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A new metabolic model of Drosophila melanogaster and
the integrative analysis of Parkinson’s disease
Müberra Fatma Cesur1, Arianna Basile2 , Kiran Raosaheb Patil2 , Tunahan Çakır1

High conservation of the disease-associated genes between flies
and humans facilitates the common use of Drosophila mela-
nogaster to studymetabolic disorders under controlled laboratory
conditions. However, metabolic modeling studies are highly lim-
ited for this organism. We here report a comprehensively curated
genome-scale metabolic network model of Drosophila using an
orthology-based approach. The gene coverage and metabolic in-
formation of the draft model derived from a reference human
model were expanded via Drosophila-specific KEGG and MetaCyc
databases, with several curation steps to avoid metabolic redun-
dancy and stoichiometric inconsistency. Furthermore, we performed
literature-based curations to improve gene–reaction associa-
tions, subcellular metabolite locations, and various metabolic
pathways. The performance of the resulting Drosophila model
(8,230 reactions, 6,990 metabolites, and 2,388 genes), iDrosophila1
(https://github.com/SysBioGTU/iDrosophila), was assessed using
flux balance analysis in comparison with the other currently
available fly models leading to superior or comparable results. We
also evaluated the transcriptome-based prediction capacity of
iDrosophila1, where differential metabolic pathways during Parkin-
son’s disease could be successfully elucidated. Overall, iDrosophila1 is
promising to investigate system-level metabolic alterations in re-
sponse to genetic and environmental perturbations.

DOI 10.26508/lsa.202201695 | Received 27 August 2022 | Revised 11 May
2023 | Accepted 12 May 2023 | Published online 26 May 2023

Introduction

Drosophila melanogaster is a well-known model organism with
highly tractable genetics for gaining insight into human metabolism.
It contains the counterparts of various essential human systems
such as the central nervous system, gastrointestinal system, kidney
(Malpighian tubule in fly), adipose tissue (fly fat body), and liver (fly
oenocytes) (Capo et al, 2019). In addition to this conservation, shorter
lifespan (transition from embryo to adulthood within 10–14 d), rapid
generation time, large numbers of progeny, a well-defined genome,
substantially less genetic redundancy, and the availability of advanced

genetic tools for this organism have encouraged researchers to
investigate many aspects of human diseases via Drosophila (Mizuno
et al, 2011; Mirzoyan et al, 2019). Highly conserved disease pathways in
humans have been extensively analyzed based on the Drosophila
genes, which share nearly 75–77% homology with disease-associated
human genes (Reiter et al, 2001; Pandey & Nichols, 2011; Mirzoyan
et al, 2019).

Genome-Scale Metabolic Network (GMN) models facilitate the
mathematical representation of biological knowledge about cellular
metabolism through the inclusion of all known chemical reactions,
metabolites, and genes for an organism. The genes are linked to the
associated reactions via conditional statements in Boolean logic,
which are known as gene–protein-reaction (GPR) rules (Gu et al,
2019). Metabolicmodels hold promise to address numerous scientific
questions and open novel avenues for identifying potential drug
targets, detecting putative biomarkers, in silico metabolic engi-
neering, pan-reactomeanalyses, understandingmetabolic disorders,
and modeling host–pathogen interactions (Oberhardt et al, 2013;
Nielsen & Keasling, 2016; Gu et al, 2019). Therefore, a large number
of GMN models have been developed so far for prokaryotic and
eukaryotic model organisms (Gu et al, 2019). Despite impressive
experimental efforts and evolving technologies, there is only one
recent metabolic model representing comprehensive D. mela-
nogaster metabolism. This model called Fruitfly1 (12,056 reactions,
8,132 metabolites, and 2,049 genes) (Wang et al, 2021) was derived
from the generic human GMN (Human1) (Robinson et al, 2020) based
on gene orthology information from the Alliance of Genome Re-
sources (The Alliance of Genome Resources Consortium, 2020). An-
other comprehensive Drosophila model (BMID000000141998) was
developed in 2013 without any manual curations (Büchel et al, 2013).
It consists of 6,198 reactions, 2,873 metabolites, and 4,020 genes.
Despite the high gene coverage of this model, it allows the synthesis
of all biomass components even without any consumption of carbon
sources (Büchel et al, 2013; Schönborn et al, 2019). In addition, two
curated small-scale metabolic models (flight muscle and larval
models) are available for this organism. They represent only the core
metabolism of Drosophila (Feala et al, 2007; Schönborn et al, 2019).
The flight muscle model (194 reactions, 188 metabolites, and 167
genes) was developed in 2007 to elucidate cellular adaptation
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mechanisms against hypoxia and it was revised in 2008 (Feala et al,
2007; Coquin et al, 2008). More recently, the second metabolic
model called FlySilico (363 reactions, 293 metabolites, and 261
genes) was built to simulate larval development (Schönborn et al,
2019). The core models are not suitable for studying the complex
metabolism of the fruit fly.

Comprehensive metabolic network models can be developed
considering genetic similarities between organisms. This semiau-
tomatic reconstruction approach begins with the creation of a draft
model based on a template model. The template model should have
a high genetic similarity with the organism of interest. The genes of
this reference network are replaced by their orthologous counter-
parts in the target organism. In this way, existing information about
gene associations is transferred to reconstruct new GMN models
(Khodaee et al, 2020). To date, orthology-based GMN models have
been developed for several organisms because of the high degree of
genomic homology between humans and these model organisms
(Sigurdsson et al, 2010; Blais et al, 2017; Khodaee et al, 2020; Wang
et al, 2021). In the current study, we developed a GMN model of D.
melanogaster using a curated version of the Human Metabolic
Reaction 2 (HMR2) model (Mardinoglu et al, 2014), as the template
(Radic Shechter et al, 2021; Zirngibl, 2021). This HMR2-based draft
model was reconstructed through the orthology-based mapping of
Drosophila genes. Then, it was expanded based on metabolic in-
formation in KEGG and MetaCyc databases. Manual curation steps
were performed for each model component in several steps of the
reconstruction process. Thus, we reconstructed a comprehensively
curated D. melanogastermodel called iDrosophila1. This GMN model
was analyzed in terms of its phenotypic prediction ability and gene
essentiality prediction. Furthermore, iDrosophila1 was shown to
represent metabolic changes consistent with Parkinson’s disease
(PD). Overall, we believe that iDrosophila1 can enable extensive
characterization of fly metabolism and the study of the molecular
basis of complex human diseases.

Results and Discussion

Here, we developed a comprehensive GMN model for D. mela-
nogaster using available metabolic information. In the recon-
struction process, extensive model curations associated with
metabolic redundancy, gene/compound name standardization,
and missing/incomplete components were performed. These
reaction-centric, metabolite-centric, and gene-centric curation
steps were commonly applied for both the draft metabolic network
and the KEGG-MetaCyc metabolic network as explained in the
Materials and Methods section. Thus, we aimed to avoid any in-
consistencies and redundancies in the reconstructed networks by
revising each metabolic component (reactions, metabolites, and
genes). Additional curations were also applied, if necessary. Overall,
the model reconstruction process is summarized in Fig 1.

Draft reconstruction of Drosophila metabolic networks

As the starting point, we reconstructed a draft D. melanogaster
model based on a recent template human model using an

orthology-based approach. The template model, an improved
version of the HMR2, incorporates several improvements based on
the experimental results and the available sources (e.g., previous
GMN models) for accurate phenotype predictions and appropriate
contextualization (Radic Shechter et al, 2021; Zirngibl, 2021). The
HMR2 is the updated version of the human metabolic reaction
(HMR) database (Agren et al, 2012), derived from the Edinburgh
human metabolic network (Hao et al, 2010), Recon1 (Duarte et al,
2007), and external databases (Mardinoglu et al, 2014). The modi-
fications in the HMR2-derived template human model mainly in-
clude the addition of mitochondrial intramembrane space, the
removal of atomically imbalanced reactions, the curation of GPR
associations, and the revision of reactions from the beta-oxidation
pathway. The addition of the mitochondrial intramembrane space
is particularly promising for predictions on respiratory ATP syn-
thesis (Radic Shechter et al, 2021; Zirngibl, 2021). We further curated
the GPR rules of the template model based on the information
about protein complexes in the iHsa model (Blais et al, 2017). Thus,
over 300 GPR associations were curated. In the reconstruction
process of the draft fly model, we used metabolic information in
the curated human model. In this process, the GPR rules of the
template model were converted to Drosophila GPR rules via
orthology-based gene mapping at a high confidence level, as
explained in the Materials and Methods section. At least one
Drosophila ortholog was identified for 1,986 out of 2,479 human
model genes (Table S1). Only one Drosophila ortholog was
assigned to ~90% of the human genes, whereas the remaining
genes were matched with multiple orthologs. The presence of the
same Drosophila orthologs for some human genes led to re-
dundancy in the GPR rules in the draft network. These genes were
revised to remove redundancy in the model. Gene-associated
human model reactions with no Drosophila orthologs were not
included in the draft model. We also kept the nonenzymatic re-
actions in the model. This approach enabled the generation of an
HMR2-based draft Drosophila model through the transfer of in-
formation about gene associations. Importantly, the HMR2-based
template human model contains eight intracellular compart-
ments (cytosol, nucleus, Golgi apparatus, endoplasmic reticulum,
mitochondria, mitochondrial intermembrane space, lysosome,
and peroxisome) along with their Gene Ontology IDs, and this
information was also transferred to the draft Drosophila model.
The reconstructed draft model includes 6,873 reactions, 4,856
metabolites, and 1,321 genes.

Using the metabolic information in KEGG and MetaCyc data-
bases, a KEGG–MetaCyc metabolic network was also generated for
D. melanogaster. We encountered two major issues with this
network including (1) a need for the modification of metabolite
names and (2) the lack of compartmentalization. As highlighted
before, the main contribution of the KEGG–MetaCyc network is to
expand gene coverage and available metabolic information in the
HMR2-based draft model. Therefore, metabolite names in the
KEGG–MetaCyc network should be compatible with the draft model
for proper merging. To do so, we updated compound names in the
KEGG–MetaCyc network by replacing them with the counterparts in
the HMR2-based draft model (Fig S1). This step is critical to reduce
potential metabolic redundancy in the merged model. To avoid
metabolic redundancy, we also removed the KEGG–MetaCyc genes
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that were shared by the draft model, leading to a KEGG–MetaCyc-
specific metabolic network. In this step, we determined 1,197
KEGG–MetaCyc-specific genes and 811 common genes. The KEGG–
MetaCyc-specific genes were characterized by identifying enriched
KEGG pathways. In addition to the fundamental pathways (e.g.,
carbohydrate, amino acid, fatty acid, and cofactor metabolism),
drug and xenobiotic metabolic processes were found among the
enriched pathways (Table S2). Xenobiotics are any exogenous life-
threatening, toxic compounds (e.g., pharmaceuticals, pesticides,
and pollutants) to which organisms are exposed (Misra et al, 2011;
Trinder et al, 2017). The role of xenobiotics in neurodegenerative
disorders like Alzheimer’s disease (AD) and PD was reported (Chin-
Chan et al, 2015; Bjørklund et al, 2020). Accordingly, rotenone and
paraquat are commonly used to induce a PD-like phenotype (e.g.,
movement disorders and loss of dopaminergic neurons) in Dro-
sophila by triggering oxidative stress (Coulom & Birman, 2004;
Hosamani and Muralidhara, 2010; Muñoz-Soriano & Paricio, 2011;
Nagoshi, 2018). Thus, xenobiotics are important to model PD
phenotype in flies. As a result, the reconstruction of the KEGG–

MetaCyc network supported extended metabolic information
about D. melanogaster. This may be promising in future analyses to
shed light on the molecular mechanisms underlying a variety of
human diseases.

Considering the Gene Ontology IDs in the draft Drosophila
model, we compartmentalized the KEGG–MetaCyc-specific meta-
bolic network because it did not include compartment information.
To do so, we first identified the compartments of Drosophila gene
products in the KEGG–MetaCyc network via available resources
(COMPARTMENTS, FlyBase, GLAD, QuickGO, AmiGO 2, UniProt,
Reactome, and a mass spectrometry-based study). The subcellular
localization information was mapped to each gene product in the
network. Missing compartments were predicted by the CELLO2GO
web server for the cutoff of 10−5 and so we generated a gene–
compartment pair list. Using this approach, multiple compartments
were assigned to many gene products (Table S3). This compartment
dictionary allowed the assignment of subcellular localization(s) to
each reaction based on the GPR associations. In this step, if a gene
product has multiple compartments, we assumed that the related

Figure 1. The summarized reconstruction process of the genome-scale metabolic network model iDrosophila1 for Drosophila melanogaster.
Commonly applied reaction-centric, metabolite-centric, and gene-centric curations are detailed in the Materials and Methods section.
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reaction should be repeated in the model for each compartment.
Thus, new reactions and metabolites were added to the network
according to the subcellular locations of the corresponding gene
product, if necessary. In addition, if the genes catalyzing a reac-
tion have different compartments, multiple compartments were
assigned to this reaction and the corresponding genes were dis-
tributed based on their localizations. A general framework of the
network compartmentalization process is illustrated in Fig 2 for the
sake of clarity. The compartmentalized KEGG–MetaCyc-specific net-
work consists of 1,077 genes and 3,511 metabolites involved in 2,015
enzymatic reactions.

Combining draft Drosophila metabolic networks and
additional curations

The HMR2-based draft Drosophila model was merged with the
compartmentalized KEGG-MetaCyc network. Thus, the number of
genes in the draft model was elevated to 2,398. The ability of the
merged model to produce biomass was assessed. We determined
that many cofactors and vitamins could not be produced. A gap-
filling algorithm was therefore applied to ensure the production of
all biomass precursors. It allowed the addition of 29 new reactions
(Table S4) to the merged model. The newly added reactions

enabled filling in the gaps related to cofactor and vitamin meta-
bolism. In the next step, the gap-filled model was curated in terms
of cholesterol and apocytochrome-C metabolism, GPR rules, meta-
bolic leaks, and the commonly applied curation steps described in
the Materials and Methods section.

Cholesterol acts as the major structural component of the
Drosophila membrane and the precursor of steroid hormones.
Steroid production is crucial in the regulation of developmental
processes, which are required to generate an adult organism (Niwa
& Niwa, 2011; Danielsen et al, 2016) (Fig 3A). On the other hand, D.
melanogaster has proved to be a cholesterol auxotroph, which
means the inability for de novo cholesterol synthesis because
of an incomplete cholesterol biosynthesis pathway (Vinci
et al, 2008; Knittelfelder et al, 2020). In mammals, 3-hydroxy-
3-methylglutaryl CoA reductase enzyme converts 3-hydroxy-3-
methylglutaryl CoA into mevalonate. Using a set of enzymes,
this compound is converted to farnesyl pyrophosphate. Santos &
Lehmann (2004) uncovered several fly orthologs catalyzing
this pathway, which is branched to the isoprenoid synthesis
process (Fig 3B). The farnesyl pyrophosphate can also be di-
rected to the cholesterol synthesis branch in mammals. Most
human genes involved in this branch (from farnesyl pyro-
phosphate to cholesterol) are not conserved in flies (Santos &

Figure 2. A general framework applied for the compartmentalization of the KEGG–MetaCyc network.
This process starts with the retrieval of compartment information along with validated FlyBase gene IDs from different sources. The compartment information is
mapped to the genes in the KEGG–MetaCyc network to generate a compartment dictionary. Based on the GPR associations, the compartment information is transferred
from the genes to the reactions. In the given toy network, the reaction R1 provides the conversion of metabolites A and B to C and D, and it is catalyzed via the enzymes
encoded by three different genes: g1, g2, and g3. In the compartmentalization process, R1 is added to the network in a repeated manner for each gene compartment (c:
cytosol, g: Golgi apparatus, and r: endoplasmic reticulum). The genes are subsequently distributed to the reactions (R1.1, R1.2, and R1.3) derived from R1 based on their
compartment information.
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Lehmann, 2004; Zhang et al, 2019) (Fig 3C). Hence, Drosophila
must acquire sterols from dietary components (Vinci et al, 2008;
Danielsen et al, 2016; Knittelfelder et al, 2020). Zhang et al (2019)
identified only two cholesterol synthesis genes in humans
(SC4MOL and LBR/TM7SF2) with Drosophila orthologs, whereas
there are many non-orthologous human genes (SQS, SQLE, LSS,
CYP51A1, NSDHL, ERG27, DHCR24, EBP, SC5DL, and DHCR7) (Zhang
et al, 2019) (Fig 3C).

We determined the cholesterol biosynthesis reactions in the
draft Drosophila model that correspond to the inactive cholesterol
branch. For these reactions, we first identified the corresponding
Drosophila genes that were incorrectly defined as human ortho-
logs. Accordingly, two Drosophila genes were found to be assigned
as the orthologs of NSDHL gene-encoding sterol-4-alpha-
carboxylate 3-dehydrogenase (decarboxylating) and DHCR7 gene-
encoding 7-dehydrocholesterol reductase in human. Of these
Drosophila genes, CG7724 (FBgn0036698), associated with steroid
biosynthesis, was matched with NSDHL (ENSG00000147383) at the
maximum DIOPT score of 3. Because Drosophila was reported to
lack NSDHL ortholog (Zhang et al, 2019), we removed the corre-
sponding reactions from the Drosophilamodel. These reactions are
responsible for the synthesis of 3-keto-4-methylzymosterol, 5α-
cholesta-8,24-dien-3-one, 4α-methyl-5α-cholesta-8-en-3-one, and

5α-cholesta-8-en-3-one compounds (Table 1). Another incorrectly
assigned Drosophila gene, LBR (FBgn0034657)-encoding lamin B
receptor, was matched with DHCR7 (ENSG00000172893) at the
maximum DIOPT score of 5. Because DHCR7 was also defined as a
non-ortholog, we excluded the related reactions (HMR_1519 and
HMR_1565) from the model (Table 1). The reaction “HMR_1519” is
responsible for the formation of desmosterol from 7-dehy-
drodesmosterol and the reaction “HMR_1565” allows the conver-
sion of provitamin D3 (7-dehydrocholesterol) to cholesterol.
Furthermore, eight non-conserved cholesterol biosynthesis reac-
tions that were included in the Drosophila model in the gap-filling
step were subsequently removed from the model. These reactions
are also listed in Table 1. In conclusion, we curated the cholesterol
metabolism in the Drosophila model through the removal of the
non-conserved human reactions. This step was necessary to mimic
the cholesterol auxotrophy of flies. In addition to the cholesterol
metabolism, we revised apocytochrome-C metabolism. To this end,
the missing metabolite, apocytochrome-C, was added to the re-
action “HMR_4762” related to porphyrin metabolism. Four reactions
involved in the apocytochrome-C metabolism were also added to
the Drosophila model from HMR2.

In the next step, we curated the GPR rules lacking protein
complex information. This was achieved based on the Drosophila

Figure 3. Cholesterol metabolism in Drosophila melanogaster.
(A) Drosophila needs cholesterol as a precursor to produce steroid hormones, which are crucial for the regulation of developmental processes. The initial steps of the
cholesterol metabolic process including farnesyl-PP synthesis are conserved in all animals. (B, C) The farnesyl-PP can be metabolized via two main pathways: (B) the
isoprenoid branch and (C) the cholesterol branch in mammals. However, Drosophila does not include many genes in the cholesterol branch (indicated in red) and
conserved genes in the cholesterol metabolism are indicated in blue. These metabolic gaps underlie cholesterol auxotrophy in the fruit fly.

Genome-wide modeling of fly metabolism Cesur et al. https://doi.org/10.26508/lsa.202201695 vol 6 | no 8 | e202201695 5 of 21

https://doi.org/10.26508/lsa.202201695


network including 556 protein complexes, which was developed by
Guruharsha and colleagues (Guruharsha et al, 2011). We linked the
fly genes with “AND” operators if they were found in the same
protein complex. Based on the FlyBase gene group list and previous
studies (Van den Berghe et al, 1997; Santos & Lehmann, 2004; Allan
et al, 2005; Wahl et al, 2005; Avval & Holmgren, 2009; Grant et al, 2010;
Pavlovic & Bakovic, 2013; Tang & Zhou, 2013; Kemppainen et al, 2014;
Attrill et al, 2016; Kovacs et al, 2018; Marygold et al, 2020b; Rhooms
et al, 2020), we curated additional GPR rules including energy
metabolism-related gene associations such as mitochondrial
complexes I–V. The FlyBase gene groups consist of manually cu-
rated members within distinct gene families, the subunits of
protein complexes, and other functional gene sets (Attrill et al, 2016;
Marygold et al, 2016). We linked the genes encoding complex
subunits (except for the paralogous genes) with “AND” operators.
This further refined the protein complex information in the GPR
associations and facilitated the addition of themissing genes in the
complexes. Modifications in the mitochondrial complexes are
particularly crucial for an improved representation of energy
metabolism in condition-specific metabolic networks. Because any
impairments in mitochondrial function may lead to disrupted
cellular phenomena (e.g., defective energy metabolism, elevated
reactive oxygen species levels, and altered apoptotic signals),
mitochondrial dysfunction was reported among the well-known
causes of many neurodegenerative disorders (Wu et al, 2019;

Monzio Compagnoni et al, 2020; Rhooms et al, 2020). Therefore,
curation of the related GPR associations is important for a more
accurate characterization of such diseases. For accurate model
simulations, we also updated biomass formation reaction based on
the FlySilico model (Schönborn et al, 2019) and the literature.

The updated GMN model was further revised through the
reaction-centric, metabolite-centric, and gene-centric curation
steps (see the Materials and Methods section). One significant
modification is the removal of duplicated reactions. The duplicated
reactions were identified via reaction comparisons by ignoring H+,
H2O, and free inorganic phosphate (Pi). Given that a relatively
flexible compartmentation procedure was applied in the KEGG–
MetaCyc network, compartment information was excluded for the
comparisons between KEGG–MetaCyc-derived reactions and tem-
plate human model-derived reactions in the draft Drosophila
model. In this way, we eliminated incorrectly compartmentalized
KEGG–MetaCyc reactions from the Drosophila model by carefully
examining each reaction match. This also enabled the curation of
the leaking ATP problem in the model by removing the incorrectly
compartmentalized uridine 59-monophosphate phosphohydrolase,
succinate dehydrogenase (ubiquinone), and NADH-dehydrogenase
reactions. We searched for the presence of other leaking energy
metabolites in the draft model and identified four additional
leaking metabolites including NADH, NADPH, FADH2, and H+.
Double-reaction deletion knockouts were performed using the flux

Table 1. Metabolic network-driven investigation of non-conserved cholesterol biosynthesis reactions between humans and flies.

Cholesterol biosynthesis gene Incorrectly matched Drosophila gene Corresponding Drosophila model reaction

SQLE (ENSG00000104549) NA (gap–filling-aided addition) HMR_1470: squalene 2,3-oxide (squalene 2,3-epoxide)
synthesis from squalene

LSS (ENSG00000160285) NA (gap–filling-aided addition) HMR_1473: conversion of squalene 2,3-oxide (squalene 2,3-
epoxide) to lanosterol

CYP51A1 (ENSG00000001630) NA (gap–filling-aided addition)

HMR_1477: 4,4-dimethyl-14α-hydroxymethyl-5α-cholesta-
8,24-dien-3β-ol synthesis from lanosterol

HMR_1478: 4,4-dimethyl-14α-formyl-5α-cholesta-8,24-dien-
3β-ol synthesis

HMR_1479: 4,4-dimethyl-5α-cholesta-8,14,24-trien-3β-ol
synthesis

NSDHL (ENSG00000147383) CG7724 (FBgn0036698) DIOPT score: 3 orthology-aided
addition

HMR_1495: 3-keto-4-methylzymosterol synthesis

HMR_1496: 3-keto-4-methylzymosterol synthesis

HMR_1505: 5α-cholesta-8,24-dien-3-one synthesis

HMR_1546: 4α-methyl-5α-cholesta-8-en-3-one synthesis

HMR_1551: 5α-cholesta-8-en-3-one synthesis

DHCR24 (ENSG00000116133) NA (gap–filling-aided addition) HMR_1570: cholestenol synthesis from zymosterol

EBP (ENSG00000147155) NA (gap–filling-aided addition) HMR_1553: conversion of cholestenol to lathosterol

SC5DL (ENSG00000109929) NA (gap–filling-aided addition) HMR_1557: provitamin D3 (7-dehydrocholesterol) synthesis
from lathosterol

DHCR7 (ENSG00000172893) LBR (FBgn0034657) DIOPT score: 5 orthology-aided addition

HMR_1519: desmosterol synthesis from 7-
dehydrodesmosterol

HMR_1565: cholesterol synthesis from provitamin D3 (7-
dehydrocholesterol)

The non-conserved reactions that were incorrectly included in the draft Drosophila model via gap-filling or orthology-aided approach were determined based
on the non-orthologous human genes in the literature. These reactions were excluded from the draft Drosophila model in the next step.

Genome-wide modeling of fly metabolism Cesur et al. https://doi.org/10.26508/lsa.202201695 vol 6 | no 8 | e202201695 6 of 21

https://doi.org/10.26508/lsa.202201695


balance analysis (FBA) to identify the reactions associated with
metabolic leaks. These reactions weremanually examined and they
were classified as incorrectly compartmentalized reactions or re-
dundant reactions. The reason for this metabolic redundancy was
the undetected duplicated reactions derived from the KEGG–
MetaCyc model and the template human model because of small
differences in metabolite names. Therefore, we removed one of
each duplicated reaction to prevent metabolite leakage. The final
model, called iDrosophila1, includes 8,230 reactions (5,787 enzy-
matic and 2,443 nonenzymatic), 6,990 metabolites, and 2,388 genes.
The compatibility of the model with recommended standards was
assessed using the MEMOTE test suite. Norsigian et al reported the
MEMOTE scores of 108 reconstruction models in the BiGG Models
database, most of which are prokaryotic models (Norsigian et al,
2020). The iDrosophila1 model has a comparable score with the
other 108 models (Fig S2).

The iDrosophila1 reactions with missing subsystem (pathway)
information were investigated through the KEGG database. The
pathway information of any reactions which could be accessed was
included in the model. The pathways derived from the KEGG–
MetaCyc network were denoted as “KM pathways.” Analysis of the
pathway information in the model pointed to the prevalence of
major biological processes (e.g., lipid, amino acid, and nucleotide
metabolisms) and cholesterol ester metabolism (Fig 4A). Especially,
lipid metabolic pathways were found to have high frequencies.
Cholesterol ester and triacylglycerol are the storage lipids accu-
mulated in Drosophila fat body cells (Liu & Huang, 2013). These
dietary lipids are converted into free fatty acids, sterols, and

monoacylglycerols that are absorbed by the cells of the fly in-
testine under normal feeding conditions. The resynthesized tri-
acylglycerols are then packaged into lipoproteins together with
carrier proteins, cholesterols, and cholesterol esters for trans-
portation along the body. In this way, they can be used or stored by
the tissues including adipose and liver. The presence of excess
lipids induces the utilization of cholesterol esters and tri-
acylglycerols as energy-supplying fuels (Sieber & Thummel, 2012).
Xenobiotic metabolism was determined to be another prominent
pathway in the iDrosophila1 model. As highlighted before,
xenobiotics are natural or synthetic life-threatening compounds
that must be handled by animal cells via sequestration or meta-
bolic degradation. Modification of the xenobiotics by phase I en-
zymes (e.g., cytochrome P450 monooxygenase and esterases)
occurs in the first step of their metabolic detoxification (Misra et al,
2011; Trinder et al, 2017; Amichot & Tarès, 2021). In addition to the
pathway information, we examined the compartment distribution
in the model. We observed a similar compartment distribution
profile between the template human model (Fig 4B) and the
iDrosophila1 (Fig 4C). Cytosolic reactions and transport reactions
were found to have high frequencies in both models, and they were
followed by a mitochondrial distribution (Fig 4B and C).

Prediction of growth phenotypes under increasing cholesterol
and amino acid levels

In nature, Drosophila feeds on fermenting fruits containing high
amounts of ethanol and organic acids. On the other hand, a simple

Figure 4. Distribution of the pathway and compartment information in the iDrosophila1 model.
(A) HMR2-based metabolic pathways in the model are ordered according to their frequency and the top 10 pathways are represented. (B, C) The pie chart indicates the
percentage of compartments in the (B) template human model and (C) iDrosophila1. The sum frequency values (given in red) are shown for the compartments with low
frequencies. (Abbreviations: c, cytosol; m, mitochondria; p, peroxisome; r, endoplasmic reticulum; g, Golgi apparatus; l, lysosome; n, nucleus; o, others [exchange and
transport reactions]).
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diet of sucrose, lyophilized yeast, and weak organic acids was
reported as sufficient to raise this organism in laboratory condi-
tions. To mimic this dietary restriction, Piper and colleagues
established the holidic diet (HD) with essential and nonessential
amino acids, vitamins, cholesterol, sucrose, several metal ions, and
lipid precursors. This diet composition was reported to be sufficient
for the development of fruit flies (Piper et al, 2014). Schönborn and
colleagues simulated larval fly growth on the HD with a yeast-like
amino acid ingredient. The researchers reported the predicted
larval growth rate as 0.088 h−1 via the FlySilico model by employing
a set of constraints for the uptake rates (Schönborn et al, 2019).
Using the iDrosophila1 model, we also analyzed the growth of D.
melanogaster with the same uptake constraints (Table S5). For
compatibility with the FlySilico model, we fixed the flux of the non-
growth-associated maintenance reaction to the estimated value
(8.55 mmol ATP g−1 h−1) (Schönborn et al, 2019). FBA simulation was
then performed with the growth maximization in the expanded HD
condition. The growth rate was predicted to be 0.040 h−1 (Schönborn
et al, 2019).

As aforementioned, cholesterol has crucial roles in membrane
structure and signaling processes, but flies are unable to synthesize
this essential compound (Vinci et al, 2008). To properly mimic the
cholesterol auxotrophy of Drosophila, we introduced several
modifications in iDrosophila1 (Table 1) relying on the literature

(Santos & Lehmann, 2004; Zhang et al, 2019). The capability of the
model to accurately predict this phenotypic property was subse-
quently assessed. In this regard, we allowed flexible intake of the
expanded HD compounds by limiting the maximum sucrose uptake
rate to ~2.212 mmol g−1h−1 and supplying the other metabolites at a
certain ratio (see the Materials and Methods section). In this
condition, the optimal growth rate was predicted as ~ 0.774 h−1. We
subsequently analyzed the growth profile across varying choles-
terol levels from zero to ~1/10 of the sucrose uptake rate. As ex-
pected, we did not observe biomass formation for the cholesterol
deficiency in the diet. Increasing level of cholesterol positively
induced biomass formation until reaching the optimal growth rate
(Fig 5A). We also performed this simulation through Fruitfly1 and
FlySilico models by applying the same constraints to limit the
consumption of the HD compounds. The Fruitfly1 model failed to
grow under the expanded HD condition. Therefore, three additional
substances (lipoic acid, linoleate, and linolenate) were supplied to
allow biomass formation. In addition, the right-hand side of the
biomass formation reaction in Fruitfly1 (version 1.1.0) is missing ADP
that is required to establish a balance between ATP and ADP.
Therefore, we added this compound to the biomass formation
reaction of Fruitfly1 for all simulations covered in this study. Note
that biomass was not produced in the Fruitfly1 model using
measured uptake flux boundaries (Schönborn et al, 2019) (Table S5).

Figure 5. Growth profiles of Drosophila under expanded HD condition supplied with elevating cholesterol and aspartate levels.
(A, B, C) iDrosophila1, (B) FlySilico, and (C) Fruitfly1 models are used to characterize cholesterol-dependent changes in the proliferation. (B) The zoom-out view
associated with FlySilico simulations demonstrates a smaller uptake range of cholesterol to clearly represent the relationship between exogenous cholesterol
supplementation and growth profile. (D, E, F) display the effect of aspartate levels on the growth rates in the simulations through iDrosophila1, FlySilico, and Fruitfly1
models, respectively.
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On the other hand, the use of flexible boundary constraints trig-
gered a growth rate of 0.450 h−1. FlySilico simulation, on the other
hand, resulted in the maximum growth rate of 0.057 h−1 for the
flexible uptake rates. In the next step, we examined the growth
profiles of these models across the increasing cholesterol levels.
Elevating cholesterol intake triggered an enhanced growth rate in
FlySilico (Fig 5B) in agreement with the iDrosophila1 simulation,
whereas this phenotypic feature could not be observed by Fruitfly1
(Fig 5C).

Aspartate is a nonessential amino acid whose deficiency was
reported to have no detrimental effect on the lifespan of Dro-
sophila (Piper et al, 2014). Schönborn and colleagues reported that
the increasing level of the aspartate amino acid did not affect
biomass production (Schönborn et al, 2019). We also examined the
impact of varying aspartate levels on fly growth in the expanded HD
condition in the iDrosophila1, FlySilico, and Fruitfly1 models. The
iDrosophila1 model revealed that biomass production was not
affected by aspartate depletion thanks to its inherent aspartate
biosynthesis system. Besides, supplementation with additional
aspartate did not enhance the growth at a considerable level (Fig
5D). This is consistent with FlySilico (Fig 5E) and Fruitfly1 (Fig 5F)
simulations (Fig 5E). Furthermore, Drosophila features 10 essential
amino acids, which were reported to be commonly essential be-
tween mammals and insects, except for arginine (Croset et al, 2016;
Manière et al, 2020). We affirmed their essentiality using the
iDrosophila1 model. The elevating intake of each essential amino
acid contributed to an increase in the growth rate (Fig S3). Alto-
gether, we confirmed the growth profile of fly across the varying
levels of cholesterol and amino acids using iDrosophila1.

Prediction of essential Drosophila genes

Gene essentiality refers to the indispensability of genes for survival
under specific growth conditions. This concept is especially suitable
to analyze cell type-specific gene essentiality because of cellular
variations. On the other hand, it is often used to evaluate the
predictive capabilities of the reconstructed generic metabolic
models because of the lack of comprehensive cell-specific infor-
mation for many eukaryotic organisms. We assessed the prediction
performance of the generic iDrosophila1 model by in silico single-
gene knockouts, and tissue-specific analyses may result in a higher
number of the essential genes. For the gene knockout simulations,
we blocked the corresponding reactions for the deletion of each
gene. Essential genes were determined considering predicted
growth rates. Accordingly, the genes whose deletions led to a
significant reduction in growth rate were accepted as essential. For
the iDrosophila1 model, we elucidated essential and nonessential
gene sets through the FBA approach for unlimited intake of the
expanded HD components, leading to 128 essential genes (Table
S6A). We performed GO and pathway enrichment analyses to
provide an insight into these genes in terms of corresponding
biological processes (Table S6B) and pathways (Table S6C). Un-
surprisingly, these genes were found to be predominantly asso-
ciated with biosynthetic processes of crucial cellular substances
such as nucleotides, aminoacyl-tRNAs, amino acids, cofactors, and
lipids. Enriched KEGG pathways were also identified to be con-
sistent with these biological processes.

We further evaluated the performance of the iDrosophila1 model
through the comparison of the essentiality predictions with those
obtained by other curated generic fly models. In this process, we
introduced two main modifications to the Fruitfly1 model before
gene essentiality analysis. The first modification is related to RNA
metabolism. Two diverse cytosolic RNA synthesis reactions are
present in both iDrosophila1 (HMR_7161 and HMR_7162) and
Fruitfly1 (MAR07161 and MAR07162) models. They use nucleoside
triphosphates (NTPs) and nucleoside diphosphates (NDPs) as
substrates, respectively. Because both molecules contain phos-
phoanhydride bonds, they are significant energy sources to drive
biochemical reactions. NTPs (ATP, GTP, UTP, and CTP) also serve as
substrates for nucleic acid biosynthesis by DNA-directed RNA
polymerase (RNAP) enzymes (Gottesman & Mustaev, 2019). Each
RNAP enables the synthesis of distinct RNA classes from ribosomal
RNAs to noncoding RNAs (Marygold et al, 2020a). The Fruitfly1 and
iDrosophila1 models have nuclear and mitochondrial genes
encoding RNAP subunits. Another reaction associated with RNA
metabolism is catalyzed by polynucleotide phosphorylase (PNPase)
in the presence of NDPs (Gottesman & Mustaev, 2019; Pajak et al,
2019). These conserved enzymes are responsible for RNA turnover
primarily by degrading mitochondrial RNAs (Das et al, 2011; Pajak
et al, 2019). Recently, ATP-dependent RNA helicase SUV3 and
PNPase enzymes were proposed to form a minimal mitochondrial
RNA degradosome complex for mRNA decay in Drosophila (Pajak
et al, 2019). PNPases (EC 2.7.7.8) were demonstrated to participate
in RNA polymerization (non–template-encoded RNA synthesis)
leading to the yield of a high Pi level, which can also allow RNA
phosphorolysis (Gasteiger et al, 2003; Gottesman & Mustaev, 2019).
On the contrary, NTP polymerization by RNAPs occurs irreversibly.
In the Fruitfly1 model, RNAP genes were found in the GPR rules of
both NDP polymerization (MAR07162) and NTP polymerization
(MAR07161) reactions, whereas only PNPase-encoding Drosophila
gene (FBgn0039846/CG11337) is responsible for the catalysis of NDP
polymerization (HMR_7162) in the iDrosophila1 model. To support
this, Pajak and colleagues reported that the “CG11337” gene is the fly
ortholog of human PNPase (Pajak et al, 2019). The PNPase-mediated
NDP polymerization is also consistent with our template human
model (Radic Shechter et al, 2021; Zirngibl, 2021) and the iHsa model
(Blais et al, 2017). Taken together, we updated the GPR rule of the
Fruitfly1 reaction (MAR07162) before in silico gene deletions by
replacing the RNAPs with the PNPase. In addition, we modified the
reversibility of this reaction to represent its reversible character-
istics. The reaction reversibility was also curated in the iDrosophila1
model.

The second modification is related to the GPR association of the
nucleo-cytoplasmic DNA transport reaction in Fruitfly1 (MAR08639),
where nuclear pore complex genes were assigned. Nuclear pore
complexes comprise several copies of ~30 different proteins known
as nucleoporins that mediate macromolecular trafficking (e.g., the
transport of RNAs, proteins, and ribosomal subunits) between
nucleus and cytoplasm and the free diffusion of water, sugars, and
ions (Wente & Rout, 2010; Ibarra & Hetzer, 2015; Kuhn & Capelson,
2018). Despite the presence of multiple Drosophila nucleoporins
(e.g., Nup98 and Nup62) showing dynamic chromatin binding be-
havior in the nucleoplasm, they only mediate transcriptional
regulations (Kuhn & Capelson, 2018). The artificial DNA transport
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reactions in the iDrosophila1 and Fruitfly1 models reflect the
contribution of DNA to cytosolic biomass formation. Hence, we
removed the nucleoporin genes assigned to the artificial nucleo-
cytoplasmic DNA transport reaction in Fruitfly1. Similar to the
template human model (Radic Shechter et al, 2021; Zirngibl, 2021)
and the iHsa model (Blais et al, 2017), the iDrosophila1 model does
not contain any genes dedicated to the corresponding transport
reaction (HMR_8639).

Based on the updated GPR rules, we also determined essential
(Table S7A and B) and nonessential gene sets in the expanded HD
medium for the Fruitfly1 and FlySilico models. Of the predicted 128
essential genes, iDrosophila1-specific results (n = 64) were pre-
dominantly found to be related to the metabolism of nucleotides,
cofactors, lipids, amino acids, and aminoacyl-tRNAs. For Fruitfly1-
specific essential genes (n = 33), metabolic processes associated
with vitamins, cofactors, amino acids, aminoacyl-tRNAs, and nu-
cleotide sugars were shown to be significantly enriched. On the
other hand, the FlySilico model predicted only six essential genes
involved in carbohydrate and amino acid metabolisms. The es-
sential gene sets predicted by each generic fly model were also
compared with the gene essentiality dataset retrieved from the
Online GEne Essentiality (OGEE) database (Gurumayum et al, 2020).
We quantified the ratio of correct and incorrect essentiality pre-
dictions relying on four confusion matrix categories (true positives
[TP], false positives [FN], true negatives [TN], and false negatives
[FN]). And, we estimated several predictive scores including sen-
sitivity, specificity, accuracy, precision, F1 score, and Matthew’s
correlation coefficient (MCC). Although accuracy and F1 score are
among the most widely favorable adopted metrics, they can be
misleading in the evaluation of binary classification for particularly
imbalanced datasets (e.g., many TNs but few TPs, or vice versa)
(Chicco & Jurman, 2020). Yet, MCC accounts for good prediction
results in all confusion matrix categories suggesting the use of this
robust metric for also imbalanced datasets (Chicco & Jurman, 2020;
Chicco et al, 2021). Here, we compared the predictive accuracy of the
iDrosophila1, Fruitfly1, and FlySilico models considering the metrics
listed in Table 2.

The sensitivity of iDrosophila1 predictions was found to be
considerably higher than the other fly models. Unsurprisingly, we
revealed that the FlySilico model had the worst sensitivity score
because of the lack of protein complex information. In contrast to
the low sensitivity values, the specificity results demonstrated that
the fly models could correctly classify up to ~96–97% of the non-
essential genes. Based on the precision values, the iDrosophila1

(TP: 90 and FP: 32) and Fruitfly1 (TP: 64 and FP: 25) models were
shown to predict the higher ratio of correct essential genes within
the predicted essential gene sets in comparison with FlySilico (TP: 3
and FP: 3). Note that six essential genes predicted by iDrosophila1
could not be included in any confusion matrix categories because
of the lack of evidence, whereas 10 unclassified essential genes
were identified by Fruitfly1 simulation. Because binary metrics only
consider two categories, we used additional metrics based on at
least three confusion matrix categories. The iDrosophila1 model
was demonstrated to exhibit superior performance than the other
models for these adopted metrics (accuracy, F1 score, and MCC). We
found an extremely low F1 score for FlySilico predictions. It was
shown to be the highest for iDrosophila1 predictions, meaning the
best compromise between sensitivity and precision. One drawback
of the F1 score is the tendency of this value to converge into smaller
values for low sensitivity or precision. Another issue is the mis-
classification potential in evaluating predictions under an imbal-
anced prevalence (Hand et al, 2021). We identified the frequency of
the correct nonessential genes (TN) as predominant in the pre-
dicted essential/nonessential gene sets for all fly models. There-
fore, we calculated MCC scores which vary in the interval of −1
and +1, indicating that a larger score reflects a better classification
(Chicco & Jurman, 2020). iDrosophila1 also demonstrated a better
predictive ability than the other models according to this metric.
Importantly, we also performed the gene essentiality analysis in the
expanded HD medium by introducing the flexible uptake rates
defined in the Materials and Methods section (data not shown). In
this way, 12 additional true essential genes were predicted using
the iDrosophila1 model, leading to higher sensitivity (0.18) and F1
score (0.29). On the other hand, constraining the uptake rates did
not change the values of the prediction metrics calculated for the
Fruitfly1 and FlySilico models. Collectively, the iDrosophila1 model
represented comparable or better prediction results for all metrics
regardless of the uptake rates of the exchange metabolites in
medium.

Comprehensive metabolic profiling of Parkinson’s disease
using iDrosophila1

We further analyzed the iDrosophila1 model to evaluate the omics
data-based prediction capacity of the model. In this regard, we in-
vestigated differential pathways in PD, which is the second most
common age-related neurodegenerative disorder worldwide (Nagoshi,
2018; Aryal & Lee, 2019). Among the PD-causing factors, mitochondrial

Table 2. Comparison of the predictive metrics calculated for the generic fly models to assess their performances in terms of gene essentiality prediction.

Fly metabolic network models

Metrics iDrosophila1 (This study) FruitFly1 Wang et al (2021) FlySilico Schönborn et al (2019)

Sensitivity 0.16 0.09 0.03

Specificity 0.96 0.96 0.97

Precision 0.74 0.72 0.50

Accuracy 0.61 0.52 0.52

F1 score 0.26 0.16 0.05

MCC 0.20 0.11 0.01

Genome-wide modeling of fly metabolism Cesur et al. https://doi.org/10.26508/lsa.202201695 vol 6 | no 8 | e202201695 10 of 21

https://doi.org/10.26508/lsa.202201695


dysfunction plays a pivotal role. Mitochondrial fusion and fission allow
the exchange of respiratory proteins and the removal of damaged
mitochondria for healthy mitochondrial homeostasis and neuro-
protection (Mori et al, 1998; Gouider-khouja et al, 2003; Sasaki et al,
2004; Johansen et al, 2018). In the fission process, a reduction in
mitochondrial membrane potential promotes the accumulation of
PINK1 (PTEN-induced novel kinase 1) on the outer mitochondrial
membrane (Imai & Hattori, 2014). Its autophosphorylation and

activation recruit Parkin (a ubiquitin E3 ligase) from the cytosol to the
mitochondria. Their combined action triggers mitophagy-mediated
degradation of the damaged mitochondria (Sekine & Youle, 2018),
leading to a PD-like phenotype (e.g., decreased lifespan, dopaminergic
neuron loss, and locomotor abnormalities) in Drosophila (Xu et al,
2020; Parker-Character et al, 2021).

We investigated the metabolic alterations induced by pink1 and
parkinmutations using transcriptomic datasets from the young and

Figure 6. Identification of enriched pathways and diseases for the predicted metabolic alterations induced by pink1 and parkinmutations using the ΔFBA method.
(A) Combinatory utilization of gene expression fold changes andmetabolic network models are promising to explore differential reactions. (B, C) For the genes involved
in the regulated reactions predicted by ΔFBA, (B) enriched pathways and (C) diseases are illustrated for eachmutant organism in different age groups (3 d: 3-day-old, 30 d:
30-day-old, and 21 d: 21-day-old). The enriched bubble chart shows the significant KEGG pathways (vertical axis) of the regulated genes discussed in the current study. The
size of the dots corresponds to the gene numbers in that pathway, and their colors represent enrichment significance. The darker red color indicates a higher
significance. For the disease enrichment plot, the vertical axis indicates the enriched diseases, whereas the bars show the number of genes associated with the related
disease.
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middle-aged Drosophila models of PD (Celardo et al, 2017). Reg-
ulated iDrosophila1 reactions were determined via the ΔFBA
method based on significant fold changes (Fig 6A). The genes in-
volved in the regulated reactions were characterized by detecting
enriched metabolic pathways (Fig 6B; also, see Table S8A–D for all
enriched terms), which are either up- or down-regulated in the
mutants. Fundamental pathways (amino acid, nucleotide, and lipid
metabolism) were commonly overrepresented for pink1 and parkin
mutants. The glycine and serine metabolisms are especially prom-
inent because of their role in the de novo nucleotide biosynthesis
pathway, which is the primary strategy to sufficiently provide nec-
essary DNA precursors for proliferating cells (Legent et al, 2006;
Holland et al, 2011; Tufi et al, 2014). In this process, a variety of
substrates (glycine, glutamine, and 10-formyl-tetrahydrofolate) are
used. Hence, folate supplementation exhibits a stimulatory effect in
de novo nucleotide biosynthesis and it has a protective role in the
reduction of mitochondrial defects (Tufi et al, 2014; Celardo et al,
2017; Villa et al, 2019). We determined “purine and pyrimidine
metabolism” and “folate biosynthesis” among the enriched KEGG
pathways for both pink1 and parkinmutants in different age groups.
Rosario and colleagues showed a significant decrease in folate
production in PD patients, correlated with reduced bacterial folate
biosynthesis (Rosario et al, 2021). A folate-supplemented diet was
reported to be useful to prevent the loss of dopaminergic neurons
in pink1 mutant flies (Tufi et al, 2014). “Riboflavin metabolism” was
also overrepresented for all mutant groups (Fig 6B and Table S8),
and riboflavin is required for a healthy folate cycle and energy
metabolism (Wong et al, 2014). Importantly, it has a neuroprotective
role by reducing glutamate excitotoxicity, oxidative stress, mito-
chondrial dysfunction, and NF-κB-induced neuroinflammation.
Consistently, Parkin is responsible for stable glutamatergic syn-
apses. Its mutation induces an increased susceptibility to gluta-
mate neurotoxicity, which is linked to the onset of PD (Marashly &
Bohlega, 2017). This may be evidence of the connection between
riboflavin metabolism and the mitochondrial quality control
process.

The “selenocompound metabolism” was enriched for the 30-d-old
pink1mutant (Fig 6B and Table S8C). The essential micronutrient
selenium induces neuroprotection by coping with oxidative
stress and inflammation and shaping the gut microbiota. An
increased amount of Akkermansia was reported in rodents via
selenium supplementation. This bacterium is involved in gut barrier
protection, immune modulation, and the regulation of host
metabolism (Arias-Borrego et al, 2019; Callejón-Leblic et al, 2021).
Selenium shows an age-dependent decline in humans, and
nutraceuticals and selenium-enriched functional foods have re-
ceived a growing interest in recent years (Arias-Borrego et al, 2019;
Callejón-Leblic et al, 2021). Another enriched metabolic process
related to neuroprotection is “β-alanine metabolism” (Fig 6B and
Table S8). This nonproteinogenic amino acid is a precursor of
carnosine dipeptide including diverse functions (e.g., proton
buffering, metal chelation, antioxidation, and muscle contractility).
In PD patients, the supplementation of carnosine dipeptide showed
its therapeutic potential to improve impaired motor activity
(Rezende et al, 2020). Consistently, there is a relationship between
the altered level of β-alanine and PD physiopathology (Solana-
manrique et al, 2022). More specifically, this compound contributes

to the enhanced levels of extracellular GABA and dopamine in
substantia nigra (Allman et al, 2018). In addition, taurine and β-
alanine supplementation were shown to support muscle function
in mice by increasing fatigue resistance in muscles and reducing
contraction-induced oxidative stress (Horvath et al, 2016). Taurine
is another β-amino acid enriched in our results, and it is involved in
neuromodulation, Ca2+ homeostasis, and the regulation of anti-
oxidant processes (Fig 6B and Table S8). At a high concentration in
the substantia nigra, it can regulate dopamine release and do-
paminergic neuron activity. “Nicotinate and nicotinamide meta-
bolism” was also shown to be enriched for pink1 mutant flies (Fig
6B; also, see Tables S8A and C). Recently, nicotinamide riboside was
reported to have a neuroprotective effect. It regulates gene levels
associated with oxidative stress response, mitochondrial respira-
tion, inflammatory response, histone acetylation, and proteasomal
metabolism by elevating cerebral NAD levels in PD patients
(Brakedal et al, 2022).

Lipid metabolic pathways including “fatty acid metabolism,”
“fatty acid degradation,” “glycerolipid metabolism,” “glycero-
phospholipid metabolism” “sphingolipid metabolism,” “ether lipid
metabolism,” and “arachidonic acid metabolism” were overrepre-
sented with the genes that control the altered reactions in pink1
and parkin mutants (Fig 6B and Table S8). The lipid composition of
synaptic vesicle membranes regulates their interactions with α-
synuclein (α-syn) proteins, whose aggregation is the main patho-
logical hallmark of PD (Giguère et al, 2018; Chia et al, 2020; Mori et al,
2020). Iljina et al reported the protective role of arachidonic acid
against the production of toxic beta-sheet structures. Arachidonic
acid is known to support the formation of alpha-helical-folded
multimers of α-syn with higher resistance to fibril formation (Iljina
et al, 2016). Furthermore, the accumulated PINK1 and Parkin pro-
teins at endoplasmic reticulum–mitochondria contact sites regu-
late inter-organelle communication related to lipid metabolism,
Ca2+ signaling, and mitophagy (Gómez-Suaga et al, 2018; Barazzuol
et al, 2020; Fais et al, 2021). Overall, mitochondrial activity is heavily
linked to lipid metabolism, and the altered lipidomic composition
of mitochondrial membranes in Parkin knock-out mice was docu-
mented (Fais et al, 2021). In addition, fatty acid oxidation contributes
to acetyl-CoA production that is metabolized in the tricarboxylic
acid cycle. The down-regulation of many tricarboxylic acid com-
pounds was shown in the pink1 mutant flies (Tufi et al, 2014).
Similarly, we showed altered tricarboxylic acid cycle and carbon
metabolism in the pink1 and parkin mutants (Fig 6B and Table S8).
In agreement with these results, the pink1 mutation causes the
reprogramming of glucose metabolism to assist metabolic adap-
tation (Requejo-Aguilar et al, 2014). In addition, the fructose level
was shown to increase in PD patients suggesting its potential
protective role against oxidative stress through respiratory shifting
in the early stages of the disease. Carbon sources also mediate
protein modifications by glycation or glycosylation (Videira & Castro-
Caldas, 2018). We found the enrichment ofmetabolic pathways linked
with several glycating agents (e.g., fructose, galactose, and mannose)
in 30-d-old pink1 mutant flies (Fig 6B and Table S8B).

Lastly, we determined diseases significantly enriched with the
genes involved in the regulated reactions by pink1 and parkin
mutations. To do so, we compared the gene list with the gene
set library in FlyEnrichr derived from “Human Disease data from
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FlyBase (2017),” which provides disease–gene association infor-
mation. Neurogenerative disorders, muscular diseases, and mito-
chondrial diseases were found to be overrepresented with the
genes we identified, further confirming the accuracy of transcriptome-
guided iDrosophila1 predictions (Fig 6C). Of the enriched disorders,
“Duchenne muscular dystrophy” is characterized by mitochondrial
dysfunction and impaired mitophagy. Increased inflammation
occurs because of defective mitochondria, and it further exacer-
bates disease pathology (muscle damage and increased fibrosis)
(Reid & Alexander, 2021). Similarly, Charcot–Marie–Tooth disease
leading to severe muscular deficits is related to defective mito-
chondrial processes similar to “mitochondrial metabolism disease”
and “Parkinson’s disease” (Fig 6C) (Nandini et al, 2019; Schiavon
et al, 2021). Together, these preliminary findings are remarkable to
indicate the capacity of iDrosophila1 in the discovery of context-
specific pivotal metabolic alterations. Thus, this analysis further
supported our model predictions by suggesting that iDrosophila1
may be useful to gather insight into complicated human diseases.

In conclusion, there is still a gap in the use of this organism for
comprehensive condition-specific metabolic modeling although
Drosophila is a workhorse in experimental studies. Given the in-
creasing amounts of multi-omics data, the iDrosophila1 models
contextualized by diverse disease-specific omics datasets may
further contribute to systems medicine. Such models may provide
novel insights for human disorders and biomarker detection. In
addition, community models are currently used to represent cell
populations in single/multiple tissue(s), whole body, microbial
communities, and host–microbial group interactions. Considering
the dramatic impact of themicrobiota on human health and the low
microbial diversity of Drosophila, our metabolic network model can
also be useful to elucidate metabolic interactions between Dro-
sophila and gut microbiota. Overall, iDrosophila1 may provide
avenues to advance fly metabolic modeling and better understand
more complicated human metabolism.

Materials and Methods

Metabolic reconstruction procedure

We used an orthology-based approach to reconstruct a draft D.
melanogaster model using a flux-consistent version of the HMR2
model (7,518 reactions, 5,426 metabolites, and 2,479 genes) as a
template (Radic Shechter et al, 2021; Zirngibl, 2021). We curated the
GPR associations of the template model by improving the protein
complex information based on another human model (iHsa), which
includes an extensive manual refinement of the GPR rules of HMR2,
particularly considering the definition of enzyme complexes (Blais
et al, 2017). The orthology-based inference of Drosophilamodel was
achieved by replacing the genes in the GPR rules of the template
model with Drosophila orthologs. To do so, “human orthologs” list
of D. melanogaster was retrieved from the FlyBase database (last
accessed: 02/02/2021) (Larkin et al, 2021). The list includes infor-
mation about evidence scores (DIOPT scores), Drosophila genes
(FlyBase gene IDs), their human orthologs, and associated disease
phenotypes. The DIOPT score refers to the number of tools sup-
porting a given orthology prediction (Hu et al, 2011). It was used in

orthology-based gene mapping as a scoring approach (3–15) to
increase the confidence level (Table S1). Two criteria were con-
sidered in this approach: (1) if a human gene has multiple Dro-
sophila orthologs with different DIOPT scores, only the ortholog(s)
with maximum DIOPT scores were considered; (2) when a human
gene has over nine Drosophila orthologs, this gene association was
ignored (Blais et al, 2017) because the orthology association was not
specific. However, the related reactions were kept in the model
because the existence of Drosophila orthologs showed that the
corresponding reaction is available in Drosophila. Lastly, the GPR
rules of the template model were modified by replacing human
genes with their Drosophila orthologs at a high confidence level,
and the human genes that could not be matched with any Dro-
sophila orthologs were discarded from the model. On the other
hand, all non-enzymatic reactions in the template model were
included in the draft model.

To enhance gene coverage of the draft model, we created an-
other metabolic network for D. melanogaster using the RAVEN
toolbox (Wang et al, 2018) by considering protein homology against
KEGG (Kanehisa & Goto, 2000) and MetaCyc (Caspi et al, 2012)
databases. Based on the study of Wang et al (2018), we first
reconstructed a combined KEGG-based metabolic network by
merging two different KEGG-based networks: (1) we used KEGG
organism identifier (dme) for the first network only, and (2) the
second network was reconstructed using the BLAST algorithm to
query the protein sequence of Drosophila from the FlyBase da-
tabase (version number: r6.37) against the latest pre-trained hidden
Markov model (euk100_kegg94). The same parameters (default cut-
off: 10−50, minScoreRatioG: 0.95, and minScoreRatioKO: 0.7) were
used in the reconstruction of both KEGG-based networks. Incom-
plete information and undefined stoichiometries were excluded
from the network. In addition to the combined KEGG-based met-
abolic network, we generated a MetaCyc-based metabolic network
using another automatic reconstruction function in the RAVEN
toolbox. In the reconstruction process, default parameters (bit-
score ≥ 100 and positives ≥ 45%) were chosen, and unbalanced/
undetermined reactions were excluded from the network.

The KEGG- and MetaCyc-based metabolic networks were sub-
sequently merged (hereafter referred to as the KEGG–MetaCyc
network). The genes that were not shared with the HMR2-based
draft model were identified. These KEGG–MetaCyc-specific genes
were functionally characterized by identifying significantly
enriched KEGG pathways using the g:Profiler web server (Raudvere
et al, 2019) with a false discovery rate (FDR) of 0.05 (Table S2). The
reactions associated with the KEGG–MetaCyc-specific genes were
selected and included in the draft model. Because of the lack of
compartmentalization in the KEGG–MetaCyc network, subcellular
protein localizations from several sources were used to assign at
least one compartment for each KEGG–MetaCyc-specific gene
(Table S3). The sources covered in this study include COMPART-
MENTS (Binder et al, 2014), FlyBase (Larkin et al, 2021), GLAD (Hu et al,
2015), QuickGO (Huntley et al, 2009), AmiGO 2 (The Gene Ontology
Consortium, 2015), UniProt (Uniprot Consortium, 2021), Reactome
(Fabregat et al, 2016), CELLO2GO web server (Yu et al, 2014), and a
mass spectrometry-based study (Tan et al, 2009). It is important
to note that gene ID consistency is crucial for accurate gene–
compartment mapping. Therefore, the FlyBase ID Validator tool

Genome-wide modeling of fly metabolism Cesur et al. https://doi.org/10.26508/lsa.202201695 vol 6 | no 8 | e202201695 13 of 21

https://doi.org/10.26508/lsa.202201695


(Larkin et al, 2021) was used to convert the gene IDs from the
subcellular localization databases and tools to the current versions
of FlyBase gene IDs. A compartment dictionary was then created by
mapping the compartment information to the corresponding
KEGG–MetaCyc-specific genes based on the Gene Ontology (GO)
cellular component terms. Only the compartments found in the
draft model were considered in the construction of this dictionary.
After the compartmentalization of the genes, the compartment
dictionary facilitated the transfer of compartment information from
the genes to the KEGG–MetaCyc reactions based on their GPR
associations.

The HMR2-based draft Drosophila model was merged with the
compartmentalized KEGG–MetaCyc-specific model by adding each
KEGG–MetaCyc reaction to the draft model using the addReaction
function in the COBRA toolbox (Heirendt et al, 2019). The biomass
formation equation derived from the template human model was
curated, and then we identified biomass components that could
not be synthesized by the merged model using the COBRA bio-
massPrecursorCheck function. Then, the gap-filling algorithm in the
RAVEN toolbox, fillGaps, was used to add reactions required for the
synthesis of these biomass components. To ensure the production
of all biomass components, the lower bound of the biomass for-
mation reaction was set to 0.1 while running the fillGaps algorithm.
We also set the “useModelConstraints” parameter in the fillGaps to
true. In the gap-filling process, the template human model was
used as a reference to fill in the missing knowledge about meta-
bolism. First, the reference model and merged model were set
to a chemically defined medium with unlimited uptake rates
(1,000 mmol g−1h−1). This growth condition was termed an
“expanded holidic diet (HD)” because of the addition of several
vitamin derivatives to the HD medium (see Table S5) (Piper
et al, 2014; Schönborn et al, 2019). Subsequently, new reactions
were added to the merged model by gap filling from the human
model without gene information (Table S4).

After the gap-filling step, cholesterol metabolism was revised to
represent cholesterol auxotrophy in Drosophila (Table 1). In ad-
dition, the GPR rules were updated based on the information on 556
Drosophila protein complexes reported by Guruharsha and col-
leagues (2011) (Guruharsha et al, 2011). Additional curations were
introduced for the GPR rules based on the FlyBase gene group list
and the literature (Van den Berghe et al, 1997; Santos & Lehmann,
2004; Allan et al, 2005; Wahl et al, 2005; Avval & Holmgren, 2009;
Grant et al, 2010; Pavlovic & Bakovic, 2013; Tang & Zhou, 2013;
Kemppainen et al, 2014; Attrill et al, 2016; Kovacs et al, 2018; Marygold
et al, 2020b; Rhooms et al, 2020). We also investigated the presence
of leaking energy metabolites in the draft model. These metabolites
represent the compounds that can be produced even in the ab-
sence of any nutritional intake. For instance, leaking ATPmetabolite
can lead to spontaneous energy production without any nutrient
uptake, and it can result in a higher growth rate. In the leak testing,
we analyzed the metabolism of the charging energy metabolites
listed by Fritzemeier and colleagues (e.g., ATP, NADH, NADPH, FADH2,
GTP, and H+) (Fritzemeier et al, 2017). To this end, we first con-
strained all uptake reactions in the model to zero by allowing only
their secretions. Then, a dissipation reaction was added for each
energy metabolite if the corresponding reaction was not available
in the model. Maximization of the rate of each dissipation reaction

was defined as an objective function to evaluate whether the
corresponding metabolite is leaking or not. A nonzero rate for the
dissipation reaction indicated the leakage of that metabolite. To
overcome this problem, we performed double-reaction deletions
by setting their lower and upper boundaries to zero under the same
nutritional condition, where all the uptake reactions were con-
strained to zero flux. The reaction pairs whose deletion prevented
the production of a leaking metabolite in the absence of nutrients
were carefully revised by removing incorrectly compartmentalized
or redundant reactions. It is also worth emphasizing that the re-
action “HMR_4762” mediating porphyrin metabolism was updated
to revise the incorrect link between heme and cytochrome-C
metabolites. This reaction is catalyzed by cytochrome-C heme ly-
ase (FBgn0038925) and provides the conversion of apocytochrome-
C and heme to cytochrome-C in a reversible manner. Because of the
incorrect conversion of heme to the cytochrome-C in the template
human model, we first added apocytochrome-C to the HMR_4762 in
the Drosophila model for a proper metabolic conversion. Then, the
missing reactions associated with the apocytochrome-C meta-
bolism were added from the HMR2 model. These changes affect the
growth rate because of the presence of cytochrome-C in the 'co-
factor and vitamin' composition of the biomass equation. It should
be noted that we performed several additional curation steps for all
components of themetabolic networks (reactions, metabolites, and
genes) considered in the reconstruction steps of the Drosophila
model. The details of these steps are given in the next section.

ThefinalDrosophilamodelwas called iDrosophila1, and it is available
in our GitHub repository (https://github.com/SysBioGTU/iDrosophila).
The metabolites, reactions, and genes in the model were annotated
using a variety of sources (HMR 2.0, Metabolic Atlas [Pornputtapong
et al, 2015], FlyBase, MetaNetX [Moretti et al, 2021], ModelSEED
[Seaver et al, 2021], BiGG Models [King et al, 2016], Metabolite
Translation Service, MBROLE 2.0, MetaboAnalyst, Chemical Trans-
lation Service, MetaBridge [Hinshaw et al, 2018], and SBOannotator
[Leonidou et al, 2023]). The model can be accessible in MATLAB
(MAT), XML (SBML), and JSON formats, which are compatible with the
COBRA Toolboxmodel structure. The quality of the iDrosophila1 was
evaluated via the metabolic model test suite, MEMOTE (version
0.13.0) using the Gurobi solver (Gurobi Optimization, LLC).

Curation of reaction, metabolite, and gene components

Reaction-centric, metabolite-centric, and gene-centric curations
were commonly applied to the metabolic networks in the recon-
struction steps as detailed below. This covers the curation of
metabolic redundancy, name standardization, and the removal of
missing/incomplete model components.

Reaction-centric curations
Reaction-centric curation included the detection and removal of
duplicated reactions, which arose because of the merging of two
metabolic models; KEGG–MetaCyc-specific model and template
human model (Radic Shechter et al, 2021; Zirngibl, 2021). The du-
plicated reactions were identified iteratively by ignoring common
currencymetabolites (H+, H2O, and Pi) and compartment information.
If there is any compartmental inconsistency between the duplicated
reactions with the same gene content, the compartment information
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in the template human model was accepted to be correct. This step
was performed in a tightly coupled manner with the curation of GPR
rules for all models given in the current study. If the duplicated
reactions are derived from different metabolic networks, the GPR
rules of these reactions were manually examined and combined
before the removal of one reaction by avoiding any gene loss. In
addition, trivial or incomplete reactions with missing stoichiometric
coefficients were removed from the models.

Gene-centric curations
Gene-centric curations allowed both standardization of gene names
and the elimination of gene-based redundancy in models. HMR2-
based draft Drosophilamodel was reconstructed using FlyBase gene
IDs. On the other hand, KEGG- and MetaCyc-based networks include
FlyBase protein and annotation IDs. Therefore, all genes were
denoted based on the current versions of FlyBase gene IDs for
compatibility between the models. However, this led to the emer-
gence of redundant genes in a given GPR association. Similarly, the
conversion of Ensembl gene IDs into the FlyBase gene IDs in the
HMR2-based reconstruction caused the emergence of redundant
genes in a given GPR association because of the presence ofmultiple
Drosophila orthologs for some human genes. The redundant genes/
gene associations in each GPR rule were manually curated.

Metabolite-centric curations
Metabolite-centric curations are based on the elimination of trivial
and synonymous metabolites. The trivial metabolites, which were
not associated with any reactions (no assigned stoichiometric
coefficients), were investigated in all models, and removed. In
addition, synonymous metabolites were identified to eliminate
metabolic redundancy.

First, synonymous metabolites within the model were inter-
rogated based on compound names (metabolite name and BioCyc
name) and IDs (KEGG [Kanehisa & Goto, 2000], ChEBI [Degtyarenko
et al, 2008], PubChem [Kim et al, 2021], and LIPID MAPS [Fahy et al,
2007]). To this aim, the compound information was collected from
available metabolic networks and several web servers including
Metabolite Translation Service (Caspi et al, 2016), MBROLE 2.0
(López-Ibáñez et al, 2016), MetaboAnalyst (Chong et al, 2018), and
Chemical Translation Service (Wohlgemuth et al, 2010). Note that
only three-star ChEBI IDs (parent IDs) that were manually curated
by the ChEBI team were kept in the compound list by excluding
less reliable ChEBI IDs. Using this list, we subsequently generated
a paired compound name and ID (collectively called identifiers)
dictionary by mapping the related IDs to the metabolites in the
given model. Based on these identifiers, we matched the model
metabolites by threemain criteria: (1) if twometabolites within the
model have at least one common identifier and they do not have
any common identifier with any other metabolites, they were
accepted as synonyms; (2) when three or more metabolites were
detected to have common identifiers, a filtering step was applied
by assuming that the metabolite pair with the maximum number
of matched identifiers (i.e., the highest number of matched IDs)
were synonymous; (3) in the case where more than two metab-
olites have common identifiers, there can be more than one pair
of metabolites with the maximum number of identifiers. Such hits
were further investigated to select the most possible synonymous

metabolites with extensive knowledge-based manual curations
based on the databases including BioCyc (Karp et al, 2018),
ModelSEED (Seaver et al, 2021), ChemSpider (Pence & Williams,
2010), and MetaNetX (Moretti et al, 2021) in addition to the lit-
erature (Fig S1). For each metabolic match, one of the duplicated
metabolites was removed from the model after the assembly of
their stoichiometric coefficients in the model. This curation
step was separately performed for the template human model,
HMR2-based draft Drosophila model, and KEGG–MetaCyc-
specific network.

Second, we uncovered synonymous metabolites across the
models to successfully merge the networks. This step was
employed before combining the HMR2-based and KEGG–MetaCyc-
specific metabolic networks to prevent any metabolic redundancy
in the merged model. Similar to the first approach detailed above, a
compound name–ID pair dictionary was generated for each model.
Then, the metabolites in both models were mutually matched
based on the specified identifiers. The same assumption was used
to prioritize the multi-matched metabolites (Fig S1). After the
manual confirmation of the potential synonyms, the names of
synonymous metabolites in the KEGG–MetaCyc-specific network
were replaced with the metabolite names in the HMR2-based draft
Drosophila model.

Curation of biomass formation reaction

The biomass equation of the draft Drosophila model derived from
the reference human model was updated based on the FlySilico
model (Schönborn et al, 2019) and the literature. Biomass com-
position was examined comparatively with the FlySilico, and most
metabolites were found to be common (amino acids, glycogen,
triglyceride, and cholesterol). The missing growth-associated
ATP maintenance reaction was included in the model using the
stoichiometric coefficients in the FlySilico model. Furthermore,
cardiolipin was removed from the biomass reaction because it
was reported to be nonessential in D. melanogaster (Kubota-
sakashita, 2020). Vitamin D was also removed from the biomass
reaction because fruit fly is known as a cholesterol auxotroph,
and 7-dehydrocholesterol (a cholesterol precursor) synthesis is
an overlapping reaction in cholesterol and vitamin D synthesis.
The gene encoding the enzyme responsible for the synthesis of
7-dehydrocholesterol was reported to be absent in the fly ge-
nome (Santos & Lehmann, 2004).

Validation of growth phenotypes

iDrosophila1 model was checked to ensure the production of all
biomass precursors. After ensuring that the growth rate of the
network was nonzero, we analyzed cholesterol auxotrophy, as-
partate nonessentiality, and the impact of essential amino acids
under the expanded HD condition (Table S5). Here, we allowed the
flexible intake of 47 dietary compounds by limiting the maximum
sucrose uptake rate to ~ 2.212 mmol g−1h−1 (Schönborn et al, 2019).
The maximum vitamin uptake rates were set to 1/100 of the sucrose
uptake rate because of the low vitamin consumption tendency of
organisms, whereas the use of remaining HD substances (except for
salts and water) was set to 1/10 of the sucrose uptake rate. We
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constrained the maximum oxygen uptake rate to 24 mmol g−1h−1 by
estimating the oxygen level required to consume all sucrose
through aerobic respiration. Under this condition, we investigated
the effect of increasing cholesterol and amino acid levels on growth
rate as explained in the study of Schönborn et al (2019). To predict
the growth rates, maximum biomass production was defined as the
objective function, and the FBA approach (Orth et al, 2010) with the
Gurobi solver was used to identify intracellular flux distributions.

Validation of essential gene predictions

To discover vital genes in the iDrosophila1 model, gene essen-
tiality analysis was performed under the expanded HD condition
by allowing an infinite intake of all diet compounds. Each gene
was deleted by suppressing the corresponding reactions, and
FBA was performed with the objective of growthmaximization with
the Gurobi solver. This step was achieved using the single-
GeneDeletion function in the COBRA toolbox (Schellenberger et al,
2011). The effect of each single-gene knockout on the biomass
formation was assessed based on the specified cutoff value. To
evaluate gene essentiality, different cutoff values were preferred in
the previous studies for prokaryotic and eukaryotic metabolic
models (Pratapa et al, 2015; Khodaee et al, 2020; Wang et al, 2021).
Khodaee et al determined the essential genes in their mouse
models using 30% of the optimal growth rate as a threshold value
(Khodaee et al, 2020). We used the same cut-off of 30% to predict
essential genes. In this regard, when the deletion of a gene resulted
in a significantly reduced growth rate (i.e., a smaller growth rate
than the given cutoff), this gene was considered essential. In this
way, we uncovered essential and nonessential gene sets. The genes
involved only in inactive (blocked) reactions were subsequently
discarded from the list of gene sets because they do not affect
biomass formation. The blocked reactions were identified using flux
variability analysis (Mahadevan & Schilling, 2003) under the ex-
panded HD condition. If the sum of absolute minimum and max-
imum fluxes of a reaction was less than 10−5 in flux variability
analysis, it was accepted as inactive. After determining essential
and nonessential gene sets in the active reactions, we charac-
terized the essential genes (Table S6A) through the identification of
enriched biological processes (Table S6B) and KEGG pathways
(Table S6C) using the g:Profiler web server for FDR at the 0.05 level.
In the next step, we assessed the predictive capability of the model
based on the experimental gene essentiality dataset, which was
stored in the OGEE database (Gurumayum et al, 2020). In this
dataset, we classified conditionally essential genes as essential.
Finally, several metrics (sensitivity, specificity, accuracy, precision,
F1 score, and MCC) were calculated to evaluate the model per-
formance based on the OGEE dataset.

iDrosophila1-mediated analysis of differential metabolic
pathways in Parkinson’s disease

We further evaluated the capacity of the iDrosophila1 model in
phenotypic predictions through the investigation of age- and
PD-dependent differential pathways in D. melanogaster. In this
process, we used a microarray dataset (Agilent) from ArrayEx-
press (accession number: E-MTAB-1406) (Celardo et al, 2017). It

includes the samples from the heads of male flies harboring
pink1B9 (pink1) and park25 (parkin) mutations at different age
groups: young flies (3-d-old) and middle-aged flies (21-d-old
[parkin] and 30-d-old [pink1]). For each age group, there are
three and six biological replicates for pink1 and parkin mutant
flies, respectively. The Limma package (Law et al, 2014) for R
version 4.1.0 was used to process, normalize, and analyze the
data. In the data-processing step, the effects of nonspecific
signals in the dataset were removed using the backgroundCorrect
function after reading the intensity data via the read.maimages
function. Then, the normalizeBetweenArrays function was used
to establish consistency between different arrays. Using this
normalized log-transformed dataset, differential expression
analysis was performed to uncover significant fold change values
for each mutant group relative to the corresponding control group
(age-matched WT fly). To ensure the consistency of the genes with
the iDrosophila1 model, all gene annotation IDs were converted to
the current versions of FlyBase gene IDs using the FlyBase ID
Validator tool (Larkin et al, 2021). In this curation step, multiple hits
were manually revised. The limma-trend function was subse-
quently used by setting robust = TRUE. Genes with significant
changes in their expression levels (P-value < 0.01) were selected for
further analysis. Based on the fold change cutoff values, we applied
another filtering process for the genes with multiple probe mea-
surements using the following criteria: (1) if one or more probe(s) of
a gene have fold changes ≥1.5, the maximum of fold change values
of its probes was considered by assuming the up-regulation of this
gene; (2) when the fold change values of any probe(s) ≤ 0.67 (~1/1.5)
for a gene, the minimum fold change value was assigned by
assuming the down-regulation of this gene (3) if all probes of a
gene had moderate (0.67 < fold change < 1.5) or ambiguous fold
change values (i.e., the presence of both up-regulated and
down-regulated probes), the average fold change was assigned
to this gene.

In the metabolic network analysis step, the maximum uptake
rates of all exchange metabolites were set to unrestricted
flux (i.e., 1,000 mmol g−1h−1). Then, the filtered fold change values
were mapped to the reactions in the iDrosophila1 model using
the COBRA function mapExpressionToReactions. GPR associa-
tions were taken into consideration in the mapping process. The
minimum fold change value was assigned to the reactions whose
corresponding genes are linked with “AND” operator whereas the
maximum fold change was used for the genes that are linked
with “OR” operator. Differential reaction expression levels were
then used to elucidate PD-induced altered metabolism via a
recent approach, ΔFBA with default parameters (Ravi &
Gunawan, 2021). Note that the flux of the non-growth-
associated ATP maintenance was assumed to be unchanged
between WT and mutant groups. The ΔFBA algorithm calculates
flux changes (Δv) between two diverse conditions by applying
a two-step optimization procedure: it maximizes consistency
and minimizes inconsistency between Δv and differential re-
action expressions. Based on the predicted Δv distribution, we
identified the altered (up-regulated and down-regulated) re-
action sets with differential fluxes above the specified threshold
(|Δvi| > 0.1% of the largest flux bound). GPR rules were used to
determine the corresponding genes involved in the regulated
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reactions. These genes were characterized in terms of signifi-
cantly enriched KEGG pathways (FDR < 0.05) and diseases (P-
value < 0.01) using the g:Profiler (Raudvere et al, 2019) and
FlyEnrichr (Kuleshov et al, 2016) web servers.

Data Availability

The final iDrosophila1 model has been deposited in MAT, SBML, and
JSON formats in GitHub: https://github.com/SysBioGTU/iDrosophila.
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Supplementary Information is available at https://doi.org/10.26508/lsa.
202201695.

Acknowledgements

We would like to thank Katharina Zirngibl for providing the genome-scale
metabolic network of human, which was used as the template in the current
study.

Author Contributions

MF Cesur: formal analysis, investigation, methodology, and wri-
ting—original draft, review, and editing.
A Basile: methodology and writing—review and editing.
KR Patil: conceptualization, supervision, methodology, and wri-
ting—original draft, review, and editing.
T Çakır: conceptualization, supervision, methodology, and wri-
ting—original draft, review, and editing.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J (2012)
Reconstruction of genome-scale active metabolic networks for 69
human cell types and 16 cancer types using INIT. PLoS Comput Biol 8:
e1002518. doi:10.1371/journal.pcbi.1002518

Allan AK, Du J, Davies SA, Dow JAT (2005) Genome-wide survey of V-ATPase
genes in Drosophila reveals a conserved renal phenotype for lethal
alleles. Physiol Genomics 22: 128–138. doi:10.1152/
physiolgenomics.00233.2004

Allman BR, Biwer A, Maitland CG, DiFabio B, Coughlin E, Smith-Ryan AE,
Ormsbee MJ (2018) The effect of short term beta alanine
supplementation on physical performance and quality of life in
Parkinson’s disease: A pilot study. J Exerc Physiol Online 21: 1–13.

Amichot M, Tarès S (2021) The foraging gene, a new environmental
adaptation player involved in xenobiotic detoxification. Int J Environ
Res Public Health 18: 7508. doi:10.3390/ijerph18147508

Arias-Borrego A, Callejón-Leblic B, Calatayud M, Gómez-Ariza JL, Collado MC,
Garcı́a-Barrera T (2019) Insights into cancer and neurodegenerative
diseases through selenoproteins and the connection with gut
microbiota–current analytical methodologies. Expert Rev Proteomics
16: 805–814. doi:10.1080/14789450.2019.1664292

Aryal B, Lee Y (2019) Disease model organism for Parkinson disease:
Drosophila melanogaster. BMB Rep 52: 250–258. doi:10.5483/
bmbrep.2019.52.4.204

Attrill H, Falls K, Goodman JL, Millburn GH, Antonazzo G, Rey AJ, Marygold SJ
(2016) FlyBase: Establishing a gene group resource for Drosophila
melanogaster. Nucleic Acids Res 44: 786–792. doi:10.1093/nar/
gkv1046

Avval FZ, Holmgren A (2009) Molecular mechanisms of thioredoxin and
glutaredoxin as hydrogen donors for mammalian S phase
ribonucleotide reductase. J Biol Chem 284: 8233–8240. doi:10.1074/
jbc.M809338200

Barazzuol L, Giamogante F, Brini M, Calı̀ T (2020) PINK1/
ParkinMediatedMitophagy, Ca2+ signalling, and ER–mitochondria
contacts in Parkinson’s disease. Int J Mol Sci 21: 1772. doi:10.3390/
ijms21051772

Binder JX, Pletscher-frankild S, Tsafou K, Stolte C, O’Donoghue SI, Schneider
R, Jensen LJ (2014) COMPARTMENTS: Unification and visualization of
protein subcellular localization evidence. Database (Oxford) 2014:
bau012. doi:10.1093/database/bau012

Bjørklund G, Dadar M, Chirumbolo S, Aaseth J (2020) The role of xenobiotics
and trace metals in Parkinson’s disease. Mol Neurobiol 57: 1405–1417.
doi:10.1007/s12035-019-01832-1

Blais EM, Rawls KD, Dougherty BV, Li ZI, Kolling GL, Ye P, Wallqvist A, Papin JA
(2017) Reconciled rat and human metabolic networks for comparative
toxicogenomics and biomarker predictions. Nat Commun 8:
14250–14315. doi:10.1038/ncomms14250

Brakedal B, Dölle C, Riemer F, Ma Y, Nido GS, Skeie GO, Craven AR,
Schwarzlmüller T, Brekke N, Diab J, et al (2022) The nadpark study: A
randomized phase I trial of nicotinamide riboside supplementation in
Parkinson’s disease. Cell Metab 34: 396–407.e6. doi:10.1016/
j.cmet.2022.02.001

Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R,
Mittag F, Schubert M, Glont M, Golebiewski M, et al (2013)
Path2Models: Large-scale generation of computational models
from biochemical pathway maps. BMC Syst Biol 7: 116. doi:10.1186/
1752-0509-7-116

Callejón-Leblic B, Selma-Royo M, Collado MC, Abril N, Garcı́a-Barrera T (2021)
Impact of antibiotic-induced depletion of gut microbiota and
selenium supplementation on plasma selenoproteome and metal
homeostasis in a mice model. J Agric Food Chem 69: 7652–7662.
doi:10.1021/acs.jafc.1c02622

Capo F, Wilson A, Di Cara F (2019) The intestine of Drosophila
melanogaster: An emerging versatile model system to study
intestinal epithelial homeostasis and host-microbial interactions
in humans. Microorganisms 7: 336. doi:10.3390/
microorganisms7090336

Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A,
Krummenacker M, Latendresse M, Mueller LA, et al (2012) The MetaCyc
database of metabolic pathways and enzymes and the BioCyc
collection of pathway/genome databases. Nucleic Acids Res 40:
742–753. doi:10.1093/nar/gkr1014

Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A,
Krummenacker M, Latendresse M, Mueller A, et al (2016) The MetaCyc
database of metabolic pathways and enzymes and the BioCyc
collection of pathway/genome databases. Nucleic Acids Res 44:
471–480. doi:10.1093/nar/gkv1164

Celardo I, Lehmann S, Costa AC, Loh SHY, Miguel Martins L (2017) dATF4
regulation of mitochondrial folate-mediated one-carbon metabolism

Genome-wide modeling of fly metabolism Cesur et al. https://doi.org/10.26508/lsa.202201695 vol 6 | no 8 | e202201695 17 of 21

https://github.com/SysBioGTU/iDrosophila
https://doi.org/10.26508/lsa.202201695
https://doi.org/10.26508/lsa.202201695
https://doi.org/10.1371/journal.pcbi.1002518
https://doi.org/10.1152/physiolgenomics.00233.2004
https://doi.org/10.1152/physiolgenomics.00233.2004
https://doi.org/10.3390/ijerph18147508
https://doi.org/10.1080/14789450.2019.1664292
https://doi.org/10.5483/bmbrep.2019.52.4.204
https://doi.org/10.5483/bmbrep.2019.52.4.204
https://doi.org/10.1093/nar/gkv1046
https://doi.org/10.1093/nar/gkv1046
https://doi.org/10.1074/jbc.M809338200
https://doi.org/10.1074/jbc.M809338200
https://doi.org/10.3390/ijms21051772
https://doi.org/10.3390/ijms21051772
https://doi.org/10.1093/database/bau012
https://doi.org/10.1007/s12035-019-01832-1
https://doi.org/10.1038/ncomms14250
https://doi.org/10.1016/j.cmet.2022.02.001
https://doi.org/10.1016/j.cmet.2022.02.001
https://doi.org/10.1186/1752-0509-7-116
https://doi.org/10.1186/1752-0509-7-116
https://doi.org/10.1021/acs.jafc.1c02622
https://doi.org/10.3390/microorganisms7090336
https://doi.org/10.3390/microorganisms7090336
https://doi.org/10.1093/nar/gkr1014
https://doi.org/10.1093/nar/gkv1164
https://doi.org/10.26508/lsa.202201695


is neuroprotective. Cell Death Differ 24: 638–648. doi:10.1038/
cdd.2016.158

Chia SJ, Tan E, Chao Y (2020) Historical perspective: Models of Parkinson’s
disease. Int J Mol Sci 21: 2464. doi:10.3390/ijms21072464

Chicco D, Jurman G (2020) The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC Genomics 21: 6. doi:10.1186/s12864-019-6413-7
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