Research Article

Hypoxia controls expression of kidney-pathogenic MUC1 variants

Stephanie Naas1, René Krüger1, Karl Xaver Knaup1, Julia Naas2, Steffen Grampp1, Mario Schiffer1, Michael Wiesener1, Johannes Schödel1

The interplay between genetic and environmental factors influences the course of chronic kidney disease (CKD). In this context, genetic alterations in the kidney disease gene MUC1 (Mucin1) predispose to the development of CKD. These variations comprise the polymorphism rs4072037, which alters splicing of MUC1 mRNA, the length of a region with variable number of tandem repeats (VNTR), and rare autosomal-dominant inherited dominant-negative mutations in or 5’ to the VNTR that causes autosomal dominant tubulointerstitial kidney disease (ADTKD-MUC1). As hypoxia plays a pivotal role in states of acute and chronic kidney injury, we explored the effects of hypoxia-inducible transcription factors (HIF) on the expression of MUC1 and its pathogenic variants in isolated primary human renal tubular cells. We defined a HIF-binding DNA regulatory element in the promoter-proximal region of MUC1 from which hypoxia or treatment with HIF stabilizers, which were recently approved for an anti-anemic therapy in CKD patients, increased levels of wild-type MUC1 and the disease-associated variants. Thus, application of these compounds might exert unfavorable effects in patients carrying MUC1 risk variants.

DOI 10.26508/lsa.202302078 | Received 5 April 2023 | Revised 31 May 2023 | Accepted 1 June 2023 | Published online 14 June 2023

Introduction

Genetic and environmental factors shape the development and progression of chronic kidney disease (CKD) leading to extremely heterogeneous clinical courses (Susztak, 2014; Obrador et al, 2017). Exploring the underlying mechanisms for this heterogeneity is a major task in kidney research to identify people at risk and to optimize therapy for individual CKD patients. Genome-wide association studies (GWAS) have uncovered that genetic variation at the chromosome 1q21 locus including the MUC1 gene associates with various kidney-related traits including urine levels, urea levels, estimated glomerular filtration rate (eGFR), and albuminuria (Okada et al, 2012; Kottgen et al, 2013; Xu et al, 2018; Morris et al, 2019; Teumer et al, 2019; Tin et al, 2019). In this respect, the common polymorphism rs4072037 (T > C; minor allele frequency in 1,000 Genomes Project phase 3: 0.371) within the second exon of MUC1 has been worked up and the T allele has been shown to introduce an alternative splice site leading to expression of MUC1 transcripts with a 27-nucleotide in-frame deletion in various tissues including the kidney (Ligtenberg et al, 1991; Imbert et al, 2006; Xu et al, 2018). Expression levels of these alternative transcripts are more related to eGFR than are the total expression levels of MUC1 implying that they are causal in generating the GWAS-detected effects (Xu et al, 2018). In addition, the length of a region with variable number of tandem repeats (VNTR), which contains 20–125 repeats of a 60-bp sequence in exon 2 of the MUC1 gene, has recently been associated with kidney traits (Mukamel et al, 2021). Longer VNTR alleles (>55 repeats) associate with increased serum urea, serum urate, and chronic interstitial nephritis and weakly with reduced eGFR and lower hemoglobin levels in the UK Biobank cohort (Mukamel et al, 2021). Whereas these genetic variants may affect millions of individuals with a putative disease-modulating effect, rare dominant-negative mutations within or 5’ to the VNTR region leading to expression of a short frameshift protein of MUC1 (MUC1-fs) cause autosomal dominant tubulointerstitial kidney disease (ADTKD-MUC1). This MUC1-fs mutation provokes a proteinopathy in which the MUC1-fs protein accumulates in the early secretory pathway of epithelial cells where it is thought to exert its harmful effect via dysregulation of the unfolded protein response pathway (Duel-Levitt et al, 2019). Ultimately, expression of MUC1-fs protein leads to tubular cell death, fibrosis and reduced kidney function often requiring renal replacement therapy (Olinger et al, 2020).

In the healthy human kidney, MUC1 is expressed in distal tubule segments including the thick ascending limb (TAL) suggesting that effects on renal disease traits might be generated from this part of the nephron (Heyderman et al, 1979; Knaup et al, 2018; Zivna et al, 2018). Interestingly, in mouse models of ischemic acute kidney injury, MUC1 expression was also detected in proximal tubule cells (Al-Bataineh et al, 2021). Under physiological conditions, the MUC1 extracellular domain functions together with other proteins of the mucin family as a protective barrier in epithelia against microbial
Figure 1. HIF regulates MUC1 expression in primary tubular cells (PTC).

(A) Expression qRT-PCR analysis of MUC1 mRNA in PTC treated with 1 mM DMOG or 1% O₂ for 16 h compared to control condition (20.9% O₂; n = 20 independent individuals). Values were normalized to expression levels of the housekeeping gene HPRT. One sample t test of MUC1 mRNA expression levels in treatment conditions versus a theoretical value of one representing no regulation, ****P < 0.0001. Bars indicate mean fold change ± SD.

(B) Immunoblot for MUC1, HIF-1α, and β-actin from lysates of PTC from two different individuals incubated with 1 mM DMOG or cultured in 1% O₂ (hypoxia) for 16 h as indicated.

(C) ChIP-seq and RNA-seq tracks from PTC at the MUC1 locus. ChIP-seq tracks (blue: DMOG-treated cells) reveal HIF-1α and HIF-1β-binding signals (highlighted in yellow box) within the promoter-proximal region of MUC1. RNA-seq tracks (light green: control; green: DMOG-treated cells) reveal increased expression of MUC1 mRNA in PTC treated with 1 mM DMOG for 16 h when compared with control.

(D) Expression qRT-PCR analysis for MUC1 mRNA from PTC depleted for HIF-1α or HIF-1β using siRNA. Values were compared with results from cells treated with non-targeting control siRNA (drosophila HIF, dHIF). Cells were exposed to 1 mM DMOG or control condition for 16 h (n = 9 independent experiments from PTC isolated from...
and environmental damage (Wagner et al, 2018; Devuyst et al, 2019). The expression of MUC1 is often dysregulated in epithelial cancers suggesting that many factors may influence MUC1 regulation. In this respect, MUC1 expression has been associated with hypoxia signaling (Aubert et al, 2009). Hypoxia-inducible transcription factors (HIF) are the main effectors of oxygen-sensing and transcriptionally regulate many hundred genes to adapt the cell and the body to low oxygen concentrations (Semenza, 2012; Schodel & Ratcliffe, 2019). In the kidney, a hypoxic microenvironment leading to stabilization of HIF is fundamentally involved in the biology of acute and chronic diseases (Haase, 2017; Schodel & Ratcliffe, 2019). Moreover, dysfunction of this pathway causes renal anemia through insufficient induction of erythropoietin (EPO) by HIF-2α in interstitial cells of the kidney (Gruber et al, 2007; Schodel & Ratcliffe, 2019). Therefore, pharmacological compounds have recently been introduced to clinical practice in many countries to stimulate EPO production by stabilizing HIF in the diseased kidney of CKD patients before and on dialysis (Maxwell & Eckardt, 2016; Chen et al, 2019; Chertow et al, 2020). Consequently preventing proteasomal degradation of the HIF-1α subunit (Yeh et al, 2017). Though the aim of using these compounds is to induce HIF-2α and EPO production in a specific subpopulation of interstitial cells of the kidney, these compounds are likewise capable of generally stabilizing HIF-1α, for example, in tubular cells of the kidney (Rosenberger et al, 2002; Slpery et al, 2012).

In this work, we establish a link between regulation of MUC1 expression including the deleterious variants and HIF signaling in renal tubular cells.

Results

In order to test for hypoxic regulation of MUC1, we exposed freshly isolated human renal tubular cells (PTC, n = 20 individuals) to 1 mM of the HIF-stabilizing agent dimethyl oxalylglycin (DMOG), hypoxia (1% O2) or control conditions (20.9% O2, no treatment). Compared to control, both stimuli increased MUC1 mRNA levels 3.5-fold (SD + 1.77) or 2.4-fold (SD + 0.95), respectively (Fig 1A). We confirmed increases of MUC1 expression on protein level in immunoblot experiments in cells from two independent individuals (Fig 1B). To explore whether HIF directly regulates MUC1 expression, we resorted to HIF ChIP-seq datasets from PTC (Grampp et al, 2016). We detected robust ChIP-seq signals for HIF-1α and its dimerization partner HIF-1β just upstream of the MUC1 transcriptional start site (Fig 1C). To confirm HIF interactions with the promoter-proximal regulatory site of MUC1 in a broader range of freshly isolated cells, we examined DNA-interactions of HIF-1α and HIF-1β by qRT-PCR in 17 additional HIF-ChIP experiments conducted under DMOG or untreated control conditions. This analysis revealed robust HIF recruitment to the MUC1 promoter across a large selection of isolated PTC corroborating the findings from the HIF ChIP-seq experiments (Fig S1A). ChIP-qRT-PCR against a non-HIF-binding locus on chromosome 11 and the well-characterized EGLN3 intronic enhancer was used as negative or positive control, respectively (Fig S1B and C) (Pescador et al, 2005). In line with a direct role of HIF in regulating MUC1 in tubular cells, knocking-down HIF-1α or HIF-1β mRNA using siRNA abolished induction of MUC1 mRNA by DMOG in PTC (Fig 1D). MUC1 expression has been predominantly detected in the TAL of the loop of Henle and more distal tubular segments of the human kidney (Heyderman et al, 1979; Knaup et al, 2018). To explore whether HIF and MUC1 are co-expressed in these nephron segments, we reanalyzed available single-nucleus RNA-seq data covering a broad selection of human tissues (Han et al, 2020). Highest fractions of MUC1-positive cells were detected in stomach (40%), lung (30%), kidney (19%), transverse colon (18%), and pancreas (14%) (Fig S2A and Table S1). However, comparing the co-expression of MUC1 and HIF-1α mRNA revealed the highest degree of overlap of both transcripts in renal cells (Figs 1E and S2A and Table S1). Of note, these cells scored positive for mRNA expression of UMOD, SLC12A1, CALB1, and SLC6A1 indicating that MUC1 and HIF-1α mRNA expression overlaps in cells assigned to distal parts of the nephron. Similar results were obtained from published single-nucleus RNA-seq data derived from the kidney (Fig S2B and Table S2) (Zhang et al, 2021). In a recent single-nucleus-seq study, acutely injured human kidneys revealed a remarkable hypoxic transcriptional signature predominantly in tubular cells when compared with non-injured cells (Hinze et al, 2022). To test for a potential role of hypoxia in regulating MUC1 expression in the distal tubule segments in cells suffering from acute kidney injury, we reanalyzed these single-cell RNA-seq data. In line with the results presented above and a role for hypoxia in regulating MUC1, MUC1 mRNA expression levels were significantly higher in distal tubular cells derived from the injured kidneys supporting a direct regulatory role for hypoxia in MUC1 expression in vivo (Fig S3). So far, our data suggest that HIF directly drives MUC1 expression via a regulatory DNA element just upstream of the gene in renal tubular cells and especially in tubular segments that are likely to be involved in the development of MUC1-associated kidney diseases such as ADTDK.

Deleterious effects of MUC1 expression on kidney function are caused by various genetic alterations including the very common polymorphism rs4072037, length of the VNTR, and rare variants in or close to the VNTR (Fig 2A) (Kirby et al, 2013; Kottgen et al, 2013; Ekici et al, 2014; Xu et al, 2018; Mukamel et al, 2021). Therefore, we wanted to explore whether HIF is able to transactivate these pathogenic variants in tubular cells.
Figure 2. Stabilization of HIF increases expression of MUC1 pathogenic variants.

(A) Schematic overview of renal traits associated with genetic variation at the MUC1 locus. The number of individuals schematically illustrates the size of the population affected by the variants. (B) RNA-seq tracks at the boundary of intron 1 and exon 2 at the MUC1 locus from PTC of three individuals with different genotypes of the eGFR-associated SNP rs4072037 (CC, CT, TT). PTC were exposed to 1 mM DMOG for 16 h or left untreated. Of note, the T allele associates with a -27-nucleotide deletion transcript variant. Yellow box highlights the SNP rs4072037 and the alternative splice site created by the risk allele T of this SNP. Scaling indicates number of reads. (B, C) Ratios of normalized RNA-seq reads (bin per million, BPM) at the splice site for long transcripts carrying the C allele and alternatively spliced transcripts (T) were determined in untreated and DMOG-treated cells from three individuals heterozygous for rs4072037 including the individual from (B). (D) Expression qRT-PCR analysis of MUC1 mRNA in PTC exposed to 1 mM DMOG for 16 h or cultured under standard conditions. Samples were stratified according to the rs4072037 genotype (CC = 10, CT = 34, TT = 29). Values
Firstly, we generated RNA-seq data from PTC isolated from the kidneys of three individuals with different rs4072037 genotypes. Confirming the described effect of rs4072037 on alternative splicing of MUC1, we readily detected transcripts with the 27-nucleotide deletion caused by rs4072037 in RNA-sequencing reads covering the 5’ region of exon 2 of MUC1 from individuals either heterozygous or homozygous for the T allele (Fig 2B). Similar to results from earlier studies on whole kidney lysates, the ratio of expression between the wild-type and the 27-nucleotide deletion variants was skewed to the shorter risk variant under basal conditions in cells from the three heterozygous individuals examined by RNA-seq (Fig 2C) (Xu et al, 2018). We observed increased absolute expression of total MUC1 and the risk allele T in RNA-seq when cells were exposed to DMOG. However, the allele ratio of the mRNA remained unchanged under DMOG conditions (Fig 2C). We confirmed genotype-specific effects in tubular cells isolated from healthy parts of kidneys of a large cohort of 73 individuals undergoing tumor nephrectomy. The cells from these individuals were exposed to control conditions or DMOG to stabilize HIF. Expression of total MUC1 mRNA was quantified by qRT-PCR and samples were stratified according to the underlying genotype of rs4072037. Consistent with the data from the RNA-seq experiments and with whole kidney expression data from the recent study, we determined higher MUC1 mRNA levels in cells carrying the risk allele T under basal conditions (Fig 2D) (Xu et al, 2018). Although stabilizing HIF with DMOG increased expression of MUC1 across all genotypes, highest levels of MUC1 were determined in cells from TT individuals carrying the highest risk allele dosage (Fig 2D). Thus, our results indicate that HIF is an upstream regulator of MUC1 that leads to induction of various MUC1 transcripts including the described splice variants associated with impaired kidney function.

Secondly, alleles with longer VNTR (>55 repeats) in exon 2 of MUC1 have been linked to increased levels of serum urea and serum urate as biomarkers for reduced kidney function and with the risk for chronic tubulointerstitial nephritis as opposed to shorter VNTRs (Mukamel et al, 2021). We therefore screened protein lysates from primary renal tubular cells of 12 individuals exposed to HIF stabilizers for MUC1 proteins with different molecular weights. Although we cannot determine the exact length of the VNTR from the protein results for each individual, in 10 out of 12 samples, we observed robust HIF-mediated induction of variants with varying VNTR lengths resulting in different protein sizes ranging between ~200–500 kD (Figs 2E and S4A and B) (Nath & Mukherjee, 2014). Thus, HIF drive the expression of MUC1 including alleles with longer VNTR lengths, which are associated with biomarkers of reduced kidney function.

Thirdly, rare MUC1 frameshift mutations cause the development of ADTKD-MUC1 (Kirby et al, 2013; Ekici et al, 2014; Olinger et al, 2020). To explore whether HIF is capable of regulating the expression of these pathogenic variants, we isolated tubular cells from the urine (hUPTC) of three non-related ADTKD-MUC1 patients. First, we used cells with high levels of MUC1 expression and control cells with no MUC1 expression from one patient (ADTKD-0014) for experiments. By exposing cells to DMOG or hypoxia (1% O2), we determined an increase of total MUC1 mRNA levels in the MUC1-positive cells when compared with untreated control cells (Fig S4C). Importantly, immunoblot analysis confirmed induction of the deleterious MUC1-fs protein upon HIF-stabilization in MUC1-positive cells (Fig 2F). We confirmed these results in MUC1-fs expressing cells isolated from the urine of two additional, non-related patients with ADTKD-MUC1 (ADTKD-D0061 and ADTKD-0145; Figs 2G and S4D).

HIF stabilizers have been approved for clinical use in several countries for treatment of the renal anemia. Therefore, we investigated the capability of a selection of these substances (Daprodustat, Molidustat, Vadadustat, Roxadustat) to induce MUC1 expression in tubular cells. Strikingly, HIF stabilizers led to a robust induction of MUC1 mRNA and protein in a selection of primary cells of both MUC1 wild-type and MUC1-fs individuals and at varying concentrations (Figs 3A and B and S5).

Taken together, our study links regulation of very common and very rare pathogenic variants of the kidney-disease gene MUC1 with the HIF pathway in renal tubular cells, which is activated in acute and chronic kidney disease and upon treatment with anti-anemic drugs.

Discussion

Genetic alterations comprising common low-effect to rare large-impact variants of kidney disease genes such as UMOD or MUC1 determine the susceptibility to the development of CKD (Trudu et al, 2013; Olinger et al, 2020; Olinger et al, 2022). However, the broad heterogeneity observed in the course of CKD suggests a strong involvement of environmental factors in addition to genetic predisposition. With regard to the limited therapeutic options to treat CKD, successful preventive strategies depend on the identification of these environmental factors which may affect renal cellular function, for example, by transcriptional regulation of kidney disease genes.

In the monogenic kidney disease ADTKD-MUC1, effects of the deleterious MUC1 variant are clearly restricted to a kidney.
phenotype (Devuyst et al., 2019). More specifically, our data confirm that expression of the frameshift variant MUC1-fs and alternative splicing as well as transcription of long VNTR alleles of MUC1 do occur in renal epithelial cells. This indicates that the affected alleles operate to damage the kidney directly in the MUC1-expressing tubular segments and potentially the surrounding interstitium of the kidney. Our experiments show that HIF binding to a promoter-proximal element of MUC1 increases expression of pathogenic MUC1 variants (Fig 3C). The prerequisite for this regulation is given by the striking overlap of HIF-1α mRNA-positive and MUC1 mRNA-positive tubular cells in the single-nucleus RNA-seq datasets.

HIF stabilization and subsequent increases in MUC1 expression in renal tubular cells may occur because of reduced oxygen supply or a hypoxic microenvironment in the context of many renal diseases such as acute kidney injury or CKD and renal inflammation (Howie, 1986; Haase, 2013; Nangaku et al., 2013; Schodel & Ratcliffe, 2019; Hinze et al., 2022). Of note, we observed that MUC1 mRNA and protein increased in PTC with lowering of oxygen concentration in the hypoxic chamber from 5% to 0.1% (Fig S6). This indicates that MUC1 regulation by HIF is sensitive to very low oxygen levels. In line with this hypothesis, recent single-cell RNA-sequencing data have shown MUC1 mRNA to be up-regulated in tubular cells in acutely injured human kidneys, which display a striking hypoxic transcriptional signature (Hinze et al., 2022). Although MUC1 expression and induction were most prominent in distal tubule segments, MUC1 mRNA was also increased significantly in proximal tubule cells (Fig S3). This finding is in keeping with a recent study detecting elevated MUC1 levels in proximal tubule cells in kidneys from mice and humans after ischemic damage (Al-Bataineh et al., 2021). In the setting of experimental acute kidney injury, a protective role of
MUC1 has been identified in the early phase of the insult in mouse models of ischemia reperfusion injury (Pastor-Soler et al., 2015; Gibier et al., 2017). However, in one study, Muc1 deletion led to reduced kidney fibrosis in later phases of the injury indicating a pro-fibrotic potential of wild-type Muc1 in the mouse kidney (Gibier et al., 2017). Apart from the possibly pro-fibrotic potential of wild-type MUC1, growing evidence supports harmful effects of genetic variants at the MUC1 locus on kidney function (Xu et al., 2018; Olinger et al., 2020; Mukamel et al., 2021).

In patients carrying MUC1 risk variants, recurrent episodes of acute kidney injury or chronic states of inflammation leading to HIF stabilization could potentially accelerate the development of CKD in the long run by increasing the abundance of toxic protein variants (Schodel & Ratcliffe, 2019). In this respect, in ADTKD-UMOD patients with homozygous mutations, the loss of eGFR was accelerated when compared with heterozygous family members (Rezende-Lima et al., 2004; Edwards et al., 2017). This observation would support a dose-dependent effect of the deleterious proteins in ADTKD proteinopathies and HIF stabilization may contribute to higher levels of MUC1-fs.

Many patients with reduced kidney function will require the start of an anti-anemia therapy at some point during the course of the disease. Interestingly, patients from the UK Biobank cohort with longer MUC1 VNTR alleles also displayed lower hemoglobin levels possibly reflecting reduced kidney function (Mukamel et al., 2021). This will inevitably lead to therapeutic measures to treat anemia in some of these individuals. Because HIF stabilizers have been licensed for the treatment of the renal anemia in non-dialysis-dependent patients in many countries, we suspect that individuals with MUC1 risk variants will be frequently exposed to this treatment even before starting renal replacement therapy. Our data create the hypothesis that in patients carrying risk alleles of the MUC1 gene, HIF stabilizers could lead to increased levels of the harmful protein and further reduce kidney function by accelerating the disease. Though HIF stabilizers have been designed to increase EPO production in interstitial cells via induction of HIF-2α, they do not selectively stabilize one of the two HIF isoforms (Yeh et al., 2017). In rodents, treatment with HIF stabilizers led to robust stabilization of HIF-1α in tubular segments and, in the setting of acute kidney injury, preconditional HIF activation appears to be protective (Bernhardt et al., 2006; 2009; Schley et al., 2012; Ito et al., 2020). Furthermore, the pleiotropic effects observed with some of the compounds, for example, on iron and cholesterol homeostasis imply that cell types of other than the interstitial origin in the kidney can stabilize HIF upon treatment with HIF stabilizers and that this will lead to a broader HIF response in the body (Haase, 2017). In this respect, the HIF pathway has been implicated in promoting interstitial fibrosis and cyst growth in models of CKD and autosomal-dominant polycystic kidney disease, respectively (Kirimura et al., 2008; Kraus et al., 2018). Based on these and our findings, it will be of great interest to see whether other potentially harmful pathways in the kidney become active in patients receiving long-term HIF-stabilizing therapy.

In conclusion, this study highlights the interplay between genetic predisposition and environmental factors potentially influencing the course of kidney disease by modulating the expression of harmful variants of MUC1. Based on our findings, we suggest that ADTKD-MUC1 patients not yet requiring dialysis should be treated with great caution when using HIF-stabilizing compounds as anti-anemic agents until there are more data available.

Materials and Methods

Patient-derived tubular cells

We isolated primary tubular cells from non-diseased tissue of tumor nephrectomy specimens from 73 donors and from the urine of three non-related patients affected by ADTKD-MUC1 through MUC1 VNTR mutations. MUC1 mutations occurring in individuals ADTKD-0061 (family A-14) and ADTKD-0014 (family A-11) have been characterized by Knaup et al in previous work (Ekici et al., 2014; Knaup et al., 2018). The third ADTKD-MUC1 patient is a direct descendant of the individual ADTKD-0145 (family A-30) published by Wenzel et al, in whom the mutation has been confirmed (Wenzel et al., 2018). Cells were cultured according to established protocols (Keller et al., 2012; Wiesener et al., 2020). Tubular cells were exposed to HIF stabilizers (concentrations used were: DMOG 1 mM, Daprodustat 100 μM, Molidustat 100 μM, Vadadustat 100 μM as or indicated), hypoxia (1% O2 or control conditions [20.9% O2, no treatment]) for 16 h.

Chemicals

HIF stabilizers were purchased from Cayman Chemical Company (Cay71210; DMOG, Cay19915; Daprodustat, Cay15297; Molidustat = BAY 85-3934, Cay15295; Vadadustat, Cay15294; Roxadustat = FG-4592).

RNA isolation, qRT-PCR, and siRNA experiments

We used lysates from tubular cells to isolate RNA as previously described (Lauer et al., 2020). Quantitative RT-PCRs were performed using Maxima SYBR Green/ROX qRT-PCR Master Mix (Thermo Fisher Scientific) on a StepOnePlus Real-Time PCR cycler (Applied Biosystems). Primers are listed in Table S3. siRNA experiments against HIF were conducted as described by Lauer et al (2020).

Western blotting

MUC1 protein was detected by immunoblotting using a monoclonal anti-MUC1 antibody (D9O8K, rabbit monoclonal, dilution: 1:1,000; Cell Signaling Technology). MUC1 frameshift (MUC1-fs) protein was detected using a polyclonal anti-frameshift MUC1 antibody (rabbit polyclonal, dilution 1:5,000; Pineda Antibody Service) as described (Lauer et al, 2020). Quantitative RT-PCR were performed using a monoclonal anti-β-actin antibody served as secondary antibody (P0399, swine polyclonal, dilution: 1:2,500; Agilent Technologies). HIF-1α was detected applying a polyclonal anti-HIF-1α antibody (Cay1006421, rabbit polyclonal, dilution: 1:1,000, Cayman Chemicals). Specificity of the anti-HIF-1α antibody was demonstrated in previous work (Lauer et al., 2020; Protze et al., 2022). A horseradish peroxidase-conjugated anti-rabbit antibody served as secondary antibody (PO399, swine polyclonal, dilution: 1:2,500; Agilent Technologies). β-actin was detected by using a monoclonal anti-β-actin-peroxidase antibody (A3854, mouse monoclonal, dilution: 1:60,000; Sigma-Aldrich). Band
intensity of MUC1 and β-actin protein was quantified by densitometry using ImageJ2 software (version 2.35) (National Institutes of Health).

Genotyping

We genotyped genomic DNA isolated from primary tubular cells using the Infinium Global Screening Array-24+ v3.0 (Illumina). Data were analyzed with the GenomeStudio software (v.2.0.5; Illumina) using the Infinium Global Screening Array v3.0 Manifest file (BPM Format GrCh37).

RNA-sequencing

We performed RNA-seq on isolated RNA from lysates of tissue-derived primary renal tubular cells exposed to 1 mM DMOG or control conditions for 16 h. Libraries were prepared using the Illumina protocol and sequenced on a HiSeq 2500 (Illumina). 100 bp single-end sequencing was performed on RNA samples from primary tubular cells yielding ~30 million reads per sample. After quality check using FastQC (v.0.11.8), reads were aligned to the human reference genome (hg38) using the STAR alignment software using the parameter choices "Read10X()" and "CreateSeuratObject()". All objects were merged into one Seurat object, which was subset to the nuclei listed in the metadata table. Only nuclei that passed the quality control steps as described in Hinze et al (i.e., exclusion of nuclei with more than 5% mitochondrial reads or less than 500 detected genes and doublets) were kept, yielding a total number of 106,971 nuclei (Hinze et al, 2022). In addition, the merged Seurat object was filtered for genes expressed in ≥500 of all remaining nuclei. Using normalized counts only, our analysis did not require any further integration method or batch correction. For each cell type and individual, a pseudo bulk object was computed on raw counts via “aggregateExpression()” and then normalized to Counts per Million (CPM) via “normalizeData()” with parameter choices "scale.factor = 1 x 10^8" and "normalization.method = "RC"". For each pseudobulk object, differential gene expression analysis was performed on raw counts with R package DESeq2 (version 1.38.2) as described in Hinze et al (2022) (i.e., for each cell-type condition, control was tested against condition AKI). The normalized pseudobulk expression of MUC1 RNA per cell type and individual was plotted as datapoint on top of respective boxplots. An unpaired, two-sided Wilcoxon test was performed via function “stat_compare_means (method = “wilcox.test”)” from R package ggprubr (version 0.5.0).

Visualization

Adobe Photoshop Elements (Adobe Inc.) and Microsoft PowerPoint 2019 (Microsoft Corporation) were used for creating figures. Parts of Fig 3C were designed by using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).
HIF drives renal MUC1 Naas et al. https://doi.org/10.26508/lsa.202302078 vol 6 | no 9 | e202302078

Statistics

Statistical analyses for RNA expression as determined by qRT-PCR or DNA enrichment as quantified by ChIP-qRT-PCR were performed applying the one-sample t test comparing the mean value with a hypothetical value of one or one- and two-way ANOVA analysis if applicable using GraphPadPrism Version 9.0.2 (GraphPad Software Inc.). Statistical analysis of expression values determined in RNA pseudobulk analysis was done by applying an unpaired, two-sided Wilcoxon test using R ggprubr (version 0.5.0) via function "stat_compare_means (method = "wilcox.test")."

Study approval

The local ethics committee at the University of Erlangen–Nürnberg approved the use of the tissue and cells (1755, 271_Bc, 251_18B). Each patient gave informed consent. Specimens were collected in accordance with the World Medical Association Declaration of Helsinki.

Data Availability

HIF ChIP-seq data are available at GEO (GSE101064) and RNA-seq data are available at GEO (GSE224177). Kidney scRNA-seq data were downloaded from GEO (GSE159115) (Zhang et al, 2021). Single-nuclei RNA-sequencing data of control and AKI kidneys were downloaded from Hindze et al (2022) (GSE210622). Microwell-seq data published by Han et al (2020) can be accessed via https://cellexgene.cziscience.com/e/human_cell_landscape.cdx (access: 1 Feb 2022).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.202302078.

Acknowledgements

We thank Stephanie Paffy, Astrid Ebenau-Eggers, Johanna Stöckert, Karen Schneider, and Margot Rehm for excellent technical assistance. We thank the Core Unit for Next Generation Sequencing, the Department of Urology and Pediatric Urology, and the Comprehensive Cancer Center Erlangen-EMN at the Uniklinikum Erlangen for their support. All authors approved the final version of this manuscript. Parts of this work were performed by R Krüger in fulfillment of the requirements for obtaining the degree Dr. rer. nat. J Naas is a member of the Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Austria. This study was funded by the Interdisciplinary Centre for Clinical Research at the Uniklinikum Erlangen (D3S) and the German Research Foundation (Project-ID S09149993; TRR 374, TP C4 and CS1). J Naas is supported by the Austrian Science Fund (FWF) project number F78 to Arndt von Haeseler, University of Vienna and Medical University of Vienna, Austria. S Naas was supported by the Clinician Scientist Programme of the Interdisciplinary Centre for Clinical Research at the Uniklinikum Erlangen. We acknowledge financial support by Deutsche Forschungsgemeinschaft and Friedrich-Alexander-Universitat Erlangen-Nürnberg within the funding programme “Open Access Publication Funding.”

Author Contributions

S Naas: conceptualization, data curation, investigation, visualization, methodology, and writing—original draft.
R Krüger: data curation, software, formal analysis, investigation, and visualization.
KK Knaup: resources and investigation.
J Naas: data curation and software.
S Grampp: investigation and methodology.
M Schiffer: resources.
M Wiesener: resources, funding acquisition, investigation, and writing—review and editing.
J Schödel: conceptualization, funding acquisition, investigation, methodology, and writing—original draft, review, and editing.

Conflict of Interest Statement

J Schödel has received honoraria from Astellas Pharma and GSK. All other authors declare no conflict of interest.

References

License: This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).