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Single-cell sequencing (sc-seq) provides a species agnostic tool
to study cellular processes. However, these technologies are
expensive and require sufficient cell quantities and biological
replicates to avoid artifactual results. An option to address these
problems is pooling cells from multiple individuals into one sc-
seq library. In humans, genotype-based computational separa-
tion (i.e., demultiplexing) of pooled sc-seq samples is common.
This approach would be instrumental for studying non-isogenic
model organisms. We set out to determine whether genotype-
based demultiplexing could be more broadly applied among
species ranging from zebrafish to non-human primates. Using
such non-isogenic species, we benchmark genotype-based
demultiplexing of pooled sc-seq datasets against various
ground truths. We demonstrate that genotype-based demulti-
plexing of pooled sc-seq samples can be used with confidence in
several non-isogenic model organisms and uncover limitations of
this method. Importantly, the only genomic resource required for
this approach is sc-seq data and a de novo transcriptome. The
incorporation of pooling into sc-seq study designs will decrease
cost while simultaneously increasing the reproducibility and
experimental options in non-isogenic model organisms.
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Introduction

Over the last decade, single-cell RNA sequencing (scRNA-seq) has
exploded in popularity as a species agnostic tool for studying gene
expression at the level of individual cells (Klein et al, 2015; Macosko
et al, 2015; Villani et al, 2017; Han et al, 2018). The biggest impact has
been on species in which study at the cellular level was long
difficult or impossible because of lack of species-specific anti-
bodies or other reagents (i.e., all species other than rodents and
primates). Although extremely powerful, the scRNA-seq approaches
that have risen to prominence are expensive and low throughput
for biological replicates. This is a serious drawback as the lack of
biological replicates has also been shown to be a major cause of

false discoveries (Hicks et al, 2018; Squair et al, 2021). To limit ar-
tifacts in scRNA-seq, there is a critical need for approaches that
allow for adequately powered experiments (Squair et al, 2021;
Zimmerman et al, 2021). Sample pooling is an effective means to
increase biological replicate throughput while simultaneously
decreasing batch effects and costs. Sample pooling can also enable
scRNA-seq experiments with limited cell quantities and can identify
doublets which, depending on cell loading, can make up a sub-
stantial portion of sequenced droplets (DePasquale et al, 2019).

In fields working with low cell numbers, like developmental
biology, pooling of samples from multiple animals with no sample
labeling method, or intention of demultiplexing has become a
standard practice. This approach lacks advantages of true repli-
cates because there is no way to assess the data for representation
of all samples or variation between samples. The inability to demux
pooled samples thus lacks the ability to account for replicate
variation and perform replicate strengthened differential expres-
sion analysis (Squair et al, 2021; Zimmerman et al, 2021). Because of
these benefits of biological replicates, pooled samples in which
biological replicates were collected would ideally be able to be
demultiplexed, providing information on the origin of each cell in
the experiment.

Methods for analyzing pooled data and for enabling the demulti-
plexing (also known as demuxing) of pooled scRNA-seq samples are
varied in concept and accuracy and have been recently reviewed (Zhang
et al, 2022). To preserve the benefits of true biological replicates within
pooled samples, experimental protocols for demultiplexing of pooled
scRNA-seq samples have been developed. These methods include
pooling cells from transgenic animals expressing a distinct transgene
(Lin et al, 2021) or oligonucleotide (Shin et al, 2019). The most common
method for scRNA-seq pooling is cell hashing, in which cells from each
sample are labeled with antibodies (Stoeckius et al, 2018), lipids
(McGinnis et al, 2019), or chemicals (Gehring et al, 2020) tethered to an
oligonucleotide label that links gene expression data from each cell to
the cellular origin (i.e., cell multiplexing oligonucleotide (CMO) label). A
downside to these label-based approaches is that they each have
varying degrees of efficiency, require sufficient cell numbers, have costs
associated with their application, are not compatible with all species,
and have a chance of failing (Zhang et al, 2022).
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In contrast to these experimental demultiplexing approaches,
computational methods have been developed to demultiplex
pooled human samples without any labeling regimen using the
natural genetic differences between individuals. These approaches
detect genetic differences between samples at sites of single-
nucleotide polymorphisms (SNPs) and implement demultiplexing
based on differential distributions of these SNPs between samples.
SNP-based approaches have been benchmarked and shown to be
highly effective at separating human samples (Kang et al, 2018;
Huang et al, 2019; Xu et al, 2019; Heaton et al, 2020; Weber et al, 2021).
Relative to laboratory species, SNP-based computational ap-
proaches are expected to perform well in human samples because
of their high genetic diversity and wealth of available genomic
resources. Outside of human samples, SNP-based demultiplexing
has been applied to demultiplex other species: plasmodium
samples, and across mouse strains (Heaton et al, 2020; Mylka et al,
2022). Although these results are promising, thorough evaluation of
the strengths, weaknesses, and limitations of SNP demuxers in
model organisms—through comparison of results to ground truths
derived from orthogonal wet laboratory–based methods—is re-
quired to demonstrate whether this is an approach that warrants
widespread use.

In this project, we set out to learn whether SNP-based demul-
tiplexers work in an array of non-human species. We benchmarked
available SNP-based demultiplexing programs and found that most
are highly accurate on model organism datasets. We then selected
the demultiplexing tool with the broadest potential usability,
souporcell (Heaton et al, 2020), to more thoroughly test against a
diverse range of species and wet laboratory–based multiplexing
methods. We found that SNP-based demuxers can successfully
demultiplex single-nuclei RNA-seq and scRNA-seq datasets with-
out any prior information about the samples and with only a de
novo transcriptome as a reference. This suggests that SNP-based
demuxers can facilitate effective experimental design via the
demultiplexing of pooled scRNA-seq data from a vast range of
species. This lowers burdens and substantially broadens the use of
scRNA-seq to study cellular processes in most organisms.

Results

Highly accurate SNP–based demultiplexing of in silico pooled
sc-seq from zebrafish, monkey, and axolotl

We first explored the performance of SNP-based demulti-
plexing methods when applied to a published zebrafish
dataset. Two useful resources for applying SNP-based
demultiplexing are available for zebrafish, a high-quality ge-
nome (Howe et al, 2013), and a common SNP variant, variant call
format (VCF) file for the species (LaFave et al, 2014). A recent
study collected single animal scRNA-seq datasets from the
thymus of zebrafish (Rubin et al, 2022). These data present an
opportunity to synthetically pool samples to test SNP-based
demultiplexing on data from a non-human species. Although
synthetically pooled data are less challenging for an SNP-
based demultiplexing algorithm than experimentally pooled

samples, the individually sequenced libraries provide a ground
truth for definitive benchmarking of SNP-based assignments.

After processing each zebrafish scRNA-seq sample individually,
we performed in silico pooling of three samples (Fig 1A). This
synthetic pooling creates a pooled sample that has cell origin
information and synthetic doublets. The production of synthetic
doublets bolsters the ability to test and validate the accuracy of cell
and doublet assignments. The synthetically pooled data were then
demultiplexed with the SNP-based demuxers souporcell (Heaton
et al, 2020), Vireo (Huang et al, 2019), Freemuxlet (https://
github.com/statgen/popscle; Kang et al, 2018), and scSplit (Xu
et al, 2019)—all of which do not require prior genotyping infor-
mation. We found that souporcell, Vireo, and Freemuxlet gave
highly concordant results, with scSplit giving divergent assignments
for one individual (Fig S1A and B). The computational requirements
for this dataset were similar between these tools, with Freemuxlet
finishing the quickest and scSplit requiring the leastmemory (Table S1).
We also ran souporcell on this dataset with and without providing
the common SNPs VCF file. We found that for this zebrafish dataset,
the use of the common VCF file had minimal overall effect on the
souporcell demultiplexing results, with less than 1% of cell assign-
ments differing (11/1,312 cells). Given the highly similar results and
compute requirements from souporcell, Vireo, and Freemuxlet, we
chose to move forward with more thorough analysis of souporcell
because this tool has the broadest universal applicability for samples
from traditional and non-traditional model species due to its lesser
input requirements (Fig S2).

To further investigate the demultiplexing accuracy of souporcell,
SNP-based cell assignments were assessed for correlations with
ground truth animal origin. We found a strong agreement between
souporcell assignments and ground truth animal identities (Fig 1B
and C). We then analyzed how many cells of each known animal
origin were assigned to each animal by souporcell (Fig 1C, left as
total cell quantities, right as percentages). SNP-based demulti-
plexing of this synthetically pooled zebrafish scRNA-seq data was
highly accurate, resulting in correct cell assignments of 99–100% of
cells based on their known animal origin (Fig 1C). This suggests that
genetic demultiplexing is a viable means to enable sample pooling
and subsequent demultiplexing in zebrafish.

The presence of doublets in single-cell RNA sequencing is a
major confounder. A doublet is a droplet represented by a single-
cell barcode that contains more than one cell. In these in silico
pools, true doublets can be identified with absolute certainty
because we have origin information. When comparing SNP-based
demultiplexing results to ground truth, “confirmed doublets” are
cells that were assigned doublets by both the ground truth and
demuxer. Furthermore, “contested doublet” refers to cells in which
the experimentally derived ground truth and SNP-based demuxer
result disagree about a potential doublet. We thus investigated the
doublet detection capacity of souporcell for heterotypic true
doublets (i.e., doublets from two genetically distinct individuals in a
defined in silico pool). Homotypic true doublets created during synthetic
pooling were removed, as souporcell relies on intergenotypic doublet
detection. We found that souporcell missed almost half of the synthetic
heterotypic true doublets in the pooled dataset (Fig 1C). The relatively
poor performance (55% heterotypic true doublets identified) of sou-
porcell at identifying synthetic heterotypic doublets from this zebrafish
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dataset made doublet detection the largest discrepancy in this analysis.
Souporcell was not alone in its poor doublet detection performance,
with Freemuxlet and Vireo misassigning many of the same doublets as

souporcell (Fig S1B). This suggests that SNP-demultiplexing tools
strugglewith heterotypic doublet detectionwhenonly three animals are
pooled.

Figure 1. SNP-based demultiplexing enables demultiplexing of synthetically pooled zebrafish and African green monkey scRNA-seq data.
(A) Conceptual diagram of benchmarking analysis for zebrafish data (n = 3). (B)Upset plot comparing cell assignments by souporcell to known animal identities for each
cell. Souporcell assignments were matched with known identities by correlation analysis. (C) Bar plots quantifying the distribution of souporcell assignments for cells
from each animal. Left: of cells known to originate from each animal, the number of those cells assigned by souporcell to each animal is plotted. Right: of cells known to
originate from each animal, souporcell assignments are shown as a percentage of total cells assigned to that animal. (D, E, F) Same as (A, B, C) but for African green
monkey (n = 5) scRNA-seq data.

Genetic demultiplexing of scRNA-seq data from model organisms Cardiello et al. https://doi.org/10.26508/lsa.202301979 vol 6 | no 8 | e202301979 3 of 20

https://doi.org/10.26508/lsa.202301979


We next decided to in silico benchmark these SNP demulti-
plexers on another potentially inbred population, the African green
monkey. The African green monkey is a pre-clinically relevant
species, with a published genome (Warren et al, 2015) and SNP
variant VCF file available for use (Huang et al, 2015). For this ex-
periment, five individually sequenced green monkey scRNA-seq
datasets were filtered for high-quality cells, pooled in silico, and
subsequently demultiplexed (Fig 1D) (Speranza et al, 2021). Our
results from this demultiplexing closely mirrored that of the
zebrafish dataset in terms of accuracy and the similarity of results
from independent SNP-based demultiplexing programs (Fig S3).
Compared with demultiplexing of three zebrafish samples, the
doublet detection observed with this pool of five monkey samples
was improved (82% versus 55%) (Fig 1E and F). We thus tested
whether the number of samples pooled contributes to doublet
detection efficiency. We pooled three of the same monkey samples
and SNP demultiplexed them using souporcell. We found that
souporcell only called 66% of true heterotypic doublets from this
pool of three monkey samples (Fig S4). This suggests that the
number of samples in a pool contributes to efficiency of heterotypic
doublet detection. Overall, these results indicate that SNP-based
demultiplexing can be a highly accurate and efficient method for
demultiplexing pooled single-cell data from non-human primates.

Finally, we also assessed results of SNP-based demultiplexing of
synthetically pooled single-nuclei data from axolotl. The axolotl is
an example of the type of organism for which scRNA-seq has
enabled cell level study of regeneration and immunology for the
first time (Gerber et al, 2018; Leigh et al, 2018; Rodgers et al, 2020; Lin
et al, 2021; Lust et al, 2022; Ye et al, 2022). A genome (Nowoshilow
et al, 2018; Smith et al, 2019) and SNP variant VCF file
(Timoshevskaya et al, 2021) are available for the axolotl, but its large
genome provides a distinct challenge when using computational
tools. We used in silico pooling for three individually sequenced
axolotl single-nuclei RNA-seq datasets (Fig S5A) (Lust et al, 2022).
95–99% of the cells from each individual axolotl dataset were
correctly demultiplexed from the pool (Fig S5B and C). Similar to the
three sample zebrafish datasets, we found that souporcell failed to
identify a large proportion of the synthetic heterotypic doublets (Fig
S5C). These results suggest that SNP-based demultiplexing may
accurately demultiplex pooled samples in any single-cell com-
patible organism with genetic heterogeneity.

Identifying the limits of SNP-based demultiplexing: inbreeding
and SNPs density

With the promising results observed in zebrafish, African green
monkey, and axolotl, we next investigated the minimum level of
animal genetic variation required to enable SNP-based demulti-
plexing. To do this, we used previously published data from highly
inbred isogenic mice (Crowl et al, 2022). Our efforts to apply SNP-
based demultiplexing to an in silico–pooledmixture of three C57BL/
6 mice samples (Crowl et al, 2022) were unsuccessful, with 99.7% of
cells being unassigned by souporcell or Vireo (data not shown).
C57BL/6mice are nearly genetically identical with only ~15,000 SNPs
and insertion–deletion mutations (indels) (Doran et al, 2016),
providing evidence that SNP-based demuxers are unable to sep-
arate biological replicates from highly inbred mice. We also

attempted SNP-based demultiplexing of in silico–pooled data from
DBA/1J mice (Shinozaki et al, 2022) which have ~5 × 106 total SNPs
and indels (Doran et al, 2016). Again, 99.7% of cells were unable to be
assigned via souporcell (data not shown), suggesting that SNP-
based demultiplexing is incompatible with highly inbred animals.
These findings are in line with other claims that SNP-based de-
multiplexers are unable to separate samples within the same
mouse strain (Mylka et al, 2022). Although the vast majority of
murine work is performed on a single strain, pooling different
strains reportedly does allow for SNP-based demultiplexing (Mylka
et al, 2022).

To try to determine SNP frequency thresholds required for
successful SNP-based demultiplexing, we investigated the density
of SNPs in all the datasets used thus far. We found that both inbred
mouse strains had less than 0.2 SNPs/kilobase (kb) (0.013 and 0.19
for C57BL/6 and DBA1/J, respectively). In comparison to the inbred
mouse strains, the SNP density of the successfully demultiplexed
datasets was higher at 0.34/kb (axolotl), 0.86/kb (African green
monkey), and 3.57/kb (zebrafish). Although an exact quantitative
analysis of this possible genetic cutoff would be useful, these
results imply that a range of 0.2–0.34 SNPs/kb may be the minimum
required within a sc-seq dataset for SNP-based demultiplexing.

SNP-based demultiplexing of high sample number pools

Our previous results with in silico–pooled scRNA-seq data indi-
cated high accuracy of SNP-based demultiplexers, but this setup
lacks challenges of physically pooled scRNA-seq data, like ambient
RNA and real heterotypic doublets. Therefore, we were interested in
benchmarking SNP-based demultiplexing accuracy in a realistic
and challenging experimental scenario: experimentally pooled
cells from siblings, with a high sample number and without a
common SNPs VCF file. We analyzed a published dataset of Xenopus
laevis scRNA-seq data containing eight experimentally pooled
samples from three Xenopus transgenic lines that each overexpress
a different fluorescent gene (Lin et al, 2021) (Fig 2A). Xenopus is
another common laboratory animal that has a published high-
quality genome (Session et al, 2016).

To identify the transgenic line origin based on fluorescent mRNA
counts, we co-opted MULTIseqDemux (McGinnis et al, 2019) to
assign donor identities based on the transgenic line–expressed
fluorescent gene counts. Although this approach succeeded in
assigning the Xenopus transgenic line of origin, the low number of
fluorescent gene counts left many cells without sufficient data to
make an assignment prediction (Figs 2B and S6). This low detection
of fluorescent gene transcripts is a common problem when using
fluorescent marker genes for demuxing pooled data (Lin et al, 2021)
and underscores the importance of alternative means to demul-
tiplex pooled data. To avoid benchmarking results with low-quality
cells, stringent filtering was used to ensure that only cells likely to
have accurate origin assignment by the fluorescent gene–based
demultiplexing method would be used to benchmark SNP-based
demultiplexing.

We first assessed the Xenopus data for correlation between
fluorescent and SNP-based cell assignments. We observed a re-
markable similarity in demultiplexing the eight-animal dataset with
these two orthologous methods (Fig 2C–E). To further quantify the
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Figure 2. Experimentally pooled, high sample number Xenopus data demultiplexed by SNP-based methods.
(A) Conceptual diagram of benchmarking analysis for Xenopus data (n = 8). (B) Cell identification percentage (Fluor Cell ID %) by fluorescent-based assignment is
plotted against average read depth. All cells were sorted by read depth and binned into 40 groups before calculating Fluor Cell ID%, and average total, and fluorescent
read depth. Fluor Cell ID % is defined as the percentage of cells in each bin that were assigned to any of the three transgenic animal identities by fluorescent-based
demultiplexing analysis. Binned data are colored by the average number of summed fluorescent reads per cell. Subsequent analysis plots focused on cells with
between 5,000 and 40,000 mapped reads, and >0 summed fluorescent gene reads. (C) UMAP plot of Xenopus-pooled scRNA-seq data colored by fluorescent-based cell
assignments. (D) UMAP plot of Xenopus-pooled scRNA-seq data colored by souporcell assignments relabelled according to correlating transgenic animal name. (E) Upset
plot comparing cell assignments by souporcell to fluorescent based assignments. (F) Bar plots quantifying the distribution of souporcell assignments for cells from
each animal. Left: of cells assigned to each transgenic line through fluorescent-based assignments, the number of those cells assigned by souporcell to each category is
plotted. Right: of cells assigned to each transgenic line through fluorescent-based assignments, souporcell assignments are shown as a percentage of total cells in that
category.
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souporcell assignment accuracy, we evaluated how souporcell
performed in comparison to transgenic line assignments made by
fluorescent-based assignment (Fig 2F). We found high agreement
between the two methods, as demonstrated by the souporcell
assignment agreement on 86–92% of cells in each sample (Fig 2F).
Furthermore, many cells were assigned as “negative” by the
fluorescent-based approach, which could then be computationally
rescued and assigned a transgenic line by souporcell. This is
particularly notable for the mCherry-expressing cells, which were
difficult to assign by the fluorescent-based assignment method (Fig
2C and D). Also of interest, we found that one of the eight transgenic
animals was almost completely absent from the dataset, only
displaying dozens of total cells. Although individual animal as-
signments by souporcell could not be validated, this suggests
animal dropout in this dataset that would not be identified without
demultiplexing.

As with the in silico experiment, doublet assignments were the
biggest discrepancy. It is not clear from the available data whether
cells are true doublets being identified only by souporcell, or if the
SNP-based demuxer is over-assigning doublets. However, assum-
ing the worst-case scenario: that souporcell is over-assigning
doublets, this is a relatively harmless mistake considering that a
standard analysis would subsequently remove these doublets from
downstream analysis. Overall, these results display a high degree of
accuracy for SNP-based assignments in a complex, experimentally
pooled mixture of Xenopus cells.

Next, we sought to evaluate whether souporcell could produce
assignments in a previously published dataset of a pool of 30
zebrafish embryos (Metikala et al, 2021). We found this dataset to
contain 25,279 cells, which according to the manufacturer would
result in ~20% of droplets being doublets. This would be considered
a superloaded sample as it is over the supported cell recovery
recommendations. However, this type of experiment is common
and would be benefit from SNP-based demultiplexing. We applied
souporcell to this dataset and found that it gave assignments for
95.1% of cells (24,047 of 25,279). Although this experiment does not
have a ground truth to compare with, we found that the doublet
rate reported by souporcell was 18.6%, close to the expected 20%.
All 30 embryos were identified in this final dataset, ranging from 275
to 1,517 cells per individual zebrafish (Table S2 and Fig S7A). At the
cluster level, there was wide variation in assigned doublets ranging
from 0.8 to 30.2% of cells within a cluster (Fig S7B). When pooling
samples, a common assumption is that each cluster is com-
posed of cells from all biological replicates. This assumption
held true for nine of the identified 21 clusters in this sample,
predominantly those with the most cells. The other 12 clusters
were composed of cells from less than 30 replicates (animals),
breaking the common assumption and suggesting a possible
source of artifacts in interpreting results from these clusters
(Fig S7B). This analysis could not be validated because this
dataset did not contain a distinct cell-labeling method to
enable orthogonal non-SNP–based demultiplexing and
thereby a ground truth for comparison. Two pieces of evidence
point towards the reliability of these results (1) the high ac-
curacy of assignments from all the in silico pooled datasets
and (2) that souporcell fails to provide assignments in the
inbred mouse datasets (see previous subheading). Altogether,

this suggests that souporcell may be a viable means to identify
biological replicates in large pools, which will provide infor-
mative metadata and enhance analysis for future experiments.

Successful SNP–based demuxing of pooled fluorescent
Pleurodeles samples without a genome or previous
SNP information

After observing that SNP-based demultiplexing was reliable on
various commonly used model species with genomes and with or
without common SNP VCF files, we wanted to test the limits of what
resources are required for accurate SNP-based demultiplexing. To
do this, we took the current minimum adequate reference to map
single-cell sequencing data, a de novo transcriptome, and did not
use a common SNP VCF files. The Spanish ribbed newt, Pleurodeles
waltl, is ar reemerging regenerative model organism, which has a
high-quality de novo transcriptome (Matsunami et al, 2019) and
more recently a high-quality genome (Brown et al, 2022, Preprint)
but no available common SNPs VCF file. We first set out to assess
souporcell demux assignments on pooled splenocytes from three
transgenic Pleurodeles newts, which express different fluorescent
proteins under the same ubiquitous promoter (CAG) (Joven et al,
2018; Eroglu et al, 2022). We designed this experiment to only
contain non-erythroid spleen cells from one individual of each
transgenic newt line, making it technically feasible to benchmark
souporcell cell assignments for individuals through comparisons to
fluorescent-based assignments (Fig 3A).

As performed in the Xenopus analysis, we selected only cells that
had sufficient read depth and fluorescent gene detection for
benchmarking (Figs 3B and S8A–H). We found that fluorescent-
based and souporcell assignments show a high degree of corre-
lation (Fig 3C and D). The fluorescent-based approach assigns many
cells as “negative” (63% of cells pre-filter, 29% of cells after filtering)
(Figs 3C and S8H). In this dataset, we observed that cells sequenced
to a higher depth showed higher agreement between souporcell
cell assignments and the fluorescent-based ground truth, which is
expected because both methods should improve with more in-
formation (Fig S8I). Furthermore, though these samples were
pooled and sequenced as one sample, we find dramatic variation
between individuals in the Pleurodeles splenocyte data
(i.e., clusters derived from primarily one animal). The heterogeneity
of sample representation in different cell clusters highlights the
critical need for demultiplexing of pooled scRNA-seq data (Fig
S8A–C, J, and K). Without demultiplexing, erroneous conclusions
on novel cell states or types may arise.

We found a high degree of agreement between fluorescent-
based cell assignments and SNP-based assignments from
Pleurodeles scRNA-seq data (Fig 3E). Of cells assigned by fluorescent-
based demuxing to one of the three transgenic animals, 78–93% of
those cells were correctly identified by souporcell (Fig 3F). When the
two methods disagree, the most prevalent occurrence is “negative”
fluorescent–based cell assignments that souporcell assigned to
one of the transgenic animals (i.e., the rescue we also found in the
Xenopus data). Similar to the Xenopus dataset, we attribute these
fluorescence-based “negative” assignments to the low capture of
fluorescent gene reads (Figs 3B and C and S8A and C). The next most
common discrepancy between the two demultiplexing approaches
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Figure 3. Experimentally pooled Pleurodeles scRNA-seq from fluorescently expressing transgenic animals accurately demultiplexed by souporcell.
(A) Conceptual diagram of benchmarking analysis for this Pleurodeles dataset (n = 3). (B) Cell identification percentage (Fluor Cell ID %) by fluorescent-based
assignment is plotted against average read depth. All cells were sorted by read depth, and binned into 40 groups before calculating Fluor Cell ID %, average total, and
fluorescent read depth. Fluor Cell ID % is defined as the percentage of cells in each bin that were assigned to any of the three transgenic animals by fluorescent-based
demultiplexing analysis. Binned data are also colored by the average number of summed fluorescent reads per cell. Subsequent analysis plots focused on cells with
between 5,000 and 40,000 mapped reads, and >0 summed fluorescent gene reads. (C) UMAP plot of Pleurodeles pooled scRNA-seq data colored by fluorescent-based cell
assignments. (D) UMAP plot of Pleurodeles pooled scRNA-seq data colored by souporcell assignments relabelled according to correlating transgenic animal line. (E)Upset
plot comparing cell assignments by souporcell- to fluorescent-based assignments. (F) Bar plots quantifying the distribution of souporcell assignments for cells from
each animal. Left: of cells assigned to each transgenic animal through fluorescent-based assignments, the number of those cells assigned by souporcell to each animal is
plotted. Right: of cells assigned to each transgenic animal through fluorescent-based assignments, souporcell assignments are shown as a percentage of total cells in that
category.
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Figure 4. Lipid-linked CMO-based demultiplexing of two salamander species, four animal-pooled scRNA-seq dataset.
(A) Conceptual diagram of benchmarking analysis for this multispecies dataset (n = 4). (B) Cell identification percentage (CMO Cell ID %) by CMO-based assignments is
plotted against average read depth. All cells were sorted by read depth, and binned into 40 groups before calculating CMO Cell ID %, and average total read depth per cell.
CMO Cell ID % is defined as the percentage of cells in each bin that were any of the three CMO groups via CMO analysis. Subsequent analysis plots focused on high accuracy
cells with between 5,000 and 40,000 mapped reads. (C) UMAP plot of Pleurodeles and Notophthalmus pooled scRNA-seq data colored by CMO assignments. (D) UMAP
plot of Pleurodeles and Notophthalmus pooled scRNA-seq data colored by souporcell assignments relabelled according to correlating CMO labels. (E) Upset plot
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were contested doublets, cells labeled as “doublet” by fluorescent-
based demuxing, for which souporcell disagrees. The low number of
mapped fluorescent reads in these samples means that a “doublet”
assignment by fluorescent-based demuxing likely indicates that a
particular cell had one to two counts of two distinct fluorescent
genes. This could be indicative of a doublet, but it is also possible
that these are erroneous doublet assignments because the
fluorescent-based doublet assignments too often rely on sparse
data.

SNP-based demultiplexing succeeds in two species, pooled
single-cell RNA-seq as shown by benchmarking against
lipid hashing

We next wanted to determine whether SNP-based demultiplexers
could succeed in demuxing scRNA-seq datasets containing cells
pooled from multiple species. This multi-species approach would
be particularly useful for cross-species analyses and ecological
studies. This approach capitalizes on the so-called “barnyard”
approach, that is typically used when investigating doublet rates in
new single-cell technologies. For this experiment, we pooled
splenocytes from two P. waltl and two Notophthalmus viridescens
(Fig S9A). Notophthalmus is another salamander species studied
for its regenerative capacity but equipped with only a de novo
transcriptome and no published common SNP VCF file. To inves-
tigate SNP-based assignments and doublets in this dataset, we
applied souporcell and a barnyard style analysis to this dataset and
found a general agreement between these two approaches (Fig
S9A–G).

Within this experiment of dual-species pooled 10x Genomics
scRNA-seq libraries, distinct lipid hashing CMO labels were applied
to label the origin of each of the Pleurodeles samples, and one
hashing label was used for the pooled Notophthalmus samples,
totaling three hashing labels (Fig 4A). This approach provided a
means to benchmark souporcell against the current best practice
and the only available commercial multiplexing strategy for cells
from species without specific hashing antibodies. For the analysis,
sample identity determined by applying MULTIseqDemux to CMO
data was used to evaluate SNP-based demultiplexing results. We
constructed and aligned to a dual-species index made from the
SuperTranscriptome (Abdullayev et al, 2013; Davidson et al, 2017;
Matsunami et al, 2019) for each of these species. We removed low
quality, low-depth cells for further benchmarking analysis and
identified which souporcell individual assignments corresponded
to each CMO through analyzing the correlation of assignments
between the two methods (Fig 4B). Interestingly, we did see that
cells with more biological read depth showed improved percent
agreement between souporcell- and Cellplex-based assignments,
which was not a given because the Cellplex label is a distinct library
(Fig S10). This suggests that SNP-based demuxers do display a
performance relationship with increased read depth. One important

note, it appeared that many cells with high CMO reads per cell have
relatively low biological reads per cell (Fig 4B), suggesting that al-
though these cells can be CMO demultiplexed they would be unlikely
to provide adequate biological information.

We found that souporcell sample assignments correlated tightly
with CMO-based assignments (Fig 4C–E). When CMO-based as-
signments were interpreted as ground truth, the accuracy of
souporcell assignments was clear, with 73–96% agreement between
the two methods for assignment to the three CMO-based assign-
ments (Fig 4F). The largest difference in assignments between these
methods was that souporcell identified many doublets in the data
from one CMO-labeled sample. SNP-based demultiplexers can only
detect doublets from two different individuals (i.e., heterotopic
doublets) which occurs at increasing ratios as sample number in
the pool increases (e.g., three samples = 66% heterotypic doublets,
four samples 75% heterotypic doublets, etc.). We thus also tested a
second means to detect doublets, transcriptional-based doublet
detection using scds to determine if this could compensate for
missed doublets assignments (Bais & Kostka, 2020). We found that
scds assigned many doublets not assigned by souporcell and vice
versa (Fig S11). Overall, souporcell and scds agreed on 68% of
assignments, including singlets and doublets. In relation to
Cellplex-based assignments, both computational approaches are
in high agreement, but assign doublet identities to some Cellplex-
based singlet assignments. This suggests that transcriptional-
based doublet detection potentially identifies doublets missed
by souporcell and wet laboratory–based approaches. In general,
these analyses demonstrate high agreement between CMO-based
and SNP-based demultiplexing of this data from a notably complex
experiment using species with poor genomic resources. Altogether,
these data suggest that SNP-based demultiplexing is a powerful
and near universal method to demultiplex pooled samples.

Discussion

The commercial appearance of single-cell sequencing technologies
has enabled the study of complex tissues from any species. The
technical and financial hurdles posed by these technologies can
discourage their use, especially when biological replicates are
needed to produce reliable datasets. In the coming years, we expect
that similar to bulk RNA sequencing (Schurch et al, 2016), increased
biological replicates should be prioritized over increased infor-
mation on one sample in sc-seq studies. We demonstrate that
sample pooling is a useful and viable tool for empowering single-
cell datasets. It is critical that pooling and demultiplexing ap-
proaches are also species agnostic, as one of the major advantages
of scRNA-seq is its broad applicability in most organisms.

The results presented in this study are in strong support of using
sample pooling and SNP-based demultiplexers in scRNA-seq
studies in species which possesses between individual genetic
variability. We show with numerous species which have varying

comparing cell assignments by souporcell to CMO-based assignments. (F) Bar plots quantifying the distribution of souporcell assignments for cells from each CMO
group. Left: of cells assigned to each CMO group, the number of those cells assigned by souporcell to each identity is plotted. Right: of cells assigned to each CMO group,
souporcell assignments are shown as a percentage of total cells in that category.
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genomic resources and genetic variability that SNP-based
demultiplexing produces highly accurate demuxing results. We
used a diverse swath of methods, each with unique strengths, to
validate the widespread use of SNP-based demultiplexing. We
attempted to estimate the SNP density required for successfully
demultiplexing, but recommend in other species a pilot experiment
in which a secondary demultiplexing method, or in silico pooling, is
used to validate SNP-based demux results. This will also allow for
the fine tuning of parameters to ensure trustworthy results. For
example, testing out a low-quality common SNPs VCF from a more
obscure model organism versus a sample-derived VCF may dem-
onstrate that the sample-derived VCF performs better.

It will also be important to define the upper limit for the number
of distinct pooled samples followed by SNP-based demuxing for
each organism. In line with this, we obtained assignments when
performing SNP-based demultiplexing on a pool of 30 zebrafish
samples. However, without a benchmarking assessment from a
ground truth derived from a distinct technology, it is uncertain if
these results can be trusted. We therefore propose that using SNP-
based demultiplexers on large pools needs to be further validated.
This can be performed in silico as more single-replicate scRNA-seq
datasets become published. Until then, the developers of sou-
porcell indicate that 21 pooled human samples can be demulti-
plexed and speculate that this could work in up to 40 (https://
github.com/wheaton5/souporcell/issues/30). It is more likely that
these large pool experiments occur in non-human samples. Thus,
to aid future validations, we provide examples and modified
memory-efficient scripts to pool samples and determine accuracy
which will aid laboratories’ working in any species to conduct their
own benchmarking. In addition, this memory-efficient script allows
for pooling without a VCF file, which will be critical for all re-
searchers interested in benchmarking SNP demuxers in organisms
without VCF files available. Once upper limits become established,
another option to increase throughput would be layered multi-
plexing, for example, labeling 10 individuals with a CMO, another 10
with a second CMO, and so on. This could be paired with a second
SNP-based demultiplexing step and could substantially expand
sample throughput.

The ability to dramatically increase biological replicate
throughput will have important implications for the quality of
scRNA-seq data. Animal-to-animal variability in gene expression
patterns has been observed for decades and is expected in many
tissues, especially in immune cells, of animals that encounter
different stressors or pathogens (Boedigheimer et al, 2008;
Schokker et al, 2015; Paunovska et al, 2018; Reid et al, 2018). The
existence of this natural biological variability coupled with tech-
nical variability in single-cell methods poses problems for studies
without replicates or those that do not demultiplex pooled datasets
(Hicks et al, 2018). Demultiplexing of pooled scRNA-seq is required
to associate metadata with individual samples to account for
between sample variation, replicate strengthened differential
expression analysis, and confirmation of sample representa-
tion across scRNA-seq datasets and cell clusters (Squair et al,
2021; Zimmerman et al, 2021). The potential for heterogeneity in
sample representation across cell clusters can be clearly seen
in Figs 3 and S8, where some cell clusters are from one or two of
the three individuals present in the pool. Although a variety of

batch correction algorithms are available for single-cell
studies (Tran et al, 2020), these cannot be used if there are
no metadata distinguishing replicates. We recommend that
SNP-based demultiplexing become a standard quality control
for all pooled samples from animals with between animal
genetic diversity.

An additional benefit of pooled single-cell experiments is the
superloading of cells followed by heterotypic doublet detection.
However, our results from synthetic pooled samples saw varied
success in heterotypic doublet detection by SNP-based demulti-
plexers. Our analyses also indicate that sample number in each
pool may directly impact doublet-detection efficiency, which
should be considered in experimental design. We argue that the
most pragmatic approach for doublet detection includes a com-
bination of SNP-based and transcriptomic-based methods. In line
with this, a thorough benchmarking in human samples of tran-
scriptional and SNP-based doublet detectors suggest that an in-
tersectional approach to doublet detection is superior to any one
single method (Neavin et al, 2022 Preprint). Multiple independent
programs designed specifically for doublet detection using tran-
scriptomic instead of genotypic information are available for
scRNA-seq data including DoubletDetection (Gayoso & Shor, 2022),
Solo (Bernstein et al, 2020), and Scds (Bais & Kostka, 2020). To gain
the full benefits of SNP-based demultiplexing with robust tran-
scriptomic doublet detection, we recommend using one or more of
these independent doublet-detection programs to identify and
remove cell barcodes likely to contain doublets. We anticipate that
optimized doublet detection algorithms along with improved
bioinformatic resources for each species would improve doublet
detection and facilitate superloading pooled single-cell data.

Many bioinformatic tools for scRNA-seq are not easily applied to
all species. We intentionally applied a SNP-based demuxer to
experimental set ups that would traditionally be expected to be
computationally challenging, demonstrated the successful appli-
cation, and provide a table and flowchart to illustrate the work-
arounds used in each case (Figs S2 and S12). Fortunately, we
demonstrate that SNP demuxing can be performed without re-
sources like a high quality, well annotated genome, or a population-
wide common SNP genotypes VCF file. This is where souporcell
stood out as the only tool that was feasible to use with only a de
novo transcriptome and no VCF input. A secondary hurdle for
applying SNP-based demuxers is that these tools often struggle
when applied to datasets from species with large reference ge-
nomes or de novo transcriptomes (which typically have many
contigs). When using de novo transcriptomes (i.e., Pleurodeles or
Notophthalmus), we modified the default souporcell pipeline to
enable remapping of reads (Fig S12, see the Materials and Methods
section). Finally, though pooling of multiple species into one ex-
periment is not currently commonplace, we demonstrated the
successful SNP-based demuxing of a pooled two-species experiment.
We expect that variations in cell or nuclei sizes between species could
cause biases in cell capture depending on the scRNA-seq library
preparation method, especially with microfluidic scRNA-seq. Despite
these potential challenges, this experiment demonstrates the success
of SNP-based demuxing in a particularly challenging scenario, and as
more research focuses on cross-species comparisons, this is a clever
means to increase sample throughput.
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Overall, we successfully applied SNP-based methods to
demultiplex pooled single-cell data from multiple species and a
two species mix. Our benchmarking results suggest that SNP-based
demultiplexing in these species is accurate relative to other
available demultiplexing approaches. We hope that this study will
increase awareness of single-cell pooling and SNP-based demul-
tiplexing approaches for research communities not yet using these
methods. Including SNP-based demuxers in experimental designs
for future (and past) studies will greatly expand single-cell–based
discoveries. This will facilitate work in well-known and lesser
studied species by lowering the financial and technical hurdles of
producing adequately powered single-cell experiments. We predict
that both species agnostic and cross-species comparative studies
are going to be increasingly fruitful in uncovering biological insights
and the application of SNP-based demultiplexing with minimal
genomic resources is critical for future research.

Materials and Methods

Animal handling and ethics

All experiments were carried out in post-metamorphic P. waltl and
N. viridescens at Karolinska Institutet and were performed
according to local and European ethical permits. N. viridescens and
P. waltl were raised in-house. All animals were maintained under
standard conditions of 12-h light/12-h darkness at 18–24°C (Joven
et al, 2015). Before all experiments, animals were fully narcotized in
0.1% tricaine in housing water. For Pleurodeles in the fluorescent
pool, experimental animals were housed in carbon-supplemented
filtered tap water (55 g Tetra Marine Sea Salt, 11 g Ektozon N Salt,
2.5 ml of water conditioner/dechlorinator (Seachem Prime - Vat-
tenberedningsmedel), 20 ml of Yokuchi Bitamin Multivitamin and
10 ml of calcium supplementation (Easy-Life Calcium) into 100
Liters of water). For Pleurodeles and Notophthalmus in the Cellplex
experiment, animals were housed in the water as described but
modified to only have sea salt, Ektozon, and calcium solution.

Collection of splenocytes for scRNA-seq

Fluorescence-pooling experiment
Spleens were harvested from three separate P. waltl and processed
as individual samples in parallel. All animals were post-
metamorphic newts from established transgenic lines close to
sexual maturity: one female tgTol2(CAG:Nucbow CAG:Cytbow)Simon

(5.67 g weight, 10.8 cm snout-to-tail length) (Joven et al, 2018), one
male tgSceI(CAG:loxP-GFP-loxP-Cherry)Simon (5.36 g, 11.1 cm) (Joven
et al, 2018), and female tgTol2(CAG:loxP-Cherry-loxP-H2B:YFP)Simon

(6.25 g, 10.8 cm) (Eroglu et al, 2022). Forceps and iridectomy scissors
were used to remove the spleen in one piece, making sure that the
forceps did not tear the spleen. Iridectomy scissors were used to
carefully remove connective tissue. A 70-μm nylon mesh filter was
inserted into a 50 ml conical, and 1 ml of ice cold 0.7X PBS was
added to pre-wet the filter. The spleen was placed on the pre-
wetted filter and slowly mashed through the filter using the plunger
stopper end of a 3-ml syringe. Once the spleen appeared

translucent, the plunger and filter were thoroughly washed with
~10 ml ice cold 0.7X PBS and making sure no PBS was left on the
plunger or filter. The 0.7X PBS solution was then poured into a 15 ml
conical and centrifuged at 300g for 5min at 4°C in a swinging bucket
rotor. Supernatant was decanted, and cells were resuspended in
1ml of 0.7X PBS. Cells were then counted using trypan blue to assess
viability. Viabilities of non-erythroid cells (based on cellular mor-
phology) were 85%, 98.4%, and 91.6% in eBFP, eGFP, and mCherry
animals, respectively. FACS was used to sort for fluorescent-positive
cells (Fig S13A–D). The samples have been analyzed without any
removal of red blood cells using a BD Influx cytometer; the selected
cells were sorted using a 100-μm nozzle in bulk into 1.5 ml
Eppendorf tubes. The cell preparations and the sorted cells were
kept in 4°C throughout the sorting. The results were analyzed with
FlowJo software 10.8.1.

Debris and erythrocytes (note: erythrocytes do not express
fluorescentmarkers under the CAG promoter and are far larger than
other splenocytes) (Fig S13E) were excluded with the gating
strategy in the side scatter–forward scatter and singlet dis-
crimination plots revealing separated fluorescent subpopula-
tions of GFP, mCherry, and BFP as confirmed by sorting on
microscopy slides (Figs S13 and S14). We sorted the subpopu-
lations with the highest expression levels of each fluorescent
tag. In total, 4 × 105 cells of GFP+, 4 × 105 of mCherry+, and 3.15 × 105

BFP+ were isolated in individual 1.5 ml Eppendorf tubes. GFP and
mCherry expression were high, but BFP expression was dim.
500 μl of each solution was then added to an individual 1.5 ml
Eppendorf tube for the fluorescent pool sample (trial mixture of
pooled cells shown Fig S13D). This was centrifuged in a 1.5 ml
Eppendorf at 4°C at 300g on a tabletop centrifuge. The super-
natant was carefully removed and resuspended in the remaining
volume. Cells were then manually counted and adjusted to a
concentration targeting the collection of 10,000 cells on the 10x
Genomics controller.

Cellplex/barnyard-pooling experiment
Spleens from one female N. viridescens (4.45 g and 10.6 cm snout-
to-tail) and one male N. viridescens (3.55 g and 10.2 cm) were
collected, pooled into one tube, and then processed as described in
“fluorescence-pooling experiment” excluding FACS cell sorting. The
only modification to the above described processing is that cells
were kept at room temperature throughout and that cells were
resuspended in 0.7X PBS with 0.04% ultrapure BSA.

For P. waltl, spleens were removed from animals as described in
“fluorescent-pooling experiment” from one adult tgSceI(CAG:loxP-
GFP-loxP-Cherry)Simon female (23.5 g and 16.1 cm snout-to-tail
length), one male tgSceI(CAG:loxP-GFP-loxP-Cherry)Simon (13.95 g
and 15.7 cm) animal. Pleurodeles were processed as individual
samples. After the spleen was thoroughly mashed through the pre-
wetted 70-μm nylon filter and the filter being washed with 10 ml of
0.7X PBS, the cells were centrifuged at 300g for 5 min. Splenocytes
were resuspended cells in 1 ml of sterile filtered 1X ACK (http://
cshprotocols.cshlp.org/content/2014/11/pdb.rec083295.short) to
lyse red blood cells. After oneminute of lysis, cells were diluted with
10ml of 0.7X PBS and filtered through a 70-μmnylonmesh filter and
centrifuged at 300g for 5 min. Cells were then resuspended in 0.7X
PBS with 0.04% ultrapure BSA.
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The pooled Notophthalmus sample and the individual Pleuro-
deles samples were then taken through the 10x Genomics 39
Cellplex–labeling protocol (CG000391; Demonstrated Protocol) the
only modifications being the use of 0.7X PBS + 0.04% BSA for all
wash and resuspension steps. Samples were stained with CM304
(Pleurodeles female), CMO305 (Pleurodeles male), and CMO306
(pool of Notophthalmus samples, one male and one female).
Samples were manually counted and pooled at equal ratios im-
mediately before loading onto the 10x Genomics Chromium Con-
troller targeting 9,000 cells in total.

Preparation and sequencing of single-cell RNA sequencing
libraries

Chromium single-cell 39 kit v3 (10x Genomics) was used according to
the manufacturer’s instructions.

Generation of SuperTranscriptome and corresponding gtf files

A P. waltl de novo transcriptome from the study of Matsunami
et al (2019) was downloaded from https://figshare.com/articles/
dataset/Trinity_Pwal_v2_fasta_gz/7106033/1 and unzipped. The
Trinity (Haas et al, 2013) singularity image v2.11.0 was then used to
generate a P. waltl SuperTranscriptome like so:

singularity exec -e trinityrnaseq.v2.11.0.simg /usr/local/bin/
trinityrnaseq/Analysis/SuperTranscripts/Trinity_gene_splice_
modeler.py –trinity_fasta Trinity_Pwal_v2.fasta –incl_malign –
out_prefix out_dir

A Notophthalmus de novo transcriptome from the study of
Abdullayev et al (2013) was downloaded from https://
sandberglab.se/static/data/papers/redspottednewt/reference_
transcripts_v2.fa.gz and decompressed. Transcripts were clus-
tered with cd-hit-est (Li & Godzik, 2006; Fu et al, 2012).

cd-hit-est -o s -d -c 0.98 -i reference_transcripts_v2.fa -p 1 -d 0 -b
3 -T 20 -M 20000000.

The resulting cdhit.clstr file was then parsed using clstr2txt.pl
from the cdhit package to generate a clusters.txt file. The id and
clstr columns were obtained from this file and used to make an
info.clusters.txt file to use with Lace (Davidson et al, 2017). Lace
v1.14.1 was run: Lace_run.py reference_transcripts_v2.fa info.clus-
ters.txt -t –cores 16 -o Noto_superTrans. The resulting gff files from
both SuperTranscriptomes were converted to a gtf using AGAT perl
script agat_convert_sp_gff2gtf.pl (Dainat et al, 2022).

Zebrafish demultiplexing

FASTQ files from a previously published study (Rubin et al, 2022)
(SRA accessions: SRR17218111, SRR17218112, SRR17218113, SRR17218114,
SRR17218091, SRR17218092) were downloaded from SRA using prefetch
followed by fasterq-dump with flags split-files and include-
technical. Files were renamed to 10x FASTQ format (e.g.,
sample_S1_L001_I1_001.fastq.gz) and then aligned using Cell
Ranger v7.0.0 count to GRCz11 with the corresponding gtf for
GRCz11 filtered via Cell Ranger mkgtf for protein_coding genes.

To merge bams in silico, a VCF file and tbi index were down-
loaded from https://research.nhgri.nih.gov/manuscripts/Burgess/
zebrafish/downloads/NHGRI-1/danRer11/danRer11Tracks/NHGRI1.

danRer11.variant.vcf.gz and https://research.nhgri.nih.gov/manuscripts/
Burgess/zebrafish/downloads/NHGRI-1/danRer11/danRer11Tracks/
NHGRI1.danRer11.variant.vcf.gz.tbi (LaFave et al, 2014) and subse-
quently filtered using bcftools v1.16. For ease of use, we used the well-
maintained and annotated Demuxafy singularity container, which
contains almost all of the demuxers and other required bioinformatic
tools, for as many analyses as possible (Neavin et al, 2022 Preprint).

singularity exec Demuxafy.sif bcftools filter –include “MAF ≥ 0.05”
-Oz –output NHGRI1.maf0.05.danRer11.variant.vcf.gz NHGRI1.danRer11.
variant.vcf.gz

singularity exec Demuxafy.sif bcftools sort -Oz NHGRI1.-
maf0.05.danRer11.variant.vcf.gz -o sorted.NHGRI1.maf0.05.danRer11.
variant.vcf.gz

The chromosomes between the vcf and gtf did not match so
bcftools annotate –rename-chrs was used to change chromosome
names in the VCF using a tab-separated file named chr.conv.txt with
the format: chr1 1, chr2 2, etc.

singularity exec Demuxafy.sif bcftools annotate –rename-chrs
chr.conv.txt sorted.NHGRI1.maf0.05.danRer11.variant.vcf.gz | singu-
larity exec Demuxafy.sif bgzip > rename.sorted.NHGRI1.maf0.05.
danRer11.variant.vcf.gz

The sample-specific bam outputs were then merged using
Vireo’s synth_pool.py script as follows:

python synth_pool.py -s sample1_genome_bam.bam,sam-
ple2_genome_bam.bam,sample3_possorted_genome_bam.bam -b
sample1/outs/filtered_feature_bc_matrix/barcodes.tsv,sample2/
outs/filtered_feature_bc_matrix/barcodes.tsv,sample3/outs/
filtered_feature_bc_matrix/barcodes.tsv -d 0.1 -o three_mix-
ed_zf -p 1 -r NHGRI1.maf0.05.danRer11.variant.vcf.gz –randomSEED
50 –nCELL 500.

Souporcell was run using souporcell_pipeline.py with inputs:
merged BAM output from synth_pool.py, the output barcodes_
pool.tsv from synth_pool.py, the genome fasta (Danio_rer-
io.GRCz11.dna.primary_assembly.fa), N = 3, and vcf file NHGRI1.maf0.05.
danRer11.variant.vcf.gz.

Souporcell
singularity exec Demuxafy.sif souporcell_pipeline.py -i pooled.bam -b
barcodes_pool.tsv -f Danio_rerio.GRCz11.dna.primary_assembly.fa -t 20
-o output -k 3 –common_variants NHGRI1.maf0.05.danRer11.variant.vcf.

Freemuxlet
We found that Freemuxlet failed when using the downloaded
VCF file but was successful when inputting the VCF and mini-
map.bam generated via souporcell when running souporcell
without a VCF. This implies that Freemuxlet may be able to be fed
a sample-derived VCF (and that this may be more reliable than a
low-quality common SNPs VCF file). An example of a VCF that
worked:

singularity exec Demuxafy.sif freebayes -f Danio_rerio.GRCz11.
dna.primary_assembly.fa -iXu -C 2 -q 20 -n 3 -E 1 -m 30 -g 100,000
souporcell_minimap_tagged_sorted.bam > zf.freebayes.vcf

Then Freemuxlet:
singularity exec Demuxafy.sif popscle dsc-pileup –sam poo-

led.bam–group-list barcodes_pool.tsv –vcf zf.freebayes.vcf –out
$FREEMUXLET_OUTDIR/pileup
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singularity exec Demuxafy.sif popscle freemuxlet –plp
$FREEMUXLET_OUTDIR/pileup –out $FREEMUXLET_OUTDIR/freemuxlet –
group-list barcodes_pool.tsv –nsample 3

singularity exec Demuxafy.sif bash Freemuxlet_summary.sh
$FREEMUXLET_OUTDIR/freemuxlet.clust1.samples.gz >
$FREEMUXLET_OUTDIR/freemuxlet_summary.tsv

Vireo:
singularity exec Demuxafy.sif samtools idxstats pooled.bam >

chromosomes.txtawk “{print $1}” chromosomes.txt | paste -s -d, >
chr.list.vireo.txt

singularity exec Demuxafy.sif cellsnp-lite -s pooled.bam -b
barcodes_pool.tsv -O $OUT_DIR -p 20 –chrom “$(<${DemuxSoupDir}
chr.list.vireo.txt)” –minMAF 0.1 –minCOUNT 100 –gzip

singularity exec ${DemuxSoupDir}Demuxafy.sif vireo -c $OUT_DIR
-o $OUT_DIR -N $N.

scSplit:
singularity exec Demuxafy.sif samtools view -b -S -q 10 -F 3844

pooled.bam > $SCSPLIT_OUTDIR/filtered_bam.bam
singularity exec Demuxafy.sif samtools rmdup

$SCSPLIT_OUTDIR/filtered_bam.bam
$SCSPLIT_OUTDIR/filtered_bam_dedup.bam

singularity exec Demuxafy.sif samtools sort -o
$SCSPLIT_OUTDIR/filtered_bam_dedup_sorted.bam
$SCSPLIT_OUTDIR/filtered_bam_dedup.bam

singularity exec Demuxafy.sif samtools index
$SCSPLIT_OUTDIR/filtered_bam_dedup_sorted.bam

singularity exec Demuxafy.sif freebayes -f
Danio_rerio.GRCz11.dna.primary_assembly.fa -iXu -C 2 -q 1
$SCSPLIT_OUTDIR/filtered_bam_dedup_sorted.bam >
$SCSPLIT_OUTDIR/freebayes_var.vcf

singularity exec Demuxafy.sif vcftools –gzvcf
$SCSPLIT_OUTDIR/freebayes_var.vcf –minQ 30 –recode –recode-
INFO-all –out $SCSPLIT_OUTDIR/freebayes_var_qual30

singularity exec Demuxafy.sif scSplit count -c
NHGRI1.maf0.05.danRer11.variant.vcf -v
$SCSPLIT_OUTDIR/freebayes_var_qual30.recode.vcf -i
$SCSPLIT_OUTDIR/filtered_bam_dedup_sorted.bam-bbarcodes_pool.tsv
-r
$SCSPLIT_OUTDIR/ref_filtered.csv -a $SCSPLIT_OUTDIR/alt_filter-
ed.csv -o $SCSPLIT_OUTDIR

singularity exec Demuxafy.sif scSplit run -r
$SCSPLIT_OUTDIR/ref_filtered.csv -a $SCSPLIT_OUTDIR/alt_filter-
ed.csv -n 3 -o $SCSPLIT_OUTDIR

singularity exec Demuxafy.sif scSplit genotype -r
$SCSPLIT_OUTDIR/ref_filtered.csv -a $SCSPLIT_OUTDIR/alt_filter-
ed.csv -p $SCSPLIT_OUTDIR/scSplit_P_s_c.csv -o $SCSPLIT_OUTDIR

singularity exec Demuxafy.sif bash scSplit_summary.sh
$SCSPLIT_OUTDIR/scSplit_result.csv.

A previously published dataset of 30 pooled zebrafish embryos
(Metikala et al, 2021) was downloaded from SRA (SRR12067711–
SRR12067712) using prefetch followed by fasterq-dump with flags
split-files and include-technical. Files were renamed to 10x FASTQ

format (e.g., sample_S1_L001_I1_001.fastq.gz) and then aligned using
Cell Ranger v7.0.0 count to GRCz11 with the corresponding gtf for
GRCz11 filtered via Cell Ranger mkgtf for protein_coding genes. The
output possorted_genome_bam.bam and filtered barcodes.tsv file
were then used to run souporcell:

singularity exec Demuxafy.sif souporcell_pipeline.py -i
possorted_genome_bam.bam -b barcodes.tsv -f Danio_rer-
io.GRCz11.dna.primary_assembly.fa -t $THREADS -o $SOU-
PORCELL_OUTDIR -k 30 –common_variants NHGRI1.maf0.05.
danRer11.variant.vcf

The clusters.tsvfile output from souporcell was thenused to evaluate
cluster distributionof cells. Code for this is thebasis for Figs S6 and S12 is
here: https://github.com/RegenImm-Lab/SNPdemuxPaper.

Xenopus souporcell demultiplexing

The Cell Ranger BAM file (https://sra-pub-src-2.s3.amazonaws.com/
SRR13600554/107606_Xen_Pool_BL7_10_14dpa.bam.1) from a previ-
ously published publicly available dataset (Lin et al, 2021) of
fluorescent-expressing X. laevis cells pooled from eight animals: two
blastemas of two siblings (CAGGs:Venus), three blastemas of three
siblings (CAGGs:mCherry, B51), and three samples from three siblings
(CAGGs:TFPnls, G48) were download directly. SAMtools (Li et al, 2009)
was used to index the BAM before running default souporcell pipeline
with the barcodes file (https://ftp.ncbi.nlm.nih.gov/geo/samples/
GSM5057nnn/GSM5057661/suppl/GSM5057661_107606_Xen_Pool_BL7_
10_14dpa_barcodes.tsv.gz), X. laevis genome FASTA (https://sra-pub-
src-2.s3.amazonaws.com/SRR13600553/Xenbase_v9.2.fa.1), and N = 8.
Note: this specific reference includes the plasmid sequences neces-
sary for mapping to fluorescent sequences.

Axolotl in silico mixing and souporcell demultiplexing

FASTQ files from a previously published (Lust et al, 2022) axolotl
single-nucleus RNA sequencing dataset were downloaded. Li-
braries from ArrayExpress (E-MTAB-11662) labeled “reseq” and from
samples D_1, L_1, and M_1, three individual animals all run on
individual wells on a 10x Genomics chip were downloaded. To make
a Cell Ranger reference, the axolotl genome (AmexG_v6.0-DD) was
downloaded from https://www.axolotl-omics.org/dl/AmexG_v6.0-
DD.fa.gz along with a gtf (AmexT_v47-AmexG_v6.0-DD.gtf) https://
www.axolotl-omics.org/dl/AmexT_v47-AmexG_v6.0-DD.gtf.gz,
which required the removal of white space (i.e, sed “s/\ \[/_/g”) for
use with Cell Ranger (v7.0.0) mkref. Cell Ranger count was run on
each library individually, resulting in three position–sorted BAM
files from samples D_1, L_1, and M_1. BAM files were merged using
synth_pool.py from Vireo (Huang et al, 2019) using the VCF downloaded
from (http://ambystoma.uky.edu/hubExamples/hubAssembly/
hub_AmexG_v6/AmexG_v6.hub_data/SNP_vcf_tracks/ddMale_to_
AmexGv6.vcf.gz) which was filtered using BCFtools v1.11.

bcftools filter –include “MAF ≥ 0.05” -Oz –output ddMale.-
common_maf0.05.vcf.gz ddMale_to_AmexGv6.vcf and then sorted:

bcftools sort -Oz ddMale.common_maf0.05.vcf -o
sorted.ddMale.common_maf0.05.vcf.gz
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Barcodes.tsv files were obtained from filtered outputs of Cell
Ranger count for each library. Doublet rate (-d) was set to 0.1 and
–randomSEED 50.

python synth_pool.py -s /D_1/outs/possorted_genome_bam.
bam,/L_1/outs/possorted_genome_bam.bam,/M_1/outs/possorted_
genome_bam.bam /D_1/filtered_feature_bc_matrix/barcodes.tsv,/
L_1/outs/filtered_feature_bc_matrix/barcodes.tsv,/M_1/outs/
filtered_feature_bc_matrix/barcodes.tsv -d 0.1 -o pooled_bam -p 1 -r
sorted.ddMale.common_maf0.05.vcf.gz –randomSEED 50.

Note: we only expected the troublet portion of souporcell to be
capable of detecting heterotypic doublets, so for downstream
analysis of this synthetically pooled data, we removed all homo-
typic doublets.

The pooled BAM was indexed using SAMtools index-c which
made a .csi index and was renamed to have a .bai file extension for
use in souporcell. Souporcell was run using souporcell_pipeline.py
with inputs: merged BAM output from synth_pool.py, the output
barcodes_pool.tsv from synth_pool.py, the genome fasta
(AmexG_v6.0-DD.fa), N = 3, VCF file ddMale.common_maf0.05.vcf.gz,
and –skip_remap SKIP_REMAP.

singularity exec Demuxafy.sif souporcell_pipeline.py -i poo-
led.bam -b barcodes_pool.tsv -f AmexG_v6.0-DD.fa -t 20 -o output
-k 3 –skip_remap SKIP_REMAP –common_variants ddMale.
common_maf0.05.vcf

Green monkey (Chlorocebus aethiops) in silico mixing and
demultiplexing

Five samples were downloaded from a previously published
dataset (Speranza et al, 2021). Data were downloaded from SRA
using prefetch followed by fasterq-dump with flags split-files and
include-technical. FASTQ files were obtained from AGM1_Medias-
tinal Lymph Node (SRR12507774–SRR12507781), AGM3_Mediastinal
Lymph Node (SRR12507790–SRR12507797), AGM5_Mediastinal Lymph
Node (SRR12507806–SRR12507813), AGM7_Mediastinal Lymph Node
(SRR12507822–SRR12507829), and AGM9_Mediastinal Lymph Node
(SRR12507846–SRR12507853). C. aethiops has a robust VCF file
available (European Variation Archive: PRJEB7923) that needs to be
used in conjunction with genome assembly Chlorocebus_sabeus 1.1
(GCA_000409795.2). This assembly did not have an annotation file
available, and we generated a gtf file for this GenBank assembly
using minimap2 (Li, 2018) and the below described steps.

minimap2 -ax splice:hq -t 10 GCF_000409795.2_Chlorocebus_sabeus_1.1_cds_-
from_genomic.fna GCA_000409795.2_Chlorocebus_sabeus_1.1_genomic.fna |
samtools sort -O BAM -o minimap2.bam.

Followed by BEDtools (Quinlan & Hall, 2010):
bedtools bamtobed -bed12 -i trans2gene.minimap2.bam >

alignments.bedbedToGenePred alignments.bed alignments.ge-
nepred genePredToGtf “file” alignments.genepred GCA_
000409795.2.minimap.gtf

This gtf was then used with GCA_000409795.2_
Chlorocebus_sabeus_1.1_genomic.fna to generate a Cell Ranger
reference using Cell Ranger mkref. Cell Ranger count was used with
default settings to align the downloaded libraries. To merge the
BAM outputs, we first used BCFtools (Danecek et al, 2021) to filter,
sort, and change chromosomes name in the VCF:

bcftools filter –include “MAF ≥ 0.05” -Oz –output Vervet.-
maf0.05.500KFinal_EVA.vcf.gz Vervet500KFinal_EVA.vcf.gzbcftools sort -Oz
Vervet.maf0.05.500KFinal_EVA.vcf.gz -o sorted.Vervet.maf0.
05.500KFinal_EVA.vcf.gz

And then converted chromosome names in this VCF to match the
chromosomes in the bam files after mapping. chr_name_conv.txt
has the format of “1 CM001941.2,” with 1 being the original chro-
mosome number and CM001941.2 being the chromosome accession
number; this was carried out from chromosome 1–29.

bcftools annotate –rename-chrs chr_name_conv.txt
sorted.Vervet.maf0.05.500KFinal_EVA.vcf.gz | bgzip >
rename.sorted.Vervet.maf0.05.500KFinal_EVA.vcf.gz

Because of low reads/cell in these libraries, we selected barc-
odes using Seurat with between 1,000 and 2,000 features. These
filtered barcode files were used with 10x subset-bam (https://
github.com/10XGenomics/subset-bam) (e.g., subset-bam –bam
possorted_genome_bam.bam –cell-barcodes filtered.barcodes.tsv
–out-bam filtered.bam) to create BAMs with these high quality cells.
BAMs were subsequently merged using Vireo:

synth_pool.py filt.LN1.bam,filt.LN3.bam,filt.LN5.bam,filt.LN7.bam,-
filt.LN9.bam -b LN1.barcodes.tsv,LN3.barcodes.tsv,LN5.barco-
des.tsv,LN7.barcodes.tsv,LN9.barcodes.tsv -r rename.sorted.
Vervet.maf0.05.500KFinal_EVA.vcf -d 0.1 -o mixed_monkey -p 1.

Finally, cells were SNP demultiplexed using souporcell:
singularity exec Demuxafy.sif souporcell_pipeline.py -i poo-

led.bam -b barcodes_pool.tsv -f GCA_000409795.2_Chlorocebus_
sabeus_1.1_genomic.fna -t 20 -o output -k 5 –skip_remap
SKIP_REMAP –common_variants rename.sorted.Vervet.maf0.05.
500KFinal_EVA.vcf

Freemuxlet:
Important note: as with the zebrafish data, we found that

Freemuxlet failed when using the downloaded VCF file but was
successful when inputting the VCF and minimap.bam generated via
souporcell when running souporcell without a VCF. See above
Freemuxlet zebrafish code for an example.

singularity exec Demuxafy.sif popscle dsc-pileup –sam pooled.bam
–group-list barcodes_pool.tsv –vcf souporcell_merged_
sorted_vcf.vcf.gz–out $FREEMUXLET_OUTDIR/pileup

singularity exec Demuxafy.sif popscle freemuxlet –plp $FREE-
MUXLET_OUTDIR/pileup –out $FREEMUXLET_OUTDIR/freemuxlet –group-
list barcodes_pool.tsv –nsample5

singularity exec Demuxafy.sif bash Freemuxlet_summary.sh
$FREEMUXLET_OUTDIR/freemuxlet.clust1.
samples.gz > $FREEMUXLET_OUTDIR/freemuxlet_summary.tsv

Vireo:
A list of chromosomes to pass to cellsnp-lite was made:
singularity exec Demuxafy.sif samtools idxstats poo-

led.sorted.bam > chromosomes.txt
awk “{print $1}” chromosomes.txt | paste -s -d, > chr.list.vireo.txt.

And then cellsnp-lite and Vireo were run:
singularity exec Demuxafy.sif cellsnp-lite -s pooled.bam -b

barcodes_pool.tsv –chrom “$(<${chr_list}chr.list.vireo.txt)” -O
$VIREO_OUTDIR -p 20 –minMAF 0.1 –minCOUNT 100 –gzip

singularity exec Demuxafy.sif vireo -c $VIREO_OUTDIR -o $VIR-
EO_OUTDIR -N 5.
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scSplit:
singularity exec Demuxafy.sif samtools view -b -S -q 10 -F 3844

pooled.bam > $SCSPLIT_OUTDIR/filtered_bam.bam
singularity exec Demuxafy.sif samtools rmdup

$SCSPLIT_OUTDIR/filtered_bam.bam
$SCSPLIT_OUTDIR/filtered_bam_dedup.bam

singularity exec Demuxafy.sif samtools sort -o
$SCSPLIT_OUTDIR/filtered_bam_dedup_sorted.bam
$SCSPLIT_OUTDIR/filtered_bam_dedup.bam

singularity exec Demuxafy.sif samtools index $SCSPLIT_OUTDIR/
filtered_bam_dedup_sorted.bam

singularity exec Demuxafy.sif freebayes -f
GCF_000409795.2_Chlorocebus_sabeus_1.1_cds_from_genomic.fna
-iXu -C 2 -q 1 $SCSPLIT_OUTDIR/filtered_bam_dedup_sorted.bam >
$SCSPLIT_OUTDIR/freebayes_var.vcf

singularity exec Demuxafy.sif vcftools –gzvcf
$SCSPLIT_OUTDIR/freebayes_var.vcf –minQ 30 –recode –recode-
INFO-all –out $SCSPLIT_OUTDIR/freebayes_var_qual30

singularity exec Demuxafy.sif scSplit count -c
$SCSPLIT_OUTDIR/freebayes_var.vcf -v
$SCSPLIT_OUTDIR/freebayes_var_qual30.recode.vcf -i
$SCSPLIT_OUTDIR/filtered_bam_dedup_sorted.bam -b barcodes_
pool.tsv -r
$SCSPLIT_OUTDIR/ref_filtered.csv -a $SCSPLIT_OUTDIR/alt_filter-
ed.csv -o $SCSPLIT_OUTDIR

singularity exec Demuxafy.sif scSplit run -r
$SCSPLIT_OUTDIR/ref_filtered.csv -a $SCSPLIT_OUTDIR/alt_filter-
ed.csv -n $N -o $SCSPLIT_OUTDIR

singularity exec Demuxafy.sif scSplit genotype -r
$SCSPLIT_OUTDIR/ref_filtered.csv -a $SCSPLIT_OUTDIR/alt_filter-
ed.csv -p $SCSPLIT_OUTDIR/scSplit_P_s_c.csv -o $SCSPLIT_OUTDIR

singularity exec Demuxafy.sif bash scSplit_summary.sh
$SCSPLIT_OUTDIR/scSplit_result.csv

Pleurodeles mapping and SNP-based demultiplexing

Cell Ranger 7.0.0 mkref command was used with the above listed
Pleurodeles SuperTranscriptome FASTA and gtf files to produce a
Cell Ranger compatible reference. Cell Ranger 7.0.0 count command
was then used to map and count reads over the transcriptome for
the three transgenic animal scRNA-seq dataset.

Souporcell (Heaton et al, 2020)-related processes were all run
from a Demuxafy (Neavin et al, 2022 Preprint) singularity image (image
version 1.0.3). The remapping and variant calling stages of souporcell
were run externally because of problems with timeouts on the
remapping process with the large salamander transcriptome, and
issues with the souporcell internal freebayes command failing. The
VCF from freebayes was then used in souporcell pipeline with the
–skip_remap SKIP_REMAP and–common_variants ${VCF}. Full scripts
used for souporcell processes are included below. Summary of
souporcell run details can be found in Fig S12.

export

SINGULARITY_BIND = “${DemuxSoupDir},${MappingAnalysisDir},
${FastaDir}”

singularity exec ${DemuxSoupDir}Demuxafy.sif renamer.py –bam
$BAM –barcodes $BARCODES –out ${OutputName}.fq

singularity exec ${DemuxSoupDir}Demuxafy.sif minimap2 -ax
splice -I 9 G -t 20 -G50k -k 11 -K 50M -w 15 –sr -A2 -B8 -O12,32 -E2,1
-r200 -p.5 -N20 -f1000,5000 -n2 -m20 -s40 -g2000 -2K50m
–secondary = no ${FASTA} ${OutputName}.fq > minimap.sam

singularity exec ${DemuxSoupDir}Demuxafy.sif retag.py –sam
minimap.sam –out minimap_tagged.bam

singularity exec ${DemuxSoupDir}Demuxafy.sif samtools sort
minimap_tagged.bam > minimap_tagged_sorted.bam

singularity exec ${DemuxSoupDir}Demuxafy.sif samtools index
minimap_tagged_sorted.bam

#freebayes run:
singularity exec ${DemuxSoupDir}Demuxafy.sif freebayes -f

${FASTA} -iXu -C 2 -q 20 -n 3 -E 1 -m 30 –min-coverage 6 mini-
map_tagged_sorted.bam > free.vcf

#souporcell run.
VCF = ${CurrentAnalysisDir}free.vcf

singularity exec ${DemuxSoupDir}Demuxafy.sif souporcell_pipeline.py -i
${CurrentAnalysisDir}minimap_tagged_sorted.bam -b ${BARCODES} -f
${FASTA} -t 20 -o ${OutputName} -k $N –skip_remap SKIP_REMAP
–common_variants ${VCF}

Pooled Pleurodeles and Notophthalmus mapping and SNP-based
demultiplexing

A dual species Cell Ranger 7.0.0 reference was made using the
SuperTranscriptomes and corresponding gtf files (described above)
from the two species using Cell Ranger mkref command. The two
species, four animal, pooled scRNA-seq from Pleurodeles and
Notophthalmus dataset was then mapped to this dual species index
using Cell Ranger 7.0.0 count command. In addition, the Cell Ranger 7.0.0
multi-command was used to assess multiplexing Cellplex information
for all cells in the samedataset. For the Cell Rangermulti-command, the
following flags were used: (expect cells 10,000, min-assignment-
confidence 0.6). Souporcell demultiplexing was run identically to
above on the Pleurodeles only samples but with N = 4, and the relevant
FASTQ and dual species reference transcriptome FASTA files.

Inbred mouse mapping and SNP-based demultiplexing

C57BL/6 data were downloaded from SRR15502048, SRR15502052,
and SRR15502056 (Crowl et al, 2022). For DBA data (Shinozaki et al,
2022) possorted.bam files were downloaded from SRA.
wget https://sra-pub-src-1.s3.amazonaws.com/SRR20079758/
WT3_possorted_genome_bam.bam.1

Genetic demultiplexing of scRNA-seq data from model organisms Cardiello et al. https://doi.org/10.26508/lsa.202301979 vol 6 | no 8 | e202301979 15 of 20

https://www.ncbi.nlm.nih.gov/sra/SRR15502048
https://www.ncbi.nlm.nih.gov/sra/SRR15502052
https://www.ncbi.nlm.nih.gov/sra/SRR15502056
https://sra-pub-src-1.s3.amazonaws.com/SRR20079758/WT3_possorted_genome_bam.bam.1
https://sra-pub-src-1.s3.amazonaws.com/SRR20079758/WT3_possorted_genome_bam.bam.1
https://doi.org/10.26508/lsa.202301979


wget https://sra-pub-src-1.s3.amazonaws.com/SRR20079759/
WT2_possorted_genome_bam.bam.1
wget https://sra-pub-src-2.s3.amazonaws.com/SRR20079760/
WT1_possorted_genome_bam.bam.1.

bamtofastq v1.4.1 was used to generate FASTQ files for subse-
quent mapping. A Cell Ranger reference was obtained from the 10x
Genomics website (https://cf.10xgenomics.com/supp/cell-exp/
refdata-gex-mm10-2020-A.tar.gz) and Cell Ranger 7.0.0 count
command was then used to map and count reads from each strain
and dataset.

A VCF file and index were obtained from https://ftp.ebi.ac.uk/
pub/databases/mousegenomes/REL-2112-v8-SNPs_Indels/mgp_
REL2021_snps.vcf.gz, https://ftp.ebi.ac.uk/pub/databases/
mousegenomes/REL-2112-v8-SNPs_Indels/mgp_REL2021_snps.
vcf.gz.csi, and chromosomes were renamed as previously
described in the zebrafish and green monkey sections above.

bcftools annotate –rename-chrs Conv.chr mgp_REL2021_snps.vcf.gz |
bgzip > rename.mgp_REL2021_snps.vcf.gz

To pool bams, wemodified the original synth_pool.py script from
Vireo’s GitHub repository which was memory intensive and only
allowed for pooling in the presence of a VCF file (https://
zenodo.org/record/7929057). To enable more widespread use,
we now stabilized memory use throughout the pooling and added
an option (–noregionFile) which can pool in the absence of a VCF
file. This means that species that do not possess a VCF file can still
do the in silico ground truth benchmarking we performed in this
study. A pull request has been initiated to propagate the changes
to Vireo’s main GitHub repository (https://github.com/single-
cell-genetics/vireo/pull/81). The modified version was used to
pool the mouse data below. Note: if the pull request is accepted
then calling the synth_pool.py script from Vireo’s GitHub re-
pository will in fact be this modified script with new options
added. This script can produce identical pooled BAM files to the
original.

python synth_pool.py -s possorted_genome_bam.bam,possorted_
genome_bam.bam,possorted_genome_bam.bam -b barcodes.tsv,
barcodes.tsv,barcodes.tsv -d 0.1 -o mixed_mice -p 6 -r rename.mgp_
REL2021_snps.vcf.gz –randomSEED 50.

Vireo and souporcell were run as per the previous species
and assignment percentages for souporcell were assessed via
awk -F “\t” “{print $2}” clusters.tsv | sort | uniq -c | sort -nr
followed by calculation (singlet assignments/total cells)*100.
For Vireo, the “final donor size” numbers were used and per-
centage assigned calculated by ((donor0+donor1+donor2)/
unassigned)*100.

Souporcell analysis details summary

A summary figure reviews the computational details used to run
souporcell on the above datasets (Fig S12). Overall, the standard
souporcell default pipeline was used initially, but additional flags
or pieces of the souporcell pipeline were run externally when this
failed because of memory constraints or other problems. All SNP
demuxers were run from a Demuxafy (Neavin et al, 2022 Preprint)
singularity container (image version 1.0.3). SNP numbers in each VCF
were counted using: grep “##” VCFname | wc -l.

For analyses of Pleurodeles and dual species datasets, the
first two steps of the souporcell pipeline were run separately and
then the output from these was introduced back into the sou-
porcell pipeline for completion (Fig S12). This allowed us to
adjust computational parameters in the remapping stage that
permitted the function to finish.

Analysis and benchmarking of souporcell assignments: R analysis

A two part analysis in R and then Python was used to evaluate the
efficacy of souporcell demultiplexing for each dataset. Scripts in R
(version 4.1.2) primarily using Seurat (version 4.1.0) (Hao et al, 2021)
were used to evaluate souporcell cell assignments found in the clus-
ters.tsv file through comparison with known cell identities or cell as-
signments based on fluorescence, barnyard analysis, or CMO labeling.
Full R scripts for all analyses are deposited in the GitHub page for clarity
(https://github.com/RegenImm-Lab/SNPdemuxPaper). Seurat was
used to import and analyze single-cell gene expression data for all
datasets and to analyze the multiplexing capture data for the dual-
species Cellplex (CMO)-labeled dataset.

Cell filtering

For UMAP plots and all bar plots in benchmarking analysis, cells for
all experimentally pooled datasets were filtered before analysis to
select for cells most likely to have accurate calls by the respective
benchmarking assay. Cell Ranger default filtered cells were parsed
to select cells with between 5,000 and 40,000 mapped reads for
each dataset. In addition, for Figs 2 and 3, we removed cells lacking
counts of any of the three fluorescent mRNAs. Cell assignments
based on fluorescence or Cellplex labeling were made through the
analysis of fluorescent reads or Cellplex CMO reads by the Seurat
MULTIseqDemux function (autoThresh = T) (McGinnis et al, 2019).
Although the MULTIseqDemux function is written to assign cell
identities based on CMO labels, we found that it works well with
data from overexpressed fluorescent gene mRNAs. For analysis
purposes, souporcell demultiplexing numerical cell labels were
adjusted to relevant sample names based on correlation analyses
to each relevant benchmarking demultiplexing method. UMAP
(McInnes et al, 2018 Preprint) and upset plots (Lex et al, 2014) were
generated in R scripts and annotated in Affinity Designer. A
dataframe with compiled cell assignment information was
exported to Python for further analysis.

Session info including package numbers for R analyses are
embedded in the GitHub page (https://github.com/RegenImm-
Lab/SNPdemuxPaper), and included R version 4.1.2 (2021-11-01).

Analysis and benchmarking of souporcell assignments:
Python analysis

Analyses of read depth versus Cell ID% and quantitative bench-
marking of souporcell demultiplexing results was carried out in
Google Colab notebooks shared below, using Python version 3.7,
NumPy version 1.21.6 (Harris et al, 2020), Pandas version 1.3.5 (Reback
et al, 2021), Matplotlib version 3.2.2 (Hunter, 2007), SciPy version 1.7.3
(Virtanen et al, 2020), Seaborn version 0.11.2 (Waskom, 2021).

Google Colab links for analyses are located here:
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Xenopus: https://colab.research.google.com/drive/1lO4ny8Uv9n1lPIb
HmZKFPyxWI7gjmZPs?usp=sharing.

Pleurodeles:
https://colab.research.google.com/drive/1Zbbpi1WwfKGwrr

FhuecrHE3lSjP0Pzsz?usp=sharing.
Pleurodeles and Notophthalmus cellplex:
https://colab.research.google.com/drive/12ZNvvfiUt3DL6Up

Tg8BjQMSd4Y-6yM3u?usp=sharing.
Pleurodeles and Notophthalmus barnyard:
https://colab.research.google.com/drive/1JS8kRUGAioDM2IvYa4o

BDzNMKLxBhHV_?usp=sharing.
Zebrafish, axolotl, and green monkey:
https://colab.research.google.com/drive/1yXzE3WJ05hEJKdy7owi

XOpCjYvUm4DDJ?usp=sharing.

Calculation of cell ID %

All cells were sorted by total mapped read depth, and binned into
40 groups before calculating Cell ID%, and average total and
fluorescent read depth were relevant. Cell ID % is defined as the
percentage of cells in each bin that were assigned an individual
sample identity (non-doublet, non-negative result) by a demulti-
plexing method. Cell ID value for each bin was then plotted against
average total mapped reads. For datasets including fluorescent
transgenic lines, binned data are also colored by the average
number of summed mapped fluorescent reads per cell.

Bar plots: filtered datasets were subset by the animal or animal
group assignment from each demultiplex method being used to
benchmark souporcell results. Within those subsets, the total cell
quantity of cells assigned to each identity by souporcell was
plotted (left plots). Alternatively, within each benchmarking
demux result subset, the percentage of cells assigned to each
identity by souporcell was calculated by dividing by total cells
assigned to that identity by the benchmarking demuxer and
multiplied by 100.

SNP density calculations

VCF files were generated from 10x BAMs and the species-specific
reference using VCFtools v1.11 with:

bcftools mpileup -f $GENOME -b bamlist –threads 10 | bcftools
call -m -Oz -f GQ –threads 10 -o allsites.vcf

SNP density per kilobase was then calculated using VCFtools v
0.1.15:

vcftools –SNPdensity 1000 –gzvcf allsites.vcf.gz
This outputs an out.snpden file, and average SNP density across

all sites was calculated using: awk “{ total + = $4; count++ } END {
print total/count }” out.snpden

Data Availability

Data are available on ArrayExpress with accession E-MTAB-12186 for
three animal pooled Pleurodeles splenocyte scRNA-seq and
ArrayExpress accession E-MTAB-12182 for four animal pooled
Pleurodeles and Notophthalmus splenocyte scRNA-seq. Code used

to analyze the data are present in the Materials and Methods
section, in linked Colab notebooks, or via GitHub (https://
github.com/RegenImm-Lab/SNPdemuxPaper) All other data used
in the study were from previously published works of which ac-
cessions are noted in the Materials and Methods section.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202301979.
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