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Gapless provides combined scaffolding, gap filling, and
assembly correction with long reads
Stephan Schmeing1,2 , Mark D Robinson1,2

Continuity, correctness, and completeness of genome assemblies
are important for many biological projects. Long reads represent
a major driver towards delivering high-quality genomes, but not
everybody can achieve the necessary coverage for good long
read-only assemblies. Therefore, improving existing assemblies
with low-coverage long reads is a promising alternative. The
improvements include correction, scaffolding, and gap filling.
However, most tools perform only one of these tasks and the
useful information of reads that supported the scaffolding is lost
when running separate programs successively. Therefore, we
propose a new tool for combined execution of all three tasks
using PacBio or Oxford Nanopore reads. gapless is available at:
https://github.com/schmeing/gapless.
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Introduction

High-quality assemblies are an essential part of many biological
projects. For most well-studied organisms, high-quality references
are available and large consortia work on improving them further,
for example, the Telomere-to-Telomere (T2T) consortium (1 Pre-
print). Other projects, such as the Vertebrate Genomes Project (VGP)
(2), work on expanding the availability of high-quality references,
but often individual research groups need to create their own
assemblies.

Long read technologies, for example, Pacific Bioscience (PacBio)
SMRT and Oxford Nanopore sequencing, drastically increased the
continuity, correctness, and completeness of many de novo as-
semblies. To include these reads in the assembly process, they can
be directly assembled on their own (long-read only) or together
with short reads (hybrid) or they can be used to improve a pre-
existing assembly. Each of the three options has its own advantages
and drawbacks. In this work, we focus on the improvement of
preexisting assemblies and only briefly look at the other
alternatives.

Long read-only assemblies need to address the higher error
rates of long reads, with the exception of the new PacBio HiFi

technology, which offers error rates comparable with Illumina short
reads (3). A performant tool for such assemblies is Flye (4, 5). It
applies an A-Bruijn graph to deal with the error rates and resolves
repeats by identifying variations between the individual repeat
copies.

Hybrid assemblies rely either on accurately placing short reads
onto long reads for correction or on finding unique paths through
the (short read-generated) De Bruijn graph using the long reads (6,
7). Furthermore, these assemblies require adjustments for two
input types in case of adaptation to other sequencing technologies.
For example, using PacBio HiFi reads as an accurate basis for the De
Bruijn graph in combination with ultra-long nanopore reads for the
graph traversal is not possible without changing the current tools.
An example of this type of assembler is MaSuRCA (6, 8).

Scaffolding and gap filling of existing assemblies provide the
largest flexibility, because any tool and technology can be used to
create the initial assembly and the adjustment to the specific long-
read technology can predominantly be outsourced to the mapper.
However, the flexibility to handle any initial assembly prevents
strong optimization on specific conditions that are possible if you
control the complete hybrid assembly, such as having alternative
haplotypes removed or repeated contig ends trimmed. Thus, the
scaffolding strategy might perform worse than specialized as-
semblers that have control over the whole pipeline. PBjelly (9) was
one of the first widely used scaffolding and gap-filling tools. It tried
to assemble the reads overlapping a gap and was specifically
designed for PacBio reads. State-of-the-art tools that can handle
all types of continuous long reads (CLRs) include LRScaf (10) for
scaffolding and LR_Gapcloser (11) and TGS-GapCloser (12) for gap
filling. In particular, LRScaf bases its scaffolding on minimap2 (13)
alignments. It only uses reads that map over the end of contigs/
scaffolds in the original assembly and masks repetitive contigs,
identified through high coverage. Connections are built from reads
mapping to multiple contigs and only kept if the distance between
contigs does not diverge strongly from the mean and if enough
reads support the connection. From the remaining connections,
LRScaf builds a graph and scaffolds along the connections, where
the connected contigs do not have an alternative. In case of al-
ternatives, it follows long reads through the graph to find unique
connections between contigs on both sides of the complex region.
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LR_Gapcloser fragments the long reads into chunks of 300 bases,
called tags, and maps them with BWA-MEM (14 Preprint). After
filtering tags based on consistency, a read is proposed for gap filling
if it has at least a minimum number of consistent tags on one side
of the gap. If it also has enough tags on the other side and the read
distance matches the gap distance, it is used for gap closure.
Otherwise, the gap is iteratively shortened from both ends with
additional checks to detect overlapping reads from opposite sides.
TGS-GapCloser aligns the long reads to the gaps with minimap2
and selects a maximum of 10 candidates for each gap based on a
score built from the read’s mapping identities and alignment
lengths for the two flanking segments. It does not take the gap
length into account, because many scaffolding techniques do not
have the resolution to accurately predict the gap size. The can-
didates are error corrected either with short or long reads and
realigned to the gaps. Finally, the corrected candidates with the
highest scores are inserted into the gaps.

Interestingly, the state-of-the-art tools perform either scaf-
folding or gap filling, despite the strong connection of the two tasks
in the case of long reads. Here, we propose a new tool that performs
gapless scaffolding, meaning it uses the reads that identify a
connection between contigs directly to close the gap. In addition, it
breaks contigs if a large enough number of reads fail the filtering
steps because of a divergence at the same position in the original
assembly.

In parallel to this work, another tool called SAMBA was devel-
oped (15) that also combines all three tasks. It uses minimap2 to
align the reads to the assembly and then filters on the alignment
length, requiring at least 5 kb alignments and a maximum of 1 kb of
unaligned sequences in case both contig and read continue. For
every remaining connection between two contigs, a consensus is
formed using Flye. Afterwards, contigs are combined on unique
connections and paths that split and recombine, forming so-called
bubbles. Bubbles are resolved iteratively by choosing the longest
alternative. Finally, bridged repeats are handled by removing the
repeated contigs and using the spanning reads to fill the gap.

Results

Overview of the gapless algorithm

gapless consists of four (Python) modules: split, scaffold, extend,
and finish (Fig 1). The split module separates the scaffolds from the
original assembly into contigs. The scaffold module is themain part
of the program and performs the scaffolding, gap closure, and
assembly correction. The optional extend module inserts consis-
tent sequence from the long reads at the unconnected ends of
contigs. If the reads offer two possible extensions for a contig end,
they are added as separate contigs into the assembly. Finally, the
finish module applies the list of changes from the scaffold and
extend module to the split assembly and writes out the improved
assembly as a FASTA file.

For convenience, a bash script is distributed with gapless to run
the four modules in a pipeline. It requires two inputs: an existing
assembly in FASTA format and long reads in FASTQ format. The

pipeline applies minimap2 (13) to create three alignments: the split
assembly to itself, the long reads to the split assembly, and a
selection of extending reads to themselves. Seqtk (16) is used to
filter the long reads and a final polishing step with racon (17) was
added after the finish module. Furthermore, the pipeline supports
multiple iterations to successively improve the assembly, and
was constructed in bash to allow users to easily change the
mapping software or parameters for better adjustment to changes
in technology.

The scaffold module is the core of gapless. It requires the split
assembly to extract the names and lengths of existing scaffolds,
the alignment of the split assembly to itself to detect repeats, and
the alignment of the long reads to the split assembly. The long read
alignments are initially filtered, requiring a minimum mapping
quality and alignment length, and in case of PacBio, only one
Subread per fragment is kept to avoid giving large weight to short
DNA fragments that are repeatedly sequencedmultiple times. If the
user provides CCS (circular consensus) reads, the Subread filter is
not required. In a second step, mappings that are fully contained
within a contig or stop aligning to the contig before the contig or
read ends are removed. However, if multiple reads consistently
diverge at the same position within a contig, the contig is split at
this position instead of removing the mappings.

From the accepted alignments, bridges are formed. A bridge is
defined by the two contig ends it connects and the read distance in
between. Bridges with similar distances are clustered together. The

Figure 1. gapless overview.
The fourmodules of gapless (blue, rounded corners) and themandatory inputs
(solid, red). The extend module is optional. The alignments (grey) require a
mapper such as minimap2. Two of the intermediate files and the final output file
are included in the overview (blue, sharp corners).
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bridge clusters are filtered for chimeric connections, alignments to
the wrong repeat copy, and rare connections potentially caused by
sequencing errors. The remaining bridges are used for scaffolding.
An example of the filtering is provided in Fig S1.

For four datasets with a coverage between 21× and 33×, the
performance of the filters are plotted in Fig S2. More details can be
found in Figs S3–S6. False discovery rate and Fraction Possibilities
Kept are based on an alignment of the contigs to the respective
reference assemblies. The bridges remaining after all filters up to
the specified one are considered as positives. True positives
additionally require that the orientation is correct and the dis-
tance is within 0.5 to 1.5 of its true value. The Fraction Possibilities
Kept is the fraction of true positives existing before the filtering
that is still covered after the filtering. Covered means in this case
that the full new contig created by the combination of the two
contigs is completely included in a new contig created from
bridges surviving the filters. The combined filters clearly out-
perform a single filter on alignment length and the default values
for the filters chosen in gapless perform well in all cases. How-
ever, for two datasets, even the most stringent filters do not
achieve a false discovery rate below 23% (Nanopore) or 17%
(PacBio). The conclusions drawn from these four datasets with a
coverage between 21× and 33× still hold for datasets with very low
or very high coverage (Figs S7 and S8).

After filtering, all contigs are scaffolded that do not have
conflicting bridges. Then, we identify long-range connections
from reads connecting at least three scaffolds and filter them in
a similar manner to the bridges. From the remaining connec-
tions, a scaffold graph is built. After removing contigs that du-
plicate the sequence of another contig from the shared paths in
the graph, we identify origin–extension pairs. Although the
scaffold graph gives all valid paths starting at a given scaffold,
the origin–extension pairs select the paths (extension) condi-
tional on the scaffolds on the other side of the given scaffold
(origin). We build an initial set of paths along unique origin–
extensions pairs. Loops and inverted repeats are added by
specialized functions to the set. Then, this initial set is iteratively
merged and combined. The merging stacks paths with the same
ending that likely represent alternative haplotypes and the
combination connects the paths along the best overlaps. When
this process converges, we remove completely duplicated paths
and run the process again. When this process converges once
again, we merge shorter paths into longer ones if we find a
unique position and run the process one last time. Afterwards,
we try to combine nonoverlapping paths, trim duplicated ends
and circular paths, and remove unconnected contigs that were
previously identified as a duplicate of another contig.

The final scaffold paths describe the (gapless) scaffolding of the
contigs. Original scaffold connections between untouched contigs
are kept as gapped scaffolds. To fill the gaps, we first map the reads
to the scaffold paths and then select the best read for each gap to
fill it.

Comparison with state-of-the-art tools

We benchmark gapless against existing tools using various data-
sets from E. coli, dolphins, and humans (Table 1). The results are

compared with the accompanying reference genomes using
QUAST-LG (21). The E. coli and dolphin data are CLR from PacBio and
the human data contain both PacBio HiFi and Oxford Nanopore. To
test the influence of coverage, we subsampled the full datasets with
seqtk (16) to four coverage levels, starting always from the full
dataset and using different seeds. Because of its lower overall
coverage, we created only three subsampled datasets of the PacBio
HiFi data.

gapless is compared with SAMBA, LR_Gapcloser, and TGS-
GapCloser. Because the latter two do not perform scaffolding, we
applied LRScaf first, whereas gapless and SAMBA were run directly
on the initial assemblies. For dolphin and human, we use an initial
supernova (22) assembly that already contained many gaps before
scaffolding with long reads. For E. coli, the initial assembly was
created with SH-assembly (23), which does not perform scaffolding.
The Nanopore data were tested, in addition to the supernova
assembly, on a Flye assembly created from the PacBio HiFi data. To
judge the results in a broader context, we also included Flye as-
semblies that are directly based on the (subsampled) data.

Fig 2 shows the achieved continuity measured in NGA50 versus
the misassemblies reported by QUAST. For E. coli, the most no-
ticeable observation is that the direct assemblies from Flye con-
tinuously improve with higher coverage, whereas the performance
of LR_Gapcloser and TGS-GapCloser fluctuates in an apparently
random manner. SAMBA does not seem to make significant
changes to the initial assembly. gapless is the only gap-filling
strategy that shows a general trend to increase continuity with
increasing coverage and outperforms the direct competitors in
correctness and continuity for most coverages. In contrast to E. coli,
the dolphin gap-filling assemblies all show improved contig con-
tinuity with higher coverage, except for SAMBA. However, they also
experienced a higher number of misassemblies. Thus, they still do
not use the full potential of the higher coverage compared with
Flye, which improves continuity and reduces misassemblies. From
the gap-filling tools, gapless consistently achieves the highest
contig continuity and still has fewer misassemblies than TGS-
GapCloser for all coverage levels except very high. LR_Gapcloser
does not appear to close many gaps, which might be caused by its
check on the gap length. Most gaps in the scaffolded dolphin
assembly are created by supernova, which does not have the
accuracy of long reads to estimate the distance between contigs.
SAMBA even decreases the contig continuity, which is likely be-
cause of contigs that are correctly separated at the misassembly,
but are not rescaffolded. gapless seems to remove nearly all of the
original scaffolds and thus has a lower scaffold continuity for low
and very low coverage compared with the other gap-filling tools
that do not attempt to correct the initial assembly and keep all
scaffolds. In the human PacBio HiFi data, Flye achieves higher
continuity and lower error rates already with 8× HiFi data and >7
times higher contig continuity with the full 33× coverage. Never-
theless, gapless outperforms the other gap fillers and achieves a
>3-times higher continuity for the full coverage. For the human
Nanopore data, the results are similar to the dolphin PacBio
CLR data, when also starting from an initial supernova
assembly. However, starting from the Flye assembly of the HiFi data,
gapless introduces many errors with only moderate continuity
improvements. In addition, gapless and LR_Gapcloser seem to
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predominantly increase the error rate and not the continuity with
higher coverage.

Comparing the completeness and duplication ratio of the results
(Fig 3), we notice that gapless has much lower duplication rates
than the other gap-filling methods for all datasets except E. coli,
where it is surprisingly the opposite. The duplications cannot only
be caused by the initial assemblies, because they themselves have
low duplication rates. This is especially evident in the case of the
initial Flye assembly that does not have many gaps. Thus, the
duplications cannot appear simply because of the gap filling, but
must be caused to a large extent from the LRScaf scaffolding.
Another observation is the strong drop of completeness for low and
very low coverage assemblies with gapless. A manual check on the
dolphin assembly with very low coverage showed that the racon
polishing step causes decreased completeness by drastically

reducing the mapping rate of the contigs to the reference. For
higher coverage, several percent higher genome completeness can
be observed for the gapless scaffolding with Nanopore data
compared with the respective Flye assembly. LR_Gapcloser and
TGS-GapCloser counterintuitively lose completeness compared
with the initial supernova assemblies for human data.

The relative time and memory requirements of the methods vary
strongly between datasets (Figs S9 and S10). Generally, the direct
assembly with Flye is time and memory efficient for low coverages,
but performs worse at higher coverage than the gap-filling strat-
egies. The HiFi dataset has a maximum coverage of only 33×, which
partially explains that the initial supernova assembly already uses
more time and memory than the high coverage assembly from Flye.
The time requirements of TGS-GapCloser appear to scale poorly
with coverage in the case of Nanopore data, because only medium
coverage levels (and lower) finish within the one week limit of the
cluster and only in the case of the initial supernova assembly. For
the initial Flye assembly TGS-GapCloser finishes only in the very
low coverage case. gapless and especially TGS-GapCloser have a
strong increase in memory consumption for high coverage. The
memory requirements of gapless are defined by the racon run at
the end of each iteration and most time is either spent for the
mapping or the consensus (Fig S11).

Discussion

The strategy of the combined scaffolding and gap filling imple-
mented by gapless successfully increases the contig continuity
compared with other gap-filling tools and the additional correction
step detects and removes misassemblies in the initial assembly.

SAMBA (15) does not work well in our benchmark. Therefore, we
ran the 30× nanopore data also on the CHM13-WashU assembly
from their article. Instead of the reported NGA50 of ~23 Mb, we only
achieved ~9 Mb, which is the NGA50 of the input assembly. Thus, this
result is consistent with what we observe in our benchmarks. We
suspect that version 4.0.6 that we used has suffered in performance
compared with version 4.0.5 used for their publication. This might
be caused by the additional correction step that can split mis-
assembled scaffolds introduced in version 4.0.6.

Direct assemblies with Flye outperform all gap-filling strategies
in terms of correctness and continuity except for low and very low
coverage. We believe that the lower performance is linked to re-
peats or haplotypes not represented as repeats in the original
assembly. This assumption is consistent with the high rate of er-
roneous bridges even after the most stringent filters for the diploid
dolphin assembly and the human HiFi assembly corrected with

Figure 2. NG50 versus misassemblies for the compared assemblies.
The datasets are specified in Table 1. Human PacBio HiFi data do not have a
very high coverage category. The “other” coverage category is the base
assemblies improved with scaffolding and gap filling, which were created from a
different dataset. Multiple assemblies were excluded because the methods
crashed or did not finish within the one week limit of the cluster. Details are given
in the Materials and Methods section.

Table 1. Benchmark data.

Species Data Coverage Source

E. coli PacBio CLR 113, 57, 28, 14, 7 Public Health England reference collections (18)

dolphin PacBio CLR 86, 43, 21, 11, 5 Vertebrate Genomes Project (19)

human PacBio HiFi 33, 16, 8, 4 Telomere-to-telomere consortium (20)

human Oxford Nanopore 121, 61, 30, 15, 8 Telomere-to-telomere consortium (20)
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nanopore reads, where only the difficult-to-resolve repeats remain
as gaps. To achieve a similar performance as Flye for higher
coverage, two strategies for further development of gapless are
promising: (i) variant calling into the pipeline would allow to
separate individual repeat copies as is done in Flye and to resolve
haplotypes through trio binning (24); (ii) accepting mappings to the
assembly graph would potentially improve the mapping in repeat
regions and allow an improved handling of haplotypes over
multiple rounds.

To reduce the time or memory requirements, little can be
improved in the Python core of gapless, because the demands
are largely determined by external software. A promising avenue
to explore are changes to the polishing, either by not running it
for every iteration, or by selecting the input reads and thus
reducing the coverage racon has to deal with. For improvements
with low coverage, it is also advised to use the data from the
initial assembly for polishing or another tool, because the
polished assembly from racon is purely based on the consensus
of the reads and thus includes many errors if not enough reads
are available.

Another extension would enable scaffolding with non-CLR, such
as optical mapping from Bionano Genomics. This requires the
functionality to turn off the gap filling and a special handling for
contigs that are included in multiple scaffolds. It would allow low-
coverage Bionano data to be used for scaffolding, which is not
possible in the pipeline provided by Bionano Genomics, because it
includes a de novo assembly step (25).

Overall, we presented a new tool for gapless scaffolding, that is,
combined scaffolding and gap filling, that achieves better contig
continuity than separate scaffolding and gap-filling tools. The in-
cluded assembly correction can, in contrast to other scaffolding
tools, remove errors in the initial assembly that are highlighted by
the long reads. The necessary mapping and consensus calling are

performed with minimap2 and racon, but this can be quickly
changed in the short accompanying bash script. gapless is espe-
cially useful for cases where direct long read assemblies are not
applicable, either because the coverage is low (<15-fold) or the
changes to the initial assembly need to be listed, for example, for
changing the annotations.

Materials and Methods

Breaking contigs with consistently diverging reads

All mappings that stop aligning to a contig before the read or
contig end are marked as potential breaks, and the position of
divergence is stored. For every break, the number of breaks in
close vicinity (including itself) is counted as support and all
alignments that map continuously over the break region are
counted as “vetoes.” The support is compared with the vetoes
according to the bridge selection rules in the next section. If
the support is not removed by these filters, the break is ac-
cepted. The alignments of unaccepted breaks are removed,
whereas accepted break positions in close vicinity are merged
and the contigs are broken in the center of the merged break
positions.

After breaking at those positions, all contig ends without
alignments are trimmed, including the new ends from breaks. Only
alignments of reads passing the initial filtering steps (mapping
quality and alignment length) are counted for this. Contigs that are
barely longer than the minimum alignment lengths after trimming
are also removed to avoid on/off situations, where the accordance
of a few bases decides if a read has an accepted alignment to the
contig or not.

Figure 3. Completeness versus duplication ratio for
the compared assemblies.
The datasets are specified in Table 1. We only show the
results for the scaffolds. The results for the contigs are
very similar. Human PacBio HiFi data do not have a
very high coverage category. The “other” coverage
category is the base assemblies improved with
scaffolding and gap filling, which were created from a
different dataset. Multiple assemblies were excluded
because they crashed or did not finish within the one
week limit of the cluster. Details are given in the
Materials and Methods section.
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Selecting bridges

From the accepted alignments, bridges are formed. A bridge is
defined by the two contig ends it connects and the read distance in
between. Bridges connecting the same ends are clustered based on
the distance difference relative to the distance. The gap lengths
from a potential scaffolding in the original assembly are not taken
into account because they are often not very accurate. If multiple
clusters connecting the same contig ends remain, they are treated
the same as bridges connecting different ends. The few exceptions
to this rule will be specifically mentioned. Bridges are also allowed
from a contig to itself and even from a contig end to itself, but
additional consistency checks are performed to avoid bridges
caused by mapping artifacts. In the following, we will use the term
bridge predominantly for bridge clusters with a count equal to the
bridges in it.

Three filters are applied to the bridges. First, a minimum number
of counts is required to remove bridges caused by chimeric reads.
Then, the remaining read lengths on both sides are compared with
remove alignments to the wrong repeat copy. Finally, gapless filters
on the counts are compared with the expected counts for the mean
distance of the bridge cluster. This removes rare connections
potentially based on sequencing errors.

The remaining read length is almost identical to the alignment
length because of previous filters on the mappings. The large
exceptions are short contigs, where the reads exceed the contigs. To
also handle these cases, we use the remaining read length. To test
for alignments to the wrong repeat copy, we apply a one-sided
Wilks-Rosenbaum exceedance test (26) that identifies bridges with
a truncated length distribution on either side. In total, four tests per
bridge are performed: the remaining read length is compared on
each side of the bridge with other bridges that share this side and
with other bridges that share the non-compared side. For each of
the four tests, we identify the bridge with the longest remaining
read length (control) and compare all other bridges (test) against
this one. The Wilks-Rosenbaum exceedance test requires the
number of reads belonging to the control and the test bridge and
the count of control reads with a remaining length longer than the
longest remaining length of the test bridge. When counting the
latter, we adjust the test length with positive differences in bridge
length. Bridges with a resulting P-value below a threshold in any of
the tests are removed. In rare cases, all bridges of a contig end are
removed. Thus, we restore bridges that connect two contig ends
without any bridges starting with the removed bridge that has the
largest minimum P-value (from the four tests).

To determine the expected number of reads for a given bridge
distance, we partition the original, unbroken contigs into consec-
utive, nonoverlapping bins for various bin sizes. The bin sizes are
chosen to represent the read length distribution with equal number
of reads between them. The bins in a contig are shifted, such that all
of them are full length, leaving an equal number of bases at each
contig end uncovered. For each bin, we count the reads covering the
full length and build one cumulative distribution of bins over
counts per bin size (Figs S12 and S13). To exclude repeat regions,
only the lower half of the cumulative distribution is fitted with the
cumulative distribution function of the negative binomial distri-
bution using a least square minimization. For every bridge, we

calculated the probability of the observed number of counts or less
from the fitted cumulative distribution function with the lowest bin
size still higher or equal to the mean bridge distance. Because of
coverage fluctuations over the genome, we did not apply an ab-
solute threshold, but instead, compare the bridges with all other
bridges sharing a contig end. If a compared bridge has a many-
times-higher probability, we remove the lowly probable bridge. To
take the mapping quality into account, we performed this test on
the cumulative counts going from high to low qualities. The highest
quality that resolves a conflict is used. In case the two alignments
forming a bridge have different mapping qualities, the bridges are
first compared on the lower of the two qualities and only if those
are equal on the higher ones.

Building scaffold graph

After scaffolding contigs that do not have conflicting bridges, reads
are selected that include at least three scaffolds connected by valid
bridges. From these long-range connections, all consecutive oc-
currences of n scaffolds are extracted with n starting at 3. These
long-range bridges are filtered based on the mappings to the outer
scaffolds in the same way as the bridges between contigs previ-
ously with three exceptions: (1) the long-range bridges from an
outer scaffold are only compared with other bridges sharing the
remaining n − 1 scaffolds of the long-range connection; (2) the
requirement of a minimum number of counts to avoid chimeric
connections is explicitly lifted for this comparison, because long-
range bridges are much less frequent than contig bridges; (3) both
sides are required to not pass the filters to remove the long-range
bridge instead of only one side. If only one side would be removed,
we still have the shorter bridges connecting the outer scaffolds with
the complex region in between and only lose information, but if we
can remove both sides, an unlikely traversal of the complex region
is erased. Afterwards, long-range connections are split at the outer
scaffolds of a removed long-range bridge and the filtering is
continued for long-range bridges covering n = n + 1 scaffolds.

The purpose of the scaffold graph is to list all supported paths
for every scaffold. To build it, the split long-range connections are
combined with the accepted bridges between scaffolds. For every
scaffold in every connection, the paths up to the end of the
connection in both directions are added as separate supported
paths (Fig S14). The resulting graph is deduplicated and paths that
are completely contained within longer paths starting at the same
scaffold are removed.

Removing duplicated contigs from scaffold graph

If two contigs have very similar sequences, we refer to them as
duplicated. We identify them with the provided mapping of the split
assembly to itself. Contigs are marked if they are covered to a large
extent by an alignment from another contig that ends within a
maximum distance from both contig ends.

If the sequences do not diverge enough between the duplicated
contigs for the mapper to place the long reads unambiguously, all
incoming and outgoing paths in the scaffold graph can go to both
contigs. This undermines haplotype phasing and, if multiple du-
plications are in close vicinity, the possible combinations quickly
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exceed the ploidy-based tolerance and prevent further scaffolding.
Thus, we removed the duplicated contig with the lowest bridge
counts from a shared path in the scaffold graph. If multiple contigs
are duplications of different parts of another contig and the order
and orientation match, they are also removed from the shared
paths in the graph.

Finding origin–extension pairs

Although the scaffold graph gives all valid paths starting at a given
scaffold, the origin–extension pairs select the paths (extension)
conditional on the scaffolds on the other side of the given scaffold
(origin). Every pair of paths in the scaffold graph that have the same
starting scaffold on different strands is a potential origin–extension
pair. Every pair is considered twice, once with each of the paths as
an origin. For filtering, we find the first diverging scaffold in a
pairwise manner between origins of the same starting (center)
scaffold and strand. From each of these branch points, starting at
the furthest from the center, we follow all paths in the scaffold
graph that are consistent with the origin until the center. All
pairings with extensions that do not match the remainder of one of
the consistent paths are removed. Fig S14 gives an example of a
scaffold graph and all valid pairs. If a pair was filtered out, but the
reverse (switched origin/extension) is valid, we also call it valid.
This step and only checking at branch points reduces the effect of
missing long-range connections, where only one of the alternative
paths is found in the scaffold graph. This happens, when the reads
are too short to reach the branch point, but the reads on the al-
ternative connection do reach it.

It is important that the origin–extension pairs are consistent.
Thus, we require that when we take a center scaffold and follow one
of its extensions by one scaffold, the origins of the extended
scaffold that go through the center scaffold have a valid pairing
with the followed extension at the center scaffold. If these pairs are
not present, we add them.

Traversing the scaffold graph

Once we have the scaffold graph and origin–extension pairs pre-
pared, we can search for the best paths to combine the scaffolds
further. Fig 4 shows an overview and an example for this procedure.
We start by finding non-branching paths that have not been
scaffolded before, because parts of them are either repeated or
present in multiple haplotypes. Loops and inverted repeats require
each a specific handling, but all other paths are created by fol-
lowing unique extensions for a given origin. After the initial paths
have been created, we add all nonunique origin–extension pairs as
two-scaffold paths that contain the center and the first extending
scaffold, except if they are already included in the paths from the
loop or inverted-repeat handling. Completely unconnected scaf-
folds are added as single-scaffold paths.

The initial paths are merged and combined in the main loop. The
first stepmerges paths that share both ends as long as the resulting
paths do not have more alternatives then the specified ploidy. The
second step combines overlapping paths if the overlap is unique or
preferred over the overlap with other paths. These two steps are

repeated until convergence is reached, when no paths can be
merged or combined anymore.

After convergence is reached for the first time, all paths that are
fully represented in another path are removed and the main loop is
restarted. The second time convergence is reached, we tried to
include all paths into another path based on the scaffolds at each
end. If only one possible place is found for the insertion, we add the
paths as an additional haplotype to the other paths. Afterwards, the
main loop is restarted. The third and final time we reach conver-
gence, the finishing procedure is started.

First, we extend all paths as far as they have a unique extension
and try to combine paths again. We keep combined paths, but
remove all extensions that did not allow a combination with an-
other path. Afterwards, duplicated path ends and circular paths are
trimmed and unconnected contigs are removed if they were
identified as a duplication of another contig earlier. The final
scaffold paths describe the (gapless) scaffolding of the contigs.
Original scaffold connections between untouched contigs are kept
as gapped scaffolds.

Creating paths following unique origin–extension pairs

We group all origin–extension pairs from the same center scaffold that
share an extension or an origin. To be considered for the path creation,
a group must share the first extension and the first origin scaffold,
including the corresponding strand and distance. We extend all origins
of a group with the shared first extending scaffold. If the extended
origins are part of the same valid group, this group is stored as the
continuation of the previous group. Groups that are not a continuation
for any other group are the ends of the paths and we take the three
shared scaffolds (first origin, center, and first extension). Then, we
extend these paths until it cannot be continued anymore.

Testing if two paths can be combined

To test if combining two paths violates the scaffold graph, we take
the last scaffolds on the combining side of the two paths. From
there, we find all origins matching each path. If no origin matches a
path, we take the origins with the longest continuousmatch starting
at the combining end of the path. For every origin on both paths, we
take all valid extensions from the origin–extension pairs and search
for a full-length match with the other paths. If we found a full-
length match, the combination is valid in this direction. If the first
scaffold of the other path does not match the extension, the
combination is not valid in this direction. If we neither have a full-
match nor a complete mismatch, we continue one scaffold into the
extension and test the extensions paired with the new origins until
we have a decision. If not specified otherwise, we require both
directions to be valid, to combine two paths.

If a path has multiple valid combinations, we may search for the
best one. For this, we determine all branch points between the
alternative paths. Starting from the furthest branch point, we select
the scaffold graph entries that reach the other paths and filter out
connections, where the remainder (on the other path) does not
have a full-length match. If both paths in a combination have
alternative connections, we select only the combinations surviving
the filtering on both sides.
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Creating paths through loops

Loops are identified through scaffolds that appear twice in the
same scaffold graph paths. The repeated scaffolds and all scaffolds
between them are considered part of the loop. The loop is itera-
tively extended with scaffolds that are in between any of the al-
ready included scaffolds in any scaffold graph paths (example in Fig
4), whereas loops sharing a scaffold are merged.

The exit scaffolds are the first scaffolds in a scaffold graph entry
starting in the loop that are not part of the loop. From all exit
scaffolds, we take the graph paths entering the loop as exit paths. If
the exit paths reach another exit on the other side, the loop is
bridged and we take the path from exit to exit. If exactly two un-
bridged exit scaffolds remain in a loop, we search for a path
connecting them.

We start by creating the loop units for each loop by starting from
every scaffold inside the loop and greedily extend them along the
scaffold graph until the starting scaffold reoccurs. If a path extends
to a scaffold outside the loop, it is discarded. For the greedy ex-
tension, gapless steps ahead in the path one scaffold at a time and
takes all scaffold graph paths from that position which are con-
sistent with the already existing paths. If multiple extending paths

are consistent, the path is duplicated and all extensions are fol-
lowed. Loop units are only accepted if they were found in the greedy
extension process in both directions. In the example (Fig 4), one of
the four possible loop units is not discovered, because an alter-
native path had longer connections in the scaffold graph, which
caused a greedy decision before the scaffold with a graph entry
supporting the not-discovered paths was reached.

Once we have the loop units, we test which exit paths and loop
units can be connected according to the path combination test. We
allow all combinations, but give a penalty for connections that are
not selected as best. To find the path through the loop, we start at
one exit and extend one loop unit at a time along valid connections
until the other exit is reached. From all the valid paths found, we
take the one with the lowest number of penalties and in case of ties
the shortest one. These paths together with the bridged paths are
added to the initial path set.

Creating paths through inverted repeats

Inverse repeats are included in the initial set of paths either if they
are bridged or if the scaffold graph allows only two exits. In case of
unbridged repeats, we additionally filter cases where the exit

Figure 4. Overview over the graph traversal.
(A) The functions called during the graph traversal depicted as boxes. (B) An example showing the change in each function. Small squares represent scaffolds that are
unique (white), duplicated (red), repeated, and traversed (orange) or not traversed (pink) by a single readmultiple times, inversely repeated (yellow) ormatching between
different paths (green). Grey squares could be any of the above. Paths are represented as adjacent squares and scaffolds connected by valid bridges, but not included in
the same paths, have lines between them. Crossed out squares in a path are deletions required to align multiple haplotypes. The red crosses over a path, show paths
from nonunique origin–extension pairs that are removed, because they are already included in the loop path.
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scaffold on one side is also present in the scaffold graph path
leaving the repeat on the other side, because they also allow the
interpretation of two haplotypes on one side and an otherwise
unknown exit. After identifying the path through the inverse re-
peats, we additionally add all other bridged connections between
the exits to the initial path set.

Merging paths

To merge paths that are likely alternative haplotypes, we group all
paths that share the scaffolds at both ends. We align all paths in a
group pairwise (Fig S15) and split groups if the ends of two paths do
not align to each other. This can happen if a path has the end
scaffold also included at another position. If a path already has two
haplotypes, we treat them as two separate paths within the same
group for which we already have the alignment. Within each group,
we try to reduce the number of paths to ploidy. First, we remove
exactly identical paths; then, we remove paths that only differ by
the mean distance in the gaps and if we still have above ploidy
alternatives, we remove the paths where scaffolds have only been
deleted compared with other paths in the group. The last step
handles the case where a scaffold is not well mappable, such that
some paths include it and some do not. If we reached ploidy, the
paths will be merged; otherwise we keep all non-deleted paths
separately. The haplotypes in a path are ordered by the lowest
number of supporting reads for any bridge it contains. In case of a
tie, we use the next lowest support and so on.

Combining paths

To combine the paths, we find all overlapping path ends and select
the best connection between overlapping paths that can be
combined to a valid path. In cases where a path has multiple
haplotypes, the best connection is the connection with the most
haplotypes considered best connections. If there is only one best
connection, two paths are combined. If paths are combined on both
sides to another path, we build a group and iteratively combine one
path after the other. Before performing the combination, we check
again if the paths can be combined, because additional content on
the other side could cause the combined paths to violate the
scaffold graph.

Inserting unambiguously placeable paths

The second time convergence is reached in the merge-and-
combine loop, we search for the end scaffolds of a given path in
all other paths (base) to merge paths if they are not sharing the
same ends. If the end scaffolds are present in a base in the correct
order and orientation and the base has a free haplotype at that
position, we use it as an insertion candidate.

To verify a candidate, we split the base path at the ends of the
inserted path, merge the center part with the insertion, and
combine all three parts back together. If both merging and com-
bining are valid, the candidate is valid. If this leaves a single valid
position for an inserted path, we accept the insertion.

Combining paths on unique extensions

Sometimes, two combinable paths end up without an overlap.
In the finishing procedure, we handle these cases by first
continuing all paths with unique extensions. The unique ex-
tensions are scaffolds shared between all valid extensions of
the origins matching a given side of a path. The extensions are
verified at each added scaffold, but are only shortened and
never elongated. After we extended all paths, the path com-
bination function from the main loop is run. If two paths were
combined, we keep them combined, but remove all additional
extensions.

Trimming duplicated path ends and circular paths

We start at each path end and check how long this end is an exact
duplicate of a part of any other path. If the paths of the duplicated
parts continue on the same side, it is not an overlap and the
duplicated end is separated from the path. If the duplicated ends
from both sides of a path overlap, the path is disassembled into its
individual scaffolds. Afterwards, we remove completely duplicated
paths.

If the end of a path overlaps with the other end of the same
path, we have a circular path and remove one of the overlapping
ends.

Aligning reads to the scaffold paths

Once we have the final scaffold paths that describe the (gapless)
scaffolding of the contigs, we align the long reads to them. The
alignment is based on the position of the contigs, to which the long
reads map. We require that a read follows a path by mapping to
every contig in it until either the read or the path ends. If a gap
between two contigs in a path is not covered by any read, we split
the path or remove the problematic haplotype.

To remove multi-mapping reads, we count for every contig,
how often it is present in a valid alignment of a read. The du-
plication count of a path alignment is the lowest duplication
count of the contigs included in it. Duplication counts of one
mean uniquely placed and all alignments with higher counts
are removed, except if this would leave a gap in the path un-
covered. In this case, the alignments with the lowest duplication
count are trimmed to only cover the otherwise uncovered
connection.

Selecting best read to fill into gap

For each gap, we separately look for the best read to fill it,
choosing from all reads aligning to this gap in our mapping to
the path. The first criterion is the mapping quality on both sides.
We first compare the lower of the two and then the higher.
Afterwards, we pick the read with the gap length that is the
closest to the mean gap length. As a final tie breaker, we use the
number of matching nucleotides on each side, again starting
with the lower one. In case we have multiple best reads, we pick
one arbitrarily.
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Reproducibility of assembly comparison

The benchmark for this article can be run through Snakemake (27)
with the scripts available on GitHub (28). All methods were run with
default parameters, except specifying the appropriate long-read
type. SAMBA does not offer a parameter for the read type and
LR_Gapcloser did not have a setting for PacBio HiFi data, thus we
chose the setting for PacBio CLR. LRScaf does not include the
mapping and we provided it according to its manual with minimap2
alignments, again keeping the default parameters except for
specifying the read type. The used minimap2 (13, 29 Preprint)
version does not yet have a separate setting for PacBio HiFi reads.
Thus, we chose -x asm20 according to the minimap2 manual. The
reported metrics are from a QUAST-LG (21) comparison to the
provided references. For the dolphin assembly, we specified—
fragmented and the values for the contigs were obtained with—split-
scaffolds. The software versions of all used programs are listed
in Table 2.

Speed and memory benchmarks

We benchmarked the speed and memory usage with GNU time. To
report CPU time, we summed user and system times of all individual
processes called for an assembly. For maximummemory, we report
the highest maximum resident set size of all individual processes.
Most processes ran on single-cluster nodes with 384 GB memory
and two Intel Xeon Gold 6126 resulting in 48 vCPUs. The dolphin
Flye and TGS-GapCloser assemblies with 86× coverage, the
human Flye assemblies with 61× and 30× Nanopore coverage,
both human SAMBA assemblies with 121× Nanopore coverage,
both human gapless assemblies with 61× Nanopore coverage and
the human TGS-GapCloser assembly with 30× Nanopore coverage

starting from the supernova assembly required the high-memory
cluster nodes with 3 TB memory and four Intel Xeon CPU E7-4850 v4
resulting in 128 vCPUs. Normally, they were run with only 48 threads,
but the dolphin Flye assembly with 86× coverage and the human
TGS-GapCloser assembly with 30× Nanopore coverage starting
from the supernova assembly needed all 128 cores to finish within
the 1 wk limit. The human Flye assembly with 121× Nanopore
coverage, both human gapless assemblies with 121× Nanopore
coverage, all four human TGS-GapCloser assemblies with 61× and
121× Nanopore coverage, and the human TGS-GapCloser assem-
blies with 15× and 30× Nanopore coverage starting from the Flye
assembly did not finish within the time limit despite using 128 cores.
The dolphin SAMBA assemblies with 86× and 5× Nanopore coverage
and the human SAMBA assembly with 4× HiFi coverage crashed
because of an internal error.

Data Availability

Only public data were used during this study. The E. coli PacBio data
(ERR1036235) and reference (ERS764956) can be found at: https://
www.sanger.ac.uk/resources/downloads/bacteria/nctc/. The Illu-
mina data (SRR3191692) are available from the European Nucleotide
Archive. The dolphin data were created by the Vertebrate Genomes
Project (19): https://genomeark.github.io/vgp-curated-assembly/
Tursiops_truncatus.html. The human data were created by the
telomere-to-telomere consortium (assembly version 1.1 and the
Nanopore data release 7): https://github.com/marbl/CHM13.
gapless and all of its code are available under the MIT License at:
https://github.com/schmeing/gapless. The Snakemake pipeline
and custom scripts used for this publication are available under:
https://github.com/schmeing/gapless-benchmark.

Table 2. Used software versions.

Program Version

Flye (5) 2.8.3-b1695

gapless (30) 0.3

LR_Gapcloser (11) 156381adec01a5c664edbf5df1d866b5c70e82a1

LRScaf (10) v1.1.11 Pre-release dfc1617aa9623701878e9b259a5e1c1453faa6fb

SAMBA (15) 6d3ce4e05fe71c8b3ac12ae2f25867f25b80fea4

SH-assembly (23) 9bb28eb0e5a7492d128c6354be6e56c8ea804900

supernova (22) 2.1.1

TGS-GapCloser (12) 1.1.1 8366810b087ed62b4674453479970467927f5191

GNU time 1.7

ntcard (31) 1.2.2

Minia (SH-assembly) (32) 3.2.1 de0334e73cd47487396e406e97b48eccccb12d60

minimap2 (13, 29 Preprint) 2.18-r1015

quast (21) v5.0.2

racon (17) v1.4.22

seqtk (16) 1.3-r106

Snakemake (27) 3.12.0
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27. Köster J, Rahmann S (2012) Snakemake–A scalable bioinformatics
workflow engine. Bioinformatics 28: 2520–2522. doi:10.1093/
bioinformatics/bts480

28. Schmeing S (2021) Gapless-bechmark. GitHub https://github.com/
schmeing/gapless-benchmark Accessed 22 August, 2021.

Gapless for scaffolding, gap filling, correction Schmeing and Robinson https://doi.org/10.26508/lsa.202201471 vol 6 | no 7 | e202201471 11 of 12

https://doi.org/10.26508/lsa.202201471
https://doi.org/10.26508/lsa.202201471
http://www.s3it.uzh.ch
https://doi.org/10.1101/2021.05.26.445798
https://doi.org/10.1101/2021.05.26.445798
https://doi.org/10.1038/s41586-021-03451-0
https://doi.org/10.1038/s41597-020-00743-4
https://doi.org/10.12688/f1000research.21782.4
https://doi.org/10.12688/f1000research.21782.4
https://doi.org/10.1038/s41587-019-0072-8
https://doi.org/10.1101/gr.213405.116
https://doi.org/10.1101/gr.213405.116
https://doi.org/10.1093/bioinformatics/btv688
https://doi.org/10.1093/bioinformatics/btt476
https://doi.org/10.1093/bioinformatics/btt476
https://doi.org/10.1371/journal.pone.0047768
https://doi.org/10.1186/s12864-019-6337-2
https://doi.org/10.1093/gigascience/giy157
https://doi.org/10.1093/gigascience/giaa094
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1371/journal.pcbi.1009860
https://github.com/lh3/seqtk
https://doi.org/10.1101/gr.214270.116
https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
https://genomeark.github.io/vgp-curated-assembly/Tursiops_truncatus.html
https://%20github.com/marbl/CHM13
https://doi.org/10.1093/bioinformatics/bty266
https://doi.org/10.1101/gr.214874.116
https://doi.org/10.1093/bioinformatics/btaa890
https://doi.org/10.1093/bioinformatics/btaa890
https://doi.org/10.1038/nbt.4277
https://bionanogenomics.com/wp-content/uploads/2017/02/Bionano_HumanPAG_Hybrid-Scaffolding-White-Paper.pdf
https://bionanogenomics.com/wp-content/uploads/2017/02/Bionano_HumanPAG_Hybrid-Scaffolding-White-Paper.pdf
https://bionanogenomics.com/wp-content/uploads/2017/02/Bionano_HumanPAG_Hybrid-Scaffolding-White-Paper.pdf
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://github.com/schmeing/%20gapless-benchmark
https://github.com/schmeing/%20gapless-benchmark
https://doi.org/10.26508/lsa.202201471


29. Kalikar S, Jain C, Md V, Misra S (2022) Accelerating long-read analysis on
modern CPUs. BioRxiv. doi:10.1101/2021.07.21.453294 (Preprint posted
February 03, 2022).

30. Schmeing S (2021) Gapless. GitHub https://github.com/schmeing/
gapless Accessed 22 August, 2021.

31. Mohamadi H, Khan H, Birol I (2017) ntCard: A streaming algorithm for
cardinality estimation in genomics data. Bioinformatics 33: 1324–1330.
doi:10.1093/bioinformatics/btw832

32. Chikhi R, Rizk G (2013) Space-efficient and exact de Bruijn graph
representation based on a Bloom filter. Algorithms Mol Biol 8: 22.
doi:10.1186/1748-7188-8-22

License: This article is available under a Creative
Commons License (Attribution 4.0 International, as
described at https://creativecommons.org/
licenses/by/4.0/).

Gapless for scaffolding, gap filling, correction Schmeing and Robinson https://doi.org/10.26508/lsa.202201471 vol 6 | no 7 | e202201471 12 of 12

https://doi.org/10.1101/2021.07.21.453294
https://github.com/schmeing/gapless
https://github.com/schmeing/gapless
https://doi.org/10.1093/bioinformatics/btw832
https://doi.org/10.1186/1748-7188-8-22
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26508/lsa.202201471

	Gapless provides combined scaffolding, gap filling, and assembly correction with long reads
	Introduction
	Results
	Overview of the gapless algorithm
	Comparison with state-of-the-art tools

	Discussion
	Materials and Methods
	Breaking contigs with consistently diverging reads
	Selecting bridges
	Building scaffold graph
	Removing duplicated contigs from scaffold graph
	Finding origin–extension pairs
	Traversing the scaffold graph
	Creating paths following unique origin–extension pairs
	Testing if two paths can be combined
	Creating paths through loops
	Creating paths through inverted repeats
	Merging paths
	Combining paths
	Inserting unambiguously placeable paths
	Combining paths on unique extensions
	Trimming duplicated path ends and circular paths
	Aligning reads to the scaffold paths
	Selecting best read to fill into gap
	Reproducibility of assembly comparison
	Speed and memory benchmarks

	Data Availability
	Supplementary Information
	Acknowledgements
	Author Contributions
	Conflict of Interest Statement
	1.Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Gershman A,  (2021) T ...


