the results of
the J48 decision tree models as they provide more biological in-
sights than other machine-learning models such as random forest,
SVM, and LMT, we found comparable levels of phenotype prediction
accuracy using these other ML approaches. Further work needs to
be done in this area to develop biologically interpretable machine-
learning models for the important insights that they can provide
about the AMR phenotype.

Summary

AMR gene identification tools that identify the presence or absence
of known AMR genes are not designed to be used to predict the AMR
phenotype despite their wide use for this purpose. Therefore, it is
unsurprising that multiple studies have reported their inability to

Figure 4. Gene network of all unique
eggNOG gene families across all antibiotic
eggNOG models.
Nodes are the different eggNOG gene families
from all routes to the antibiotic AMR
phenotype identified from the decision tree
models, and edges are protein–protein
interactions predicted between eggNOG
gene families by STRING. Only those
predicted protein–protein interactions
between genes that were also found
together in at least one decision tree model
are shown. The edge colour corresponds to
the antibiotic model that the eggNOG gene
family pair is present in. The node size is
proportional to the number of models the
eggNOG gene family is present in.
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accurately predict the AMR phenotype ofmany organisms. However,
in this study, we have demonstrated that careful curation of data
and application of even basic ML models can overcome these
limitations and accurately predict the AMR phenotype for a wide
range of clinically relevant taxon and antibiotic combinations. In
addition, we demonstrate that the incorporation of all genes from a
genome (and not just the known AMR genes) allows the identifi-
cation of species-specific routes to antibiotic resistance, involving
genes not previously identified as involved in this process. Lastly,
we have shown that the inclusion of factors, such as the number of
copies of a gene family, and their absence are important key factors
that need to be considered when predicting the AMR phenotype
from genomes.

The models generated in this study are the first step towards
tools that could be used in clinical environments to aid laboratory-
based diagnostics. Although the species-specific nature of many of
the routes to phenotypic resistance identified suggests that the
current models would be best applied to clinically relevant isolates
closely related to the taxa used to train the models, their taxonomic
specificity could also allow identification of recently horizontally
transferred resistance mechanisms from these species into a wider
range of taxa. Lastly, the accessory genes identified as involved in
the AMR phenotype could also provide novel drug targets to combat
AMR.

Overall, this study demonstrates that complex taxonomically
dependent genetic components drive the AMR phenotype in a
wide range of species and that machine-learning methods have
the potential to provide rapid computational methods to sup-
port laboratory-based identification of the AMR phenotype in
pathogens.

A call for data: If you would like to be involved in improving these
models by contributing genomes with corresponding MIC (broth
microdilution) data, please contact us at: ldillon05@qub.ac.uk

Materials and Methods

All scripts and files mentioned in the text can be found at https://
github.com/LucyDillon/AMR_ML_paper/tree/main. This includes
all bash scripts to analyse the data and details of how gene counts
for RGI and eggNOG gene families were calculated.

Supplementary files and additional data can be found at:
https://osf.io/CJ4BQ/

Data for analysis

Using the PATRIC command line interface (version 1.034—now
known as BV-BRC) (Davis et al, 2020; Olson et al, 2022), 16,950
bacterial genomes from isolates of known taxonomy with 1,249,188
corresponding laboratory-determined MIC values were sourced.
The genomes used in this study can be found using a wget com-
mand in the bash script: PATRIC_genomes.sh using the input:
genome_ids.txt. For each genome, the AMR genotype was deter-
mined using the RGI tool v5.1.1 (Jia et al, 2017) with the CARD v3.1.1
(McArthur et al, 2013) using the default parameters and the whole

genome sequence from the genome as input. The CARD database
includes acquired resistance and resistance due to mutations.

Each predicted AMR gene in each genome was then associated
with the specific antibiotic(s) to which it was listed as conferring
resistance to using the information in the CARD. The MIC values
were categorized into “Susceptible” or “Resistant” using EUCAST
breakpoints (Jan 2021 release) (EUCAST, 2021), which are taxonomic-
specific MIC values that can differ between species. The MICs were
categorized into the respective EUCAST breakpoints using custom
Python scripts (OG_RGI_analysis.py, Logistic_regression_RGI.py,
RGI_specific_analysis.py, RGI_all_analysis.py, and Eggnog_analy-
sis.py). Any MIC values that fell outside the EUCAST definition of
“Susceptible” or “Resistant” for any specific species were removed
from the analysis. In the case that a genome had >1 MIC values for
the same antibiotic, the average was calculated and then compared
with the EUCAST breakpoints. This resulted in 5,990 genomes across
19 genera, with 47,711 EUCAST classified MICs for subsequent
analysis (28,480 resistant and 19,231 susceptible MICs). Details of the
number of each genus for each antibiotic model can be found in
Table S13.

Analysis of the AMR genotype-to-phenotype relationship

In this study, we used several techniques to further understand the
relationship between the AMR genotype and the AMR phenotype.
The models used are binary classifiers (either classifying as sus-
ceptible or resistant), which, although makes for a simpler model,
excludes the use of intermediate resistance or more complex
conditions such as persistence or tolerance. To predict the AMR
genes present within each genome, we used RGI, a commonly
used AMR gene identification tool. We evaluated four pheno-
type prediction approaches using linked laboratory-determined
resistance/susceptibility profiles against a range of antibiotics. We
first tested a naı̈ve prediction of the AMR phenotype using the
presence/absence of AMR genes and the antibiotics to which the
genes were listed as conferring resistance in the RGI database.
Secondly, we tested the application of a basic logistic regression
model to the AMR gene presence/absence data. Finally, we tested
the application of four machine-learning approaches to predict the
AMR phenotype using gene counts of known AMR genes with and
without gene counts of all other functionally annotated genes in
the genomes (eggNOG gene families). Each of these approaches
(further outlined below) was independently applied to the pre-
diction of resistance to 23 different antibiotics for which relevant
MICs were available.

Naı̈ve prediction of the AMR phenotype

Although RGI and other AMR gene identification tools do not claim
to be able to infer the AMR phenotype, the presence of an AMR gene
is often used to designate whether a genome is susceptible or
resistant (Bortolaia et al, 2020; Tan et al, 2020). Therefore, the
presence of an RGI-annotated AMR gene was used as an indicator
of resistance to the antibiotic(s) to which the gene was labelled as
resistant in the CARD. Precision, recall, and accuracy of both sus-
ceptible and resistant phenotypes were calculated for this naı̈ve
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model using a custom Python script (OG RGI analysis.py) as a
baseline to compare the subsequent models.

Logistic regression prediction of the AMR phenotype

To evaluate the relationship between the AMR genotype and the AMR
phenotype, a logistic regression model was used for each antibiotic
(Fig 1) with a split of 3:1 between training and test datasets, re-
spectively, using a custom Python script (Logistic_regression_RGI.py).
This model evaluated how the presence or absence of specific AMR
genes was related to the AMRphenotype. Model precision, recall, and
accuracy of both susceptible and resistant phenotypes were cal-
culated to evaluate themodel efficacy and potential bias. The ratio of
susceptible organisms to resistant organisms canhelp determine the
likelihood of bias in the training data (Fig S10).

Decision tree prediction of the AMR phenotype using only
AMR genes

To understand how specific AMR genes may drive the relationship
between the AMR phenotype and the AMR genotype, four machine-
learning approaches were used. A custom Python script was used to
convert the RGI gene counts into an Attribute-Relation File Format
(ARFF) file (RGI_specific_analysis.py) using the csv2arff tool found at
https://github.com/LucyDillon/CSV_2_arff. The J48 decision tree
models were built as implemented in the WEKA machine-learning
platform (version 3.8.5) (Witten et al, 2011). The J48 model is written
in Java and is an adaptation of the landmark C4.5 algorithm. In this
analysis, the model considers the number of copies or the absence
of an AMR gene in relation to the AMR phenotype. J48 decision trees
are used to classify each “instance,” or genome, based on the
provided labels (AMR gene count). The model evaluates the data
overall and then splits the genomes based on their labels (one
label-based decision for each split). Next, it repeats this process on
the subsets of genomes until the model has reached a preset limit
based on either model parameters, such as the minimum number
of genomes per split, or a consensus split of the correct categorical
variable, in this case, AMR phenotype (further details below).

This analysis was then repeated using the random forest, SVM
(WEKA package: libsvm 3.25), and LMT models in WEKA to compare
the efficacy of each machine-learning approach (Table S6).

Models for 23 different antibiotics were selected with respect to
various data constraints. Each model is trained specific to a single
antibiotic, and the genomes present in the model must have corre-
sponding MIC values. For amodel to be able to learn from the data and
thus predict the correct AMR phenotype, the models had to have both
susceptible and resistant organisms (Table S4). The proportion of or-
ganismswith a susceptible or resistantMIC value can be seen in Fig S10.

The J48 model was chosen for further analysis because of the
interpretability of its decisions, hence providing the biological
reasoning behind the predictions it made. The output of the J48
model is a human-readable tree of the decisions to partition the
genomes (as resistant or susceptible) (Figs S2, S3, and S4). The
default parameters were used for the WEKA J48 model; however,
theparameterswerefirst evaluatedby amatrix comparingM (Minimum
number of instances per leaf [decision]) and C values (Confidence
value: the lower value indicates more pruning [removing less

informative leaves/decisions]) (Table S14). There was no difference
in eight of the antibiotic models using the different parameters, and
the rest of the models had minor differences. The most accurate C
value could be found to be 0.25 or 0.5 for 15 of 23 antibiotic models.
The C value of 0.25 was selected as this level of tree pruning is
recommended to not overfit the model or prune the tree too much
and miss important information. The M value of 0.2 was selected as
this is the default of the model and the other M values had very
similar accuracy. The model accuracy was evaluated by 10-fold
cross-validation. The individual fold results allowed the SE of the
models to be calculated (Table S4).

To evaluate what factors may impact the models or improve
model accuracy, the composition of AMR genes used to train the
models was analysed. The models were originally trained using
specific AMR genes for the antibiotic the model represented, for
example, ampicillin-specific AMR genes to train the ampicillin
model. The antibiotic target is defined in the CARD in which the
genes are annotated to correspond to specific antibiotics. The
models were then trained with all AMR genes present in the ge-
nomes regardless of which antibiotic model they were training
(Tables S1 and S4 and Fig S11). A custom Python script was built to
make the .arff files for this analysis (RGI_all_analysis.py).

Investigating the role of taxonomy in decision tree
model accuracy

To investigate the role of taxonomy in model accuracy, for each
antibiotic model, one genus was excluded from the training data.
The excluded genus was then used to test the model. This included
each genus available for each antibiotic model (see Table S3 for
details). This way, we can evaluate how the models may perform on
a species that was not in the training set. We used a custom Python
script to develop the .arff files (taxa_test_train_files.py). To process
CSV files into the format required for WEKA (.arff), we created a
simple tool to translate a .csv file into an .arff file. This code is freely
available at https://github.com/LucyDillon/CSV_2_arff

Analysis of accessory gene involvement in the AMR phenotype

To investigate the role of accessory genes in the AMR phenotype,
the genomes from BV-BRC were analysed using Prodigal v2.6.3
(Hyatt et al, 2010), Diamond v0.9.24.125 (Buchfink et al, 2015),
and eggNOG-mapper (version 2.1.6) to predict gene families
(Cantalapiedra et al, 2021). All tools were used with default pa-
rameters. The least specific level of the eggNOG gene family
(i.e., COG or NOG) was taken to get the most general result so that
the gene families could be compared across different taxa. The
number of genes present in a gene family, including their absence,
was compared with the genome AMR phenotype using the same J48
model and parameters in WEKA, using a custom Python script to
make the .arff files (Eggnog_analysis.py). A 10-fold cross-validation
was used to evaluate the model’s accuracy of predicting the AMR
phenotype, from which the standard error was calculated.

We mapped the RGI AMR genes onto the eggNOG decision tree
models by analysing the CARD with eggNOG-mapper. The eggNOG gene
families reported were matched to the AMR genes and were then la-
belled as having a known AMR gene function in the models. Finally,
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“routes to resistance”were identified in all of the resulting decision tree
models by identifying all possible routes through the resulting trees that
lead to a “Resistant” outcome, using Apply_Decision_Tree available at
https://github.com/ChrisCreevey/apply_decision_tree. All gene families
traversed to reach each resistance outcome on the decision trees were
considered important to that resistance route (regardless of whether it
is needed tobepresent or absent) and included in subsequent analyses
of different routes to resistance.

Investigating protein–protein interactions

Protein–protein interactions of the gene families within individual
decision trees were investigated using the STRING protein–protein
interaction database (version 11.5) (Snel et al, 2000). One protein
sequence from each gene family was selected (the first sequence in
the fasta file downloaded from eggNOG for each gene family) to
represent that gene family (723 unique gene families in total) using
the “Protein families,” “COGs,” and “multiple sequences” options for
each individual antibiotic model in STRING. This analysis was used to
highlight whether gene families within the same model or with the
route to resistance were predicted to interact and therefore may
have a role together in the AMR phenotype.

To find associations with the gene families across multiple models,
STRING and Cytoscape (version 3.9.1) (Shannon et al, 2003) were used
to analyse the data using the same options as above but including all
gene families from all antibiotic models. To reduce the network to
directly link to the decision trees, edges in the network were only
retained if both gene families were present in the STRING protein–
protein interactions (and therefore predicted to interact) and the pair
was also present in at least one decision tree model. Details of this
analysis can be found in the Cytoscape_analysis.md file.

The predicted protein–protein interaction network of each route
to resistance was also produced using STRING but including only
those gene families predicted for each individual route (allowing
connections based on low confidence to provide further evidence
that these putative connections that may not be well documented
in the database may have a role in the AMR phenotype). To in-
vestigate whether routes to the AMR phenotype within the decision
trees are taxonomically related, we traversed the decision trees to
investigate which route each genome took for each model. This was
performed using Apply_Decision_Tree using the same input ge-
nome .arff and dot files. DOT is a graph description language to
visualize information, such as decision trees.

For all models, accuracy is defined by the sum of the true
positives and true negatives divided by the sum of the total number
of genomes (instances). Precision and recall of the models are
calculated for both susceptible organisms and resistant organisms
separately. This highlights whether a model is better at predicting
one phenotype over another.

Data Access Statement

All supplementary data and additional files can be found on the
Open Science Framework at: https://osf.io/CJ4BQ/. For specific
files, please email ldillon05@qub.ac.uk.

Code availability

All codes used in this study can be found at the following links:
All analysis scripts and files:
https://github.com/LucyDillon/AMR_ML_paper
A tool to convert a csv file to an .arff format file:
https://github.com/LucyDillon/CSV_2_arff
Apply_Decision_Tree tool (used for tree traversals):
https://github.com/ChrisCreevey/apply_decision_tree

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202302420

Acknowledgements

We acknowledge PhD funding from the Department for the Economy,
Northern Ireland, to L Dillon. CJ Creevey wishes to acknowledge funding from
UKRI (BB/R019185/1 and BB/R018464/1) and EU via Horizon 2020 (818368
MASTER and 101000213 Holoruminant). NJ Dimonaco wishes to acknowledge
the Farncombe Family Digestive Health Research Institute (McMaster Uni-
versity) and a grant from the Weston Family Microbiome Initiative. This work
was undertaken on Kelvin2, an EPSRC-funded Tier-2 High-Performance
Computing Facility at Queen’s University Belfast, UK.

Author Contributions

L Dillon: conceptualization, software, formal analysis, investigation,
visualization, methodology, and writing—original draft, review, and
editing.
NJ Dimonaco: conceptualization, methodology, and writing—origi-
nal draft, review, and editing.
CJ Creevey: conceptualization, data curation, software, supervision,
investigation, visualization, methodology, and writing—original
draft, review, and editing.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

Andrade BGN, Goris T, Afli H, Coutinho FH, Davila AMR, Cuadrat RRC (2021)
Putative mobilized colistin resistance genes in the human gut
microbiome. BMC Microbiol 21: 220. doi:10.1186/s12866-021-02281-4

Avershina E, Sharma P, Taxt AM, Singh H, Frye SA, Paul K, Kapil A, Naseer U,
Kaur P, Ahmad R (2021) AMR-Diag: Neural network based genotype-to-
phenotype prediction of resistance towards β-lactams in Escherichia
coli and Klebsiella pneumoniae. Comput Struct Biotechnol J 19:
1896–1906. doi:10.1016/j.csbj.2021.03.027 Available at: https://
www.sciencedirect.com/science/article/pii/S2001037021000994.

Berglund F, Osterlund T, Boulund F, Marathe NP, Larsson DGJ, Kristiansson E
(2019) Identification and reconstruction of novel antibiotic resistance
genes from metagenomes. Microbiome 7: 52. doi:10.1186/s40168-019-
0670-1

Genes define sp.-specific routes to AMR Dillon et al. https://doi.org/10.26508/lsa.202302420 vol 7 | no 4 | e202302420 11 of 13

https://github.com/ChrisCreevey/apply_decision_tree
https://osf.io/CJ4BQ/
mailto:ldillon05@qub.ac.uk
https://github.com/LucyDillon/AMR_ML_paper
https://github.com/LucyDillon/CSV_2_arff
https://github.com/ChrisCreevey/apply_decision_tree
https://doi.org/10.26508/lsa.202302420
https://doi.org/10.26508/lsa.202302420
https://doi.org/10.1186/s12866-021-02281-4
https://doi.org/10.1016/j.csbj.2021.03.027
https://www.sciencedirect.com/science/article/pii/S2001037021000994
https://www.sciencedirect.com/science/article/pii/S2001037021000994
https://doi.org/10.1186/s40168-019-0670-1
https://doi.org/10.1186/s40168-019-0670-1
https://doi.org/10.26508/lsa.202302420


Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A,
Allesoe RL, Rebelo AR, Florensa AF, et al (2020) ResFinder 4.0 for
predictions of phenotypes from genotypes. J Antimicrob Chemother
75: 3491–3500. doi:10.1093/jac/dkaa345

Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing
between resistance, tolerance and persistence to antibiotic
treatment. Nat Rev Microbiol 14: 320–330. doi:10.1038/
nrmicro.2016.34 Available at: https://www.nature.com/articles/
nrmicro.2016.34.

Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using
DIAMOND. Nat Methods 12: 59–60. doi:10.1038/nmeth.3176 Available at:
https://www.nature.com/articles/nmeth.3176.

Byrne MK, Miellet S, McGlinn A, Fish J, Meedya S, Reynolds N, van Oijen AM
(2019) The drivers of antibiotic use and misuse: The development and
investigation of a theory driven community measure. BMC Public
Health 19: 1425. doi:10.1186/s12889-019-7796-8

Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J (2021)
eggNOG-mapper v2: Functional annotation, orthology assignments,
and domain prediction at the metagenomic scale. Mol Biol Evol 38:
5825–5829. doi:10.1093/molbev/msab293

Alon Cudkowicz N, Schuldiner S (2019) Deletion of the major Escherichia coli
multidrug transporter AcrB reveals transporter plasticity and
redundancy in bacterial cells. PLoS One 14: e0218828. doi:10.1371/
journal.pone.0218828 Available at: https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0218828.

Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad
N, Dickerman A, Dietrich EM, et al (2020) The PATRIC bioinformatics
resource center: Expanding data and analysis capabilities. Nucleic
Acids Res 48: D606–D612. doi:10.1093/nar/gkz943

de Korne-Elenbaas J, Bruisten SM, van Dam AP, Maiden MCJ, Harrison OB
(2022) The Neisseria gonorrhoeae accessory genome and its
association with the core genome and antimicrobial resistance.
Microbiol Spectr 10: e0265421. doi:10.1128/spectrum.02654-21
Available at: https://journals.asm.org/doi/10.1128/spectrum.02654-
21.

Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, Belk KE, Noyes NR,
Morley PS (2020) MEGARes 2.0: A database for classification of
antimicrobial drug, biocide and metal resistance determinants in
metagenomic sequence data. Nucleic Acids Res 48: D561–D569.
doi:10.1093/nar/gkz1010

EUCAST (2021) eucast: Clinical Breakpoints and Dosing of Antibiotics.
Available at: https://www.eucast.org/clinical_breakpoints.

Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, Tyson GH,
Zhao S, Hsu C-H, McDermott PF, et al (2019) Validating the AMRFinder
tool and resistance gene database by using antimicrobial resistance
genotype-phenotype correlations in a collection of isolates.
Antimicrob Agents Chemother 63: e00483-19. doi:10.1128/AAC.00483-
19

Florensa AF, Kaas RS, Clausen PTLC, Aytan-Aktug D, Aarestrup FM (2022)
ResFinder – an open online resource for identification of
antimicrobial resistance genes in next-generation sequencing data
and prediction of phenotypes from genotypes. Microb Genomics 8:
000748. doi:10.1099/mgen.0.000748 Available at: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC8914360/.

Gupta CL, Blum SE, Kattusamy K, Daniel T, Druyan S, Shapira R, Krifucks O, Zhu
Y-G, Zhou X-Y, Su J-Q, et al (2021) Longitudinal study on the effects of
growth-promoting and therapeutic antibiotics on the dynamics of
chicken cloacal and litter microbiomes and resistomes.Microbiome 9:
178. doi:10.1186/s40168-021-01136-4

Hunt M, Mather AE, Sanchez-Bus o L, Page AJ, Parkhill J, Keane JA, Harris SR
(2017) ARIBA: Rapid antimicrobial resistance genotyping directly from
sequencing reads. Microb Genomics 3: e000131. doi:10.1099/
mgen.0.000131 Available at: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5695208/.

Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Munoz-
Tamayo R, Forano E, Waters SM, Hess M (2018) Addressing global
ruminant agricultural challenges through understanding the rumen
microbiome: Past, present, and future. Frontiers in Microbiology 9.
https://www.frontiersin.org/articles/10.3389/fmicb.2018.02161.

Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010)
Prodigal: Prokaryotic gene recognition and translation initiation
site identification. BMC Bioinformatics 11: 119. doi:10.1186/1471-
2105-11-119

Jankowski P, Gan J, Le T, McKennitt M, Garcia A, Yanaç K, Yuan Q, Uyaguari-Diaz
M (2022) Metagenomic community composition and resistome
analysis in a full-scale cold climate wastewater treatment plant.
Environ Microbiome 17: 3. doi:10.1186/s40793-022-00398-1 Available at:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760730/.

Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave
BM, Pereira S, Sharma AN, et al (2017) CARD 2017: Expansion and
model-centric curation of the comprehensive antibiotic resistance
database. Nucleic Acids Res 45: D566–D573. doi:10.1093/nar/gkw1004

Khan A, Arias CA, Abbott A, Dien Bard J, Bhatti MM, Humphries RM (2021)
Evaluation of the vitek 2, Phoenix, and MicroScan for antimicrobial
susceptibility testing of stenotrophomonas maltophilia. J Clin
Microbiol 59: e0065421. doi:10.1128/JCM.00654-21 Available at: https://
journals.asm.org/doi/10.1128/JCM.00654-21.

Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Nina PB, JP D, Kumar S,
Singh B, Tiwari RR (2021) Futuristic non-antibiotic therapies to combat
antibiotic resistance: A review. Front Microbiol 12. https://
www.frontiersin.org/articles/10.3389/fmicb.2021.609459.

Kwon JH, Powderly WG (2021) The post-antibiotic era is here. Science 373: 471.
Available at: https://www.science.org/doi/10.1126/science.abl5997.

Ma T, Zaheer R, McAllister TA, Guo W, Li F, Tu Y, Diao Q, Guan LL (2022)
Expressions of resistome is linked to the key functions and stability of
active rumen microbiome. Anim Microbiome 4: 38. doi:10.1186/s42523-
022-00189-6

Macesic N, Bear Don’t Walk OJ, Pe’er I, Tatonetti NP, Peleg AY, Uhlemann A-C
(2020) Predicting phenotypic polymyxin resistance in Klebsiella
pneumoniae through machine learning analysis of genomic data.
mSystems 5: e00656-19. doi:10.1128/msystems.00656–19 Available at:
https://journals.asm.org/doi/10.1128/mSystems.00656-19.

McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K,
Canova MJ, De Pascale G, Ejim L, et al (2013) The comprehensive
antibiotic resistance database. Antimicrob Agents Chemother 57:
3348–3357. doi:10.1128/AAC.00419-13

Miyoshi J, Bobe AM, Miyoshi S, Huang Y, Hubert N, Delmont TO, Eren AM, Leone
V, Chang EB (2017) Peripartum antibiotics promote gut dysbiosis, loss
of immune tolerance, and inflammatory bowel disease in genetically
prone offspring. Cell Rep 20: 491–504. doi:10.1016/j.celrep.2017.06.060

Nguyen M, Brettin T, Long SW, Musser JM, Olsen RJ, Olson R, Shukla M, Stevens
RL, Xia F, Yoo H, et al (2018) Developing an in silico minimum inhibitory
concentration panel test for Klebsiella pneumoniae. Scientific Rep 8:
421. doi:10.1038/s41598-017-18972-w

Nguyen M, Long SW, McDermott PF, Olsen RJ, Olson R, Stevens RL, Tyson GH,
Zhao S, Davis JJ (2019) Using machine learning to predict antimicrobial
MICs and associated genomic features for nontyphoidal Salmonella. J
Clin Microbiol 57: e01260-18. doi:10.1128/JCM.01260-18 Available at:
https://www.nature.com/articles/s41598-017-18972-w.

Nguyen M, Olson R, Shukla M, VanOeffelen M, Davis JJ (2020) Predicting
antimicrobial resistance using conserved genes. PLoS Comput Biol 16:
e1008319. doi:10.1371/journal.pcbi.1008319 Available at: https://
journals.plos.org/ploscompbiol/article?id=10.1371/
journal.pcbi.1008319

Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, Dempsey DM,
Dickerman A, Dietrich EM, Kenyon RW (2022) Introducing the Bacterial
and Viral Bioinformatics Resource Center (BV-BRC): A resource

Genes define sp.-specific routes to AMR Dillon et al. https://doi.org/10.26508/lsa.202302420 vol 7 | no 4 | e202302420 12 of 13

https://doi.org/10.1093/jac/dkaa345
https://doi.org/10.1038/nrmicro.2016.34
https://doi.org/10.1038/nrmicro.2016.34
https://www.nature.com/articles/nrmicro.2016.34
https://www.nature.com/articles/nrmicro.2016.34
https://doi.org/10.1038/nmeth.3176
https://www.nature.com/articles/nmeth.3176
https://doi.org/10.1186/s12889-019-7796-8
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1371/journal.pone.0218828
https://doi.org/10.1371/journal.pone.0218828
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218828
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218828
https://doi.org/10.1093/nar/gkz943
https://doi.org/10.1128/spectrum.02654-21
https://journals.asm.org/doi/10.1128/spectrum.02654-21
https://journals.asm.org/doi/10.1128/spectrum.02654-21
https://doi.org/10.1093/nar/gkz1010
https://www.eucast.org/clinical_breakpoints
https://doi.org/10.1128/AAC.00483-19
https://doi.org/10.1128/AAC.00483-19
https://doi.org/10.1099/mgen.0.000748
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914360/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914360/
https://doi.org/10.1186/s40168-021-01136-4
https://doi.org/10.1099/mgen.0.000131
https://doi.org/10.1099/mgen.0.000131
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695208/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695208/
https://www.frontiersin.org/articles/10.3389/fmicb.2018.02161
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/s40793-022-00398-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760730/
https://doi.org/10.1093/nar/gkw1004
https://doi.org/10.1128/JCM.00654-21
https://journals.asm.org/doi/10.1128/JCM.00654-21
https://journals.asm.org/doi/10.1128/JCM.00654-21
https://www.frontiersin.org/articles/10.3389/fmicb.2021.609459
https://www.frontiersin.org/articles/10.3389/fmicb.2021.609459
https://www.science.org/doi/10.1126/science.abl5997
https://doi.org/10.1186/s42523-022-00189-6
https://doi.org/10.1186/s42523-022-00189-6
https://doi.org/10.1128/msystems.00656�19
https://doi.org/10.1128/msystems.00656�19
https://journals.asm.org/doi/10.1128/mSystems.00656-19
https://doi.org/10.1128/AAC.00419-13
https://doi.org/10.1016/j.celrep.2017.06.060
https://doi.org/10.1038/s41598-017-18972-w
https://doi.org/10.1128/JCM.01260-18
https://www.nature.com/articles/s41598-017-18972-w
https://doi.org/10.1371/journal.pcbi.1008319
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008319
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008319
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008319
https://doi.org/10.26508/lsa.202302420


combining PATRIC, IRD and ViPR. Nucleic Acids Res 51: D678–D689.
doi:10.1093/nar/gkac1003

Raymond F, Boissinot M, Ouameur AA, Deraspe M, Plante P-L, Kpanou SR,
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