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Analysis of context-specific KRAS–effector (sub)
complexes in Caco-2 cells
Camille Ternet1,2,* , Philipp Junk1,2,* , Thomas Sevrin1,2,*, Simona Catozzi1,2 , Erik Wåhlén4, Johan Heldin4 ,
Giorgio Oliviero1 , Kieran Wynne1,3, Christina Kiel5,1,2

Ras is a key switch controlling cell behavior. In the GTP-bound
form, Ras interacts with numerous effectors in a mutually ex-
clusive manner, where individual Ras–effectors are likely part of
larger cellular (sub)complexes. The molecular details of these
(sub)complexes and their alteration in specific contexts are
not understood. Focusing on KRAS, we performed affinity puri-
fication (AP)–mass spectrometry (MS) experiments of exoge-
nously expressed FLAG-KRAS WT and three oncogenic mutants
(“genetic contexts”) in the human Caco-2 cell line, each exposed
to 11 different culture media (“culture contexts”) that mimic
conditions relevant in the colon and colorectal cancer. We
identified four effectors present in complex with KRAS in all
genetic and growth contexts (“context-general effectors”). Seven
effectors are found in KRAS complexes in only some contexts
(“context-specific effectors”). Analyzing all interactors in complex
with KRAS per condition, we find that the culture contexts had a
larger impact on interaction rewiring than genetic contexts. We
investigated how changes in the interactome impact functional
outcomes and created a Shiny app for interactive visualization.
We validated some of the functional differences in metabolism
and proliferation. Finally, we used networks to evaluate how
KRAS–effectors are involved in the modulation of functions by
random walk analyses of effector-mediated (sub)complexes.
Altogether, our work shows the impact of environmental contexts
on network rewiring, which provides insights into tissue-specific
signaling mechanisms. This may also explain why KRAS oncogenic
mutants may be causing cancer only in specific tissues despite
KRAS being expressed in most cells and tissues.
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Introduction

The interactome of a cell, like a social network, refers to the entirety
of interactions of cellular molecules, in particular, protein–protein

interactions (PPIs) (Vidal et al, 2011). These interactions form a
network and impact the spatial protein localization and functional
organization of a cell. Networks adapt to internal and external cues
by converting the signals in responses to stimuli into a plethora of
possible output functions that drive cell fates and phenotypes.
PPIs, as the core of signaling networks, impact how signals are
transduced, and alterations in cellular networks are often linked to
diseases, particularly complex diseases such as cancer (van Boxel-
Dezaire et al, 2006; Vidal et al, 2011). Mutations in oncogenes can
perturb PPI networks (Hammond et al, 2015) when protein catalytic
and binding functions are affected resulting in alterations in the
proteins’ binding interfaces (Kiel & Serrano, 2014).

The oncoprotein KRAS is an example of a hub signaling protein,
as it is part of a highly interconnected and dynamic network ca-
pable of interacting with many other proteins (Kiel et al, 2021).
Oncogenic mutations in KRAS rewire interactions and signaling
pathways (Kennedy et al, 2020). KRAS belongs to the Ras super-
family of GTPases and acts as a molecular switch that cycles be-
tween an inactive GDP-bound state and an active GTP-bound state.
The GTP-bound Ras protein mediates binding to several down-
stream proteins, thereby controlling essential and diverse cellular
processes such as survival, polarization, proliferation, differentia-
tion, apoptosis, and migration (Simanshu et al, 2017; Ibáňez Gaspar
et al, 2021). It is still enigmatic how Ras does all of it. However, it is
known that a class of proteins called “effectors” plays a critical role
(Kiel et al, 2013, 2021; Gimple & Wang, 2019).

Ras–effectors are defined as proteins that bind much stronger
(i.e., with higher affinity or lower Kd value) to Ras•GTP than to
Ras•GDP. Their interaction with Ras•GTP relies on a domain with a
ubiquitin-like topology of three types: the Ras-binding domain
(RBD), the Ras association (RA) domain, or the PI3K_rbd, which will
herein collectively be referred to as RBDs. All effector RBDs rec-
ognize the same switch regions of Ras•GTP, which results in mu-
tually exclusive binding (Shields et al, 2000; Ibáňez Gaspar et al,
2021). Although the presence of an RBD is a necessary condition to
qualify as an effector for Ras•GTP, it is not a sufficient criterion.

1Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland 2UCD Charles Institute of Dermatology, School of Medicine, University College
Dublin, Dublin 4, Ireland 3Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland 4Department of Pharmaceutical
Biosciences, Uppsala University, Uppsala, Sweden 5Department of Molecular Medicine, University of Pavia, Pavia, Italy

Correspondence: christina.kiel@unipv.it
*Camille Ternet, Philipp Junk, and Thomas Sevrin contributed equally to this work

© 2023 Ternet et al. https://doi.org/10.26508/lsa.202201670 vol 6 | no 5 | e202201670 1 of 19

on 18 April, 2024life-science-alliance.org Downloaded from 
http://doi.org/10.26508/lsa.202201670Published Online: 9 March, 2023 | Supp Info: 

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.202201670&domain=pdf
https://orcid.org/0000-0001-8924-8114
https://orcid.org/0000-0001-8924-8114
https://orcid.org/0000-0002-5228-3896
https://orcid.org/0000-0002-5228-3896
https://orcid.org/0000-0001-6132-5712
https://orcid.org/0000-0001-6132-5712
https://orcid.org/0000-0002-0915-5303
https://orcid.org/0000-0002-0915-5303
https://orcid.org/0000-0002-1257-359X
https://orcid.org/0000-0002-1257-359X
https://orcid.org/0000-0001-8454-6008
https://orcid.org/0000-0001-8454-6008
https://doi.org/10.26508/lsa.202201670
mailto:christina.kiel@unipv.it
https://doi.org/10.26508/lsa.202201670
https://www.life-science-alliance.org/
http://doi.org/10.26508/lsa.202201670


Indeed, for a total of 56 effectors that contain RBDs, the binding
affinities between Ras•GTP and effector complexes are known
(either from experiments or from computational predictions) to
vary, and some are predicted not to bind at all (Fig S1) (Kiel et al,
2005; Wohlgemuth et al, 2005; Ibáňez Gaspar et al, 2021; Kiel et al,
2021; Rezaei Adariani et al, 2021).

In addition to affinities between the RBDs and Ras•GTP, protein
abundance is important for complex formation. In a previous study,
we used protein abundance together with binding affinities in a
mathematical model to predict the amount of each of the 56 ef-
fectors in complex with Ras•GTP in 29 human tissues (Catozzi et al,
2021). Surprisingly, only nine effectors form significant complexes
(≥5%) with Ras•GTP in at least one of the 29 tissues (here referred to
as group 1 effectors). This raised the question about the relevance
of the remaining effectors, some of which are well-established
effectors such as PI3-kinase (PI3K) (Castellano & Downward, 2011).
As effectors are generally multidomain proteins, we reasoned that
domains that can transfer effectors to the plasma membrane (PM),
where Ras•GTP is localized, can increase the number of complexes
formed between Ras•GTP and effectors (Ibáňez Gaspar et al, 2021).
Indeed, seminal work by Kholodenko and colleagues has dem-
onstrated that membrane anchoring of both interacting proteins
strongly increases the average lifetime of complexes, that is, the
“piggyback”mechanism (Kholodenko et al, 2000). When we applied
the piggyback mechanism to the Ras–effector model, we identified
32 effectors that are predicted to form significant complexes with
Ras•GTP only with an additional domain recruited to the PM (here
referred to as group 2 effectors) (Fig S1). These effectors were
predicted to be recruited to the PM in response to specific con-
ditions (e.g., inputs/stimuli/growth factors) (Ibáňez Gaspar et al,
2021; Kiel et al, 2021). The remaining 15 effectors are never predicted
to be in significant complex with Ras•GTP and are likely no true
Ras–effectors (here referred to as group 3 effectors).

Colorectal cancer (CRC) is the fourth leading cause of cancer
death worldwide. In 2018, there were 1.8 million new CRC cases
reported, with a significant shift from older to younger individuals
(Siegel et al, 2020). CRC develops through a complex sequence of
processes involving an accumulation of epigenetic and genetic
alterations, where the major drivers appear to be KRAS mutations
and specific pathways that regulate cell growth and differentiation
(Fearon & Vogelstein, 1990). The most frequent KRAS mutations
found in CRC are single-point mutations found at codon 12 (i.e., G12D,
G12V, and G12C) followed by codons G13 and Q61 (Hobbs et al, 2016;
Tate et al, 2019). Oncogenic KRAS leads to an accumulation of
constitutively active (GTP-bound) KRAS proteins leading toward the
activation of diversified downstream signaling pathways such as the
Ras/RAF/MEK/ERK signaling pathway and the PI3K/AKT signaling
pathways, which were extensively studied in the Ras–effector cancer
context (Romano et al, 2014). However, there is evidence that other
Ras–effectors play a role in cancer (Engin et al, 2017).

In this work, we experimentally probed context-specific network
rewiring of KRAS exogenously expressed with a FLAG-tag in im-
mortalized human Caco-2 cells. This cell line, derived from human
colorectal adenocarcinoma cells, harbors somatic APC mutations
and CTNNB1 (i.e., β-catenin) mutations, but is WT for KRAS (Fogh
et al, 1977). To probe different “genetic contexts,” we exogenously
expressed KRAS WT and three oncogenic mutations frequently

found in CRC (G12V, G12D, and G12C) to probe different “genetic
contexts.” To probe different “culture contexts,” we grew Caco-2
cells in various growth media mimicking tumor microenvironments
(TME) that are known to impact CRC maintenance, progression, and
metastasis, which have been described earlier in connection with
oncogenic KRAS. IL-6 and TNF-α, both being part of the inflam-
matory response found in the TME, are factors of those growth
culture contexts (Ancrile et al, 2007; Waldner et al, 2012; Zeng et al,
2017). (Patho)physiological conditions such as hypoxia (Kikuchi
et al, 2009; Chun et al, 2010) (mimicked by dimethyloxalylglycine,
DMOG [Zhang et al, 2016]), EGF, and PGE2 also play a role in CRC and
KRAS TME (Smakman et al, 2005; Greenhough et al, 2009; Hsu et al,
2017) and were selected as growth conditions here. Each combi-
nation of genetic and culture contexts was analyzed separately in
affinity purification–mass spectrometry (AP-MS) experiments (Hein
et al, 2015; Richards et al, 2021) to determine KRAS-mediated
complexes. Our study provides an in-depth reconstruction of PPI
networks mediated by oncogenic KRAS–effector proteins in culture
contexts that mimic some aspects of (patho)physiological colon
contexts. In addition, by identifying different levels of network
organization called subcomplexes, we further detailed the down-
stream pathways mediated by effectors of KRAS and linked them to
functional outputs.

Results

Analysis of KRAS-mediated networks in different genetic and
culture contexts

We conducted AP-MS experiments to characterize the PPI land-
scape of both the WT and oncogenic mutant forms of KRAS in
different growth conditions. KRAS protein variants were exoge-
nously expressed as FLAG-tagged proteins under the control of a
doxycycline-inducible promoter (Beltran-Sastre et al, 2015). As
observed earlier (Beltran-Sastre et al, 2015), the promoter shows
some leakiness even without doxycycline. As we aimed to express
FLAG-KRAS at relatively physiological levels, doxycycline was only
added to express the FLAG-KRASWT proteins at a dose that resulted
in equal expression levels compared with the FLAG-KRAS mutant
proteins expressed without doxycycline (Fig S2).

To analyze the KRAS WT and mutant interactomes in different
growth media (“culture contexts”) that mimic conditions relevant in
the colon and CRC, Caco-2 cells were grown 4 h after transfection for
24 h in minimal medium (DMEM with 2 mM l-glutamine) supple-
mented with either IL-6, TNF-α, PGE2, EGF, or the HIF-hydroxylase
inhibitor DMOG at different concentrations (20 and 200 ng/ml)
before the AP-MS experiment was conducted. The expression
levels of both KRAS (Fig S3) and effectors (Fig S4) were generally in a
similar order of magnitude when grown in different “culture con-
texts” (assayed by Western blotting and MS analysis of whole-cell
lysates before the AP-MS experiment). Altogether, we tested four
“genetic contexts” (FLAG-KRAS WT, G12V, G12D, and G12C) and 11
“culture contexts” (minimal medium, and two concentrations each
of IL-6, TNF-α, PGE2, EGF, and DMOG in minimal medium), resulting
in 44 condition-specific AP-MS experiments (Fig 1).
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Figure 1. Global analysis of context-specific KRAS WT and mutant interactomes.
(A) Number of proteins identified in KRAS WT and mutant AP-MS experiments after filtering. The conditions are unstimulated (minimal medium), DMOG (20 and 200 ng/
ml in minimal medium), EGF (20 and 200 ng/ml in minimal medium), IL-6 (20 and 200 ng/ml in minimal medium), PGE2 (20 and 200 ng/ml in minimal medium), and TNF-α
(20 and 200 ng/ml in minimal medium). (B) Overlap of all interactions identified in at least one condition with the literature KRAS interactome described in Kiel et al (2021).
(B, C) Overlap of the same datasets as in panel (B) but focusing on effector proteins. (D) Principal component analysis performed on label-free quantification intensity
and executed with MS log2-transformed data after filtering on the whole AP-MS dataset. Colors indicate the different growth conditions, that is, DMOG, EGF, IL-6, PGE2, TNF-
α, and unstimulated (Unstim), and shapes indicate the concentration of the conditions (none, 20 ng/ml, and 200 ng/ml).
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To identify high-confidence interacting proteins for each con-
dition, the label-free quantification (LFQ) intensity data for all
proteins were filtered in a series of steps (see the Materials and
Methods section). Specifically, data for each MS run (44 × three
biological with two technical replicates = 264) were visualized as a
histogram to filter out eight runs with very few proteins identified
(Fig S5). Furthermore, for a protein to qualify for the high-
confidence list, it had to be detected in at least 60% of the tech-
nical and biological replicates for a specific condition. In addition,
only proteins that were significantly enriched compared with the
beads-only control were included. Technical replicates were
merged using the median LFQ intensity. To verify the robustness
and applicability of the protocol, we analyzed KRAS expression
levels in the complete dataset. The LFQ intensity of the KRAS bait is
comparable across all AP-MS conditions (Fig S6), which suggests
that a similar quantity of FLAG-KRAS proteins binds to the magnetic
beads across all AP.

A total of 2,265 high-confidence PPIs were identified in 44
contexts, with an average of 725 PPIs per condition (Fig 1A). Although
KRAS is a small protein, a large number of interaction partners are
not too surprising, as many of those are expected to be not direct
binary physical interactors but rather bind via third proteins
(i.e., effectors or other proteins that enable compatible complex
formation). Of note, less interactors are generally found for con-
ditions in minimal medium (cf. unstimulated conditions in Fig 1A),
supporting our initial hypothesis that microenvironmental contexts
play a significant role in KRAS complex formation. Furthermore, the
FLAG-KRAS WT AP generally has less PPIs, which can likely be
explained by the fact that effectors bind KRAS predominantly in its
GTP-bound form (in fact, no effectors are detected in any of the
FLAG-KRAS WT AP grown in minimal medium). Comparing the 2,265
high-confidence PPIs determined in this work with 811 previously
reported KRAS PPIs (reviewed in Kiel et al [2021]) shows an overlap
of 245 proteins (hence, 30.2% of the literature PPI are among the
2,265 identified here), and 2,020 proteins were not previously re-
ported (Fig 1B). Similar overlaps are obtained when focusing only on
the classical effector proteins (Fig 1C).

To gain insights into the whole dataset, a principal component
(PC) analysis and a Uniform Manifold Approximation and Projection
(UMAP) (Dorrity et al, 2020) were performed with all high-confidence
interactors identified in each AP-MS experiment (Figs 1D and S7).
Both techniques enable a dimensionality reduction of the data and
data visualization. The PC analysis, which is commonly used, tries
to preserve the global structure of the data (Fig 1D), whereas
the UMAP tries to preserve the data’s local structure (Fig S7). The
unstimulated and KRAS WT samples cluster separately from the
other groups, suggesting that KRAS WT and unstimulated con-
ditions are a good control group (KRAS mutants and stimulated
conditions; middle left area in Fig 1D). Interestingly, KRAS inter-
actor proteins detected in the different mutant datasets cluster
together, compared with the different culture context datasets,
where the data are more discriminated. For example, IL-6 and
PGE2 contexts cluster together at the top right corner, whereas the
DMOG context clusters together at the bottom right corner (Fig 1D).
Taken together, these results suggest that the proteins detected
in complex with KRAS seem to be more condition-dependent
rather than mutation-dependent.

Binding landscape of effectors in complex with KRAS WT
and mutants

Effector proteins bind Ras in the GTP-bound state, and they are
likely forming, among other proteins, the first layer of interacting
proteins. Hence, we first characterized the KRAS–effector layer in
more detail. As previously mentioned, no effectors are found in
complex with KRAS WT in minimal medium, which is expected as
KRAS will be mainly in the GDP-bound state that does not enable
high-affinity binding. 11 of 56 classical Ras–effector proteins were
identified in at least one of the 44 conditions (Figs 2A and B and S8).
All effectors identified in complex with KRAS belong to either group
1 (AFDN, ARAF, RAF1, BRAF, and RGL2) or group 2 (RIN1, PIK3CA, GRB7,
RIN2, PIK3C2A, and ARAP1) effectors. They are generally highly
expressed in colon tissue and Caco-2 cells (with medium or high
affinities for Ras•GTP) or are moderately expressed but have high
affinities in complex with Ras•GTP (Fig 2B). Concerning the 45 ef-
fectors not found in any of the KRAS AP-MS samples, 15 belong to
group 3 effectors (likely no “true” Ras–effectors) and 26 belong to
group 2 (of which seven have lowmRNA levels in Caco-2; <3.3 nTPM).
Four effectors belong to group 1 effectors, of which RALGDS and
RASSF5 are part of the KRAS literature interactome literature and
are highly/moderately expressed in Caco-2 cells. SNX27 and RASSF7
are also highly/moderately expressed in Caco-2 cells, but their
affinities in complex with Ras are lower. Altogether, we provide a
near-to-complete binding landscape of effectors in complex with
KRAS under the conditions tested.

A comparison with the effectors identified in previous KRAS
interactomes (reviewed in Kiel et al [2021] (Fig 2C and D) shows that
the AP-MS experiments in this study specifically increase the
percentage of group 2 effectors, but little increase in group 1 ef-
fector coverage and no increase in group 3 effectors (Fig 2E).
Furthermore, the number of conditions in which an effector is
identified in complex with KRAS tends to be lower for group 2
effectors (Fig 2F). To visualize in which genetic and culture contexts
the 11 effectors were detected, two heatmap images were generated
(Fig 3). The two heatmaps show a similar pattern in terms of effector
detection and abundance in each of the groups of the AP KRAS
mutants (i.e., G12D, G12C, and G12V) in unstimulated and stimulated
conditions. More specifically, the effectors AFDN, ARAF, RAF1, and
RIN1 are detected in all the KRAS mutant AP-MS experiments when
unstimulated and stimulated (Fig 3A). These effectors are also
detected in the WT AP-MS experiments—albeit not in all the culture
contexts. They are classified in the effector group 1 except for RIN1,
which is part of the effector group 2. Moreover, they appear to
be more abundant when detected in particular conditions such
as DMOG and TNF-α, compared with other conditions such as IL-
6 or PGE2 (Fig 3B). As these effectors are detected consistently
in the presence of KRAS with or without stimulations, we
propose that these effectors are KRAS-specific rather than
condition(stimulation)-specific. Other effectors are only de-
tected in specific stimulated conditions and are mainly de-
tected in the predicted effector group 2. Moreover, GRB7 is only
detected in the presence of the DMOG culture context. Another
effector, PIK3CA, is only detected when stimulated with TNF-α in
the presence of either the G12D or the G12V KRAS mutations. The
effector PIK3C2A is only detected significantly in the presence
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Figure 2. Ras–effector abundance, binding affinities, and detection in AP-MS experiments.
(A, B) Ras–effector protein abundance in human colon tissue based on Gimple and Wang (2019) and Ibáňez Gaspar et al (2021) (A) and mRNA abundance in Caco-2 cells
based on the Human Protein Atlas database (B). The colors of the effectors’ names at the bottom of each histogram correspond to Ras–effector binding affinities. The
black star indicates effectors that were detected in at least one of the AP-MS experiments conducted in this work. TPM, transcripts per million; nTPM, normalized transcript
expression values per sample; Kd, dissociation constant. (C, D, E) Effectors identified in at least one condition in the literature KRAS interactome described in Kiel et al
(2021) (panel (C)), in this work (panel (D)), and in the combined datasets (panel (E)). Group 1, group 2, and group 3 effectors are normalized based on the total number of
effectors in the respective group. (F) Number of conditions where an effector is present.
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of the G12D KRAS mutation with DMOG. These effectors grouped
in effector group 2 can be classified as conditions-specific. To
mention, the effector BRAF, which was computationally pre-
dicted to be always in complex with KRAS, is found in complex
with KRAS only in DMOG and TNF-α conditions.

Altogether, this supports our initial hypothesis that group 2
effectors tend to be found in complex with Ras only in specific
conditions that promote PM recruitment via RBD-independent
mechanisms (Fig S9). Furthermore, it validates our computational-
based classification into group 1, group 2, and group 3 effectors

(Catozzi et al, 2021) and supports its applicability beyond the 29
human tissues as the basis of the prediction model.

Investigation of functional differences in the KRAS interactome

To investigate functional differences in the interactome of the
different genetic and culture contexts, two approaches were
chosen. First, a differential interaction analysis was performed on
the identified proteins followed by a gene set enrichment analysis
against the gene ontology (GO) biological processes (Fig 4A).

Figure 3. Summary of effector presence in AP-MS experiments in Caco-2 cells.
The rows display the effectors in complex with KRAS grouped by mutational status (WT, G12D, G12V, and G12C), and the columns represent the conditions (unstimulated
or stimulated with either DMOG, EGF, IL-6, TNF-α, or PGE2). (A, B) To generate the two heatmaps, the LFQ intensities were analyzed, the different concentrations for each
stimulation weremerged and translated for the heatmap (A) in terms of the presence or absence of an effector (color code: detected = blue and not detected = yellow), and
for second heatmap (B), the LFQ intensities were directly plotted into the heatmap (code: from low abundance = yellow to high abundance = blue). The heatmaps were
created using GraphPad Prism 9.
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Figure 4. Gene set enrichment analysis (GSEA) of AP-MS analysis in different genetic and culture contexts.
(A) Overview of the functional analysis pipeline. The first approach is a standard differential analysis pipeline using limma, followed by a gene set enrichment analysis
against the GO “biological process” terms. The second approach is to sum up LFQ intensities for each of the GO “biological process” terms. Then, for each term, an ANOVA
was performed to identify whether there was a significant influence of mutation status, condition and concentration, and their interaction terms. Both analyses were then
analyzed using semantic analysis of ontology terms. (B) Distance matrix with the pairwise semantic distances between the GO terms is shown in the center of the plot.
On the right, the bigger clusters are annotated by word clouds. On the left, the data from the ANOVA and the GSEA pipeline are shown, for the ANOVA, whether a main
effect is statistically significant; and for the GSEA, whether a significant enrichment was found in the relevant pairwise comparison. All data shown are in comparison with
the WT and unstimulated for the analysis of mutation status and condition, respectively.
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Second, using the ontology, we collapsed each sample onto all
ontologies listed under “biological process” by summing up their
LFQ intensities. This process preserved the variation in the data (Fig
S10). Then, multiple ANOVAs were used to identify differences
between the samples in terms of their summed-up LFQ in-
tensities. Of the 16,000 GO terms tested, we find significant
changes for 2,135 (Fig 4B and S11A). Afterward, semantic
analysis was used to organize the significantly changed on-
tology terms into clusters. The full distance heatmap from the
semantic analysis together with the clusters and some of the
data projected onto it is shown in Fig 4B. The biggest semantic
clusters are linked to metabolic and biosynthetic processes
(cluster 1), signaling and immune response (cluster 2), vesicle-
mediated transmembrane and ion transport (cluster 3), differ-
entiation, development, and morphogenesis (cluster 4), and actin
and cytoskeleton organization (cluster 5) (Figs 4B and S11B–H).
Smaller clusters are linked to thermogenesis, ion homeostasis,
cell cycle, leukocyte activation, regulation of GTPases, prolifera-
tion, and apoptotic cell death (Fig 4B). Altogether, the overall
functional differences in the KRAS interactome are consistent
with known cellular functions mediated by KRAS (Ibáňez Gaspar
et al, 2021; Catozzi et al, 2022).

The above twofold analysis shows different aspects of functional
differences between the different genetic and culture conditions.
To make the data better approachable, we developed an interactive
R Shiny app for exploring the functional terms that are different
between the samples (Fig S12). Users can explore the analysis
through the semantic distance heatmap and the semantic
clusters, or search and filter for functional terms of their in-
terest, visualize which proteins are part of this particular GO
term, and show their abundance in the different samples. It also
directly displays the samples that are statistically significant to
each other. We propose this app as a resource to filter for in-
teresting functional influence of certain KRAS mutations or
certain growth conditions from our dataset. From the results of
this functional investigation, we selected some GO terms of
interest to us, which we went on to validate in the wet laboratory.
Those were GO terms related to proliferation (“Epithelial cell
proliferation” and “Positive regulation of cell population pro-
liferation”), glucose metabolism (“Glycolytic process” and
“Regulation of glucose metabolic process”), and ATP metabolism
(“ATP metabolic process” and “Regulation of ATP metabolic
process”) shown for genetic contexts G12C and G12D and culture
contexts DMOG and IL-6 in Fig 5A. As we are studying the effect of
oncogenic KRAS mutation in an adenocarcinoma cell line under
CRC microenvironment mimicking culture contexts, we were
particularly interested in biological processes commonly ob-
served in cancer development. Among the hallmarks of cancer
(Hanahan & Weinberg, 2011), sustained cell proliferation and the
Warburg effect, described by a switch in cell energetic meta-
bolism from oxidative phosphorylation to aerobic glycolysis, are
two biological and metabolic processes that are feasible to test
experimentally. In the GO functional analysis, we observed that
PGE2 and DMOG had the greatest number of differentially
expressed GO terms compared with unstimulated, whereas IL-6
had the lowest. In addition, we observed that the differential
expression profile of the three KRAS mutants was similar, and

KRAS G12C and G12D differ the most for GO terms related to
biological and metabolic processes.

Analysis of cell phenotypes in selected genetic and
culture contexts

To investigate changes in cell proliferation and glycolytic meta-
bolism for three genetic contexts (KRAS WT, G12D, and G12C) in three
culture contexts (unstimulated, DMOG, and IL-6), we measured cell
count, cell viability, glucose uptake, and lactate release over a 72-h
period in Caco-2 cells (see the Materials and Methods section) (Fig
S14A–H). We chose to determine Caco-2 metabolism and prolif-
eration until 72 h post-transfection under the assumption that the
changes observed in the interactome seen 24 h post-transfection
would affect cell phenotype on a long-term basis and that phe-
notypic changes can take longer to be accurately measured. To
ensure that exogenous KRAS was expressed until 72 h post-
transfection, we performed a Western blot analysis of FLAG-KRAS
before transfection and from 24 h to 72 h post-transfection. We
observed an overall significant increase in FLAG expression 24 h
post-transfection with a peak at 48 h, and then a decrease in FLAG
expression at 72 h to reach the level of 24-h time point (Fig S13).
Those results suggest that for all genetic contexts, exogenous KRAS
was effectively expressed during a 72-h period. However, we also
noticed that exogenous KRAS expression was significantly different
between the three genetic contexts.

We observed a significant increase in cell proliferation under the
DMOG context compared with the control (unstimulated), although
IL-6 led to a significant decrease in cell proliferation (Fig S14A). The
increase in cell proliferation in the DMOG culture context was
confirmed by cell viability results (ATP concentration; Fig S14G).
Furthermore, for those two phenotypic parameters, under DMOG
stimulation, KRAS G12D had a significantly greater cell proliferation
than KRAS WT and G12C. In terms of glycolytic metabolism, it was
overall better captured by lactate release than by glucose uptake
and the highest lactate release was observed in the DMOG context.
A greater lactate release was also observed for both KRAS mutants
compared with WT (Fig S14E). When normalized per cell, both
glucose uptake and lactate release were significantly greater in the
IL-6 condition than in the control and DMOG, suggesting a higher
glucose use at the single-cell level in the IL-6 context. Finally, the
ATP pool per cell, which can be used as a proxy for changes in
metabolic activity, was higher for both stimulations compared with
the control and for both oncogenic KRAS compared with the WT.
Altogether, the experimental results suggest that under genetic and
culture contexts that mimic colon and CRC, Caco-2 cells produce
more energy than KRAS WT cells in control conditions. Hence, the
bioinformatic analysis of KRAS complex composition correlates
with the phenotypic changes.

Next, we compared the measured phenotypic parameters with
the sum of LFQ intensities of proteins associated with GO terms
linked to proliferation, glucosemetabolism, or ATPmetabolismwith
each term directly related to the final cell phenotype or its regu-
lation (Fig 5B and C). Overall, the culture context effects are similar
between the AP-MS (GO terms) and the phenotypic experiments.
Indeed, we observed that for all GO terms except “Glycolytic pro-
cess,” the sum of LFQ intensities was significantly higher in DMOG
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Figure 5. Comparison of phenotypic parameters with the sum of LFQ intensity of related GO terms in the AP-MS.
(A) Radar plot of phenotypic parameters related to cell proliferation, glucose metabolism, and ATP metabolism of Caco-2 cells under different genetic and culture
contexts. (B) Radar plot of the GO terms related to cell proliferation, glucose metabolism, and ATP metabolism of Caco-2 cells under different “culture” and “genetic”
contexts. Values in radar plots are the LS mean values normalized by the maximum value of each parameter to obtain values between 0 and 1. (C) Pearson’s correlation
matrix of phenotypic parameters versus sum of LFQ intensity of specific GO terms from the AP-MS. Phenotypic parameters and GO terms related to the same biological
process are displayed with the same colors.
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compared with unstimulated and IL-6 (Table S1). Those results are
similar to the cell density, lactate release, and ATP concentration
experimental results. In addition, for “Regulation of glucose met-
abolic process” the sum of LFQ intensity was higher in the IL-6
context compared with unstimulated, which could be linked to the
higher lactate release per cell observed in the IL-6 condition. The
only notable difference is observed for the “Glycolytic process”
where the sum of LFQ intensities was significantly lower in the IL-6
culture context, which is contrary to what was observed for lactate
release per cell. Results of the effect of the genetic context are also
to some extent similar, with no significant effect on proliferation-
related GO terms such as cell density. In addition, a significantly
higher sum of LFQ intensities was observed in the “Regulation of
glucose metabolic process” for the two KRAS mutant proteins
compared with WT, with results similar to the lactate release.
However, no genetic context effect was observed for ATP
metabolism–related GO terms, although mutant KRAS had a higher
overall ATP concentration than WT. Particularly, the sum of LFQ
intensities of “Glycolytic process” was significantly lower in G12C
than in the two other genetic contexts. This was mostly due to a
substantial decrease under IL-6 culture conditions, which is op-
posite to what was found for overall lactate release. Those results
suggest that the strongest changes in phenotype, such as those
observed for DMOG stimulation, are more reliably captured by the
AP-MS than the milder changes such as those observed for the
genetic context or IL-6 stimulation. Furthermore, the changes
observed for GO terms referring to the regulation of a process seem
to be better at capturing the results of phenotypic experiments
than GO terms referring to the biological process itself. The latter
point is affirmed by better Pearson’s correlation coefficient ob-
served for phenotypic parameters with the associated GO terms
referring to the regulation of a biological process than those di-
rectly referring to the biological process (Fig 5C). This may be
because proteins that have a direct effect on the phenotype are too
many layers downstream of the Ras signaling network to be cap-
tured by the AP-MS experiments. Finally, for metabolic parameters,
the functional analysis results are more correlated with overall
lactate release and ATP concentration than with the values nor-
malized per cell. This implies that the results of the functional
analysis based on AP-MS data are more suitable for capturing
changes in metabolism at the level of the whole-cell culture than at
the level of a single cell.

Information flow analysis predicts the contribution of effectors to
functional processes

After demonstrating that the differences in the summed LFQ in-
tensities for a functional process can be associated with functional
differences in the Caco-2 cells, we aimed to further explore how the
changes in the interactome led to these functional differences. In
particular, we were interested in understanding which effectors and
proteins downstream of KRAS were involved in a specific process.
To this end, we used random walks over a filtered version of the
STRING network, in which we biased the random decision for each
step depending on whether a potential next protein was part of the
AP-MS dataset for a specific sample or not (see the Materials and
Methods section). This left us with a collection of paths and their

probability to be traversed, based on the network architecture and
the proteins found in the AP-MS sample.

Applying this method to the functional terms and samples of
interest, we observed pronounced changes in the network archi-
tecture depending on the sample (Fig 6). Particularly, for some GO
terms there was a different predicted engagement of effectors.
Examples are the two GO terms related to “Epithelial Proliferation”
for KRAS oncogenic mutations in culture contexts IL-6, DMOG, and
unstimulated (Fig S15). For “Epithelial cell proliferation,” in the IL-6
context high path counts are found for the effectors AFDN, ARAF,
and RAF1 (Fig 6A). In the DMOG context, additional high counts are
found for BRAF, GRB7, and PIK3CA (Fig 6A). Likewise, for “Positive
regulation of cell population proliferation” contributions of AFDN
and PIK3CA dominate in the DMOG context (Fig 6B). For GO terms
related to glucose metabolism, AFDN, GRB7, and PIK3CA dominate
the path counts for “Glycolytic process (GO:0006006)” in the DMOG
condition and for KRAS G12C in the IL-6 context, but have a low
count for “Regulation of glucose metabolic process (GO:0010906),”
where ARAF, BRAF, and RAF1 dominate in most culture conditions
(Figs 6C and D and S16). With respect to GO terms related to ATP
metabolism, the culture contexts IL-6 and DMOG show profound
path count differences for the effector RAF1, which contributes
more in the DMOG than in the IL-6 context (for the KRAS G12D
genetic context), but slightly higher path count in the IL-6 context
for KRAS G12C (Figs 6E and F and S17). The path count is generally
low for BRAF and ARAF. AFDN has high/the highest path counts in
almost all genetic and culture contexts. Also noteworthy, RIN1 is
present in all contexts but not necessarily much involved. Alto-
gether, our biased random walk analyses predict the contribution
of individual effectors to GO terms that link to experimental
phenotypes.

Discussion

This study set out to explore KRAS as a key cellular signaling hub in
specific relevant (patho)physiological contexts. The Caco-2 cell line
has been used as a relevant model system that can be grown in
various growth media (culture contexts) and enables the exoge-
nous expression of KRAS WT and oncogenic mutants (genetic
contexts). Indeed, Caco-2 cells are human intestinal epithelial cells
that closely mimic the colon intestinal epithelium in the early stage
of CRC. By identifying different levels of network organization (e.g.,
subcomplexes and number of paths traversing a network), we
aimed to detail the downstream pathway of KRAS further and in-
vestigate the functional outputs. To address this challenge ex-
perimentally, even though all methodology has their limitations,
AP-MS excels in profiling interactomes in humans (Hein et al, 2015)
because of its sensitivity and its ability to detect interactions within
complexes in appropriate contexts (Huttlin et al, 2021). We suc-
cessfully pulled down complexes using the exogenous expression
of tagged bait proteins for different KRAS variants in Caco-2 cells.

Effectors bind to Ras in a mutually exclusive fashion and can
potentially compete for binding (Kiel et al, 2013). Our earlier
computational predictions suggested that there is a considerable
impact of culture contexts on the recruitment of specific effectors
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Figure 6. Pathway analysis by biased random walks.
(A) Heatmaps of effector traversal in the different genetic and culture contexts for selected GO terms associated with cell phenotypes. Epithelial cell proliferation (GO:
0050673). (B) Positive regulation of cell population proliferation (GO:0008284). (C) Glycolytic process (GO:0006096). (D) Regulation of glucose metabolic process (GO:
0010906). (E) ATP metabolic process (GO:0046034). (F) Regulation of ATP metabolic process (GO:1903578). The color scale indicates how often an effector is traversed.
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to the PM (Catozzi et al, 2021). Here, we identified a total of 11 ef-
fectors in at least one of the AP-MS experiments, of which seven are
only found in complex with KRAS in some genetic and culture
contexts. For example, effectors such as PI3KCA, RIN2, GRB7, or
ARAP1 are detected in the presence of culture conditions such as
hypoxia (HIF stabilization), IL-6, and TNF-α. We predict that in these
cases, the affinity between the RBD and KRAS is not high enough to
allow for sufficient binding and that additional domains present in
effectors are required to increase the number of complexes formed
between KRAS and effectors at the PM (based on the “piggyback”
mechanisms [Kholodenko et al, 2000]). Indeed, we show in this work
that the total number of effectors and other proteins in the Ras-
mediated complex increases with the number of conditions. This
context-dependent binding can be explained by the fact that cells
in their physiological microenvironment are constantly experi-
encing a variety of stimuli that trigger receptors (e.g., the EGF re-
ceptor) located on the PM, where Ras is located (Eisenberg & Henis,
2008). In the context of cancer, tumor cells are often located in a
hypoxic, immunosuppressive, and nutrition-deficient microenvi-
ronment that causes reprogramming of metabolism and signaling
(Hanahan & Weinberg, 2011). Indeed, we identified culture
context–specific metabolic alterations in glucose and ATP meta-
bolism in the Caco-2 cells. Hence, this work supports the re-
quirement to study the role of the microenvironment when
performing an experiment that aims to characterize PPI networks
because they have a major role in rewiring complex formation. It
also demonstrates the need to consider multidomain interactions.
However, the interpretation of PM recruitment and culture con-
ditions might not be straightforward. In fact, it is difficult to un-
derstand and predict what happens on the upstream level of
Ras–effector interactions and why some effectors are identified in
the specific conditions tested. This is partly due to signaling
pathways that are highly cell type–specific (van Boxel-Dezaire et al,
2006; Miller-Jensen et al, 2007). Together with initiatives such as the
Human Protein Atlas (Uhlén et al, 2015) and the large-scale
interactome (AP-MS–based) BioPlex database (Huttlin et al, 2015,
2017), analyzing human PPI and the conditions in which they occur
will be essential for the creation of a context-dependent human
interactome knowledge base. Toward reaching this goal, a new
version of the BioPlex 3.0 interactome has been recently published
where, in addition to HEK293T cells, a dual comparison with the
HCT116 cell line was performed (Huttlin et al, 2021).

Based on the assumption that effectors compete for binding to
KRAS, our working hypothesis is that individual KRAS/effector-
mediated subcomplexes form in a cell, which ultimately affect
downstream signal propagation and cellular phenotypes. Indeed,
we show here that differences in KRAS-mediated complexes
propagate to downstream changes in phenotypes that roughly
align with the predicted functional changes based on GO terms of
proteins detected in an AP-MS experiment. This suggests that the
PPI network orientation/assembly on the level of KRAS (likely
mediated in part by effectors in complex with KRAS) impacts the
downstream phenotype.

The analysis of PPI in mammalian cells is challenging, and
different methods have both advantages and limitations (Snider
et al, 2015). In the experimental AP-MS setup used in this work,
FLAG-KRAS WT and mutant variants are exogenously expressed. A

main advantage of AP-MS is that it can be performed in a high-
throughput fashion and that epitope tagging allows the study of
proteins for which antibodies are not available or not suitable for
immunoprecipitation. A limitation of AP-MS is that it does not allow
for the detection of spatial or temporal PPI because of the need to
perform cell lysis and AP. Other techniques, such as proximity ligation
assays (PLA), can determine PPI in a spatial and temporal manner,
but require high-quality antibodies anddo not have high-throughput
capability (Snider et al, 2015). Indeed, when we performed PLA on
non-transfected Caco-2 cells, we found increased KRAS/PM coloc-
alization of the effector PI3K in the EGF culture context that changes
over time (Fig S18). This highlights a central question in biology as to
how changes (often short term) in cellular protein complexes result
in phenotypic changes that manifest over longer time periods
(Rukhlenko et al, 2022).

As effectors compete for binding to KRAS, we hypothesized that
specific Ras–effector subcomplexes exist that each (or in com-
bination) links to specific phenotypes. To explore the contribution
of individual effectors to phenotypes, we used biased random
walk analysis. Indeed, we find differences in the number of paths
between different genetic and culture contexts. The analysis also
enabled us to predict which effector pathways are likely linked to
cellular phenotypes. Hence, our analysis pipeline that combines
AP-MS data with randomwalks and GO terms provides a novel way
to link PPI networks to phenotypes. The pipeline and code are
available to the scientific community and can be adapted for
specific AP-MS experiments. There are, however, limitations of the
random walk analysis. The data structure at the end is a collection
of different paths for different targets for different conditions.
Some of these are comparable, and some are biased. Paths ending
into the same target should be comparable across conditions, as
long as the underlying network structure does not change.
However, there is a bias for shorter paths to be more likely to be
found, and targets with shorter shortest paths have on average
higher counts in the found paths. In addition, the analysis is
strongly dependent on the underlying network structure that is
used.

With respect to the impact of genetic versus culture contexts on
KRAS-mediated network rewiring, our analyses based on PCA and
UMAP suggest that the impact of growth condition (culture context)
is greater than the type of oncogenic mutation (genetic context). We
observe a similar trend in the functional analysis and in the effector
contributions as calculated by random walks, where different
oncogenic mutants generally having more similar effector path
counts are different culture contexts/growth conditions. Indeed,
the results of this work offer an additional explanation why cancer
genes and mutations only manifest in some but not all tissues
(Schaefer & Serrano, 2016).

Future steps in systems medicine require the integration of
protein abundance with context-specific conditions and localized
signaling responses. Indeed, quantitatively predicting the influence
of specific conditions on larger networks to get an efficient pre-
dictive model would be ideal, especially in the case of oncogenic
mutations. In addition, understanding the rewiring in physiological
contexts to enhance the understanding of network rewiring in
cancer contexts would provide new insights into potential thera-
peutic targets (Nogales et al, 2022).
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Materials and Methods

Culturing of Caco-2 cells

Caco-2 cells (ATCCHTB-37) were cultured in DMEM (21969-035; Gibco,
Thermo Fisher Scientific) supplemented with 2 mM l-glutamine
(25030-024; Gibco, Thermo Fisher Scientific), 10% (vol/vol) FBS
(A4766801; Gibco, Thermo Fisher Scientific), and 1% penicillin/
streptomycin (15140122; Gibco, Thermo Fisher Scientific). For
long-term storage, frozen stock vials were made on the week of
receiving the cell line in Recovery cell culture freezing medium
(12648010; Gibco, Thermo Fisher Scientific) and stored in liquid
nitrogen. For each experiment, cells were not exceeding passage 25
and were thawed from the liquid nitrogen stock. To generate growth
media thatmimic conditions relevant in the colon and CRC (“culture
contexts”), the minimal medium (DMEM with 2 mM l-glutamine) was
supplemented with either IL-6 (interleukin-6) (Thermo Fisher Sci-
entific), TNF-α (Thermo Fisher Scientific), PGE2 (Thermo Fisher
Scientific), EGF, or the HIF-hydroxylase inhibitor DMOG (Cayman
Chemical) at different concentrations (20 and 200 ng/ml). Caco-2
cells for PLA were kindly gifted by Professor Per Artursson.

Plasmids for exogenous expression of FLAG-KRAS WT
and mutants

Plasmids were gifted from the previous research laboratory of
Christina Kiel in Barcelona (CRG) (from Luis Serrano and Hannah
Benisty). All the plasmids harbor the identical backbone pMDS-
TetOn3G-kozak-FLAG-GOI (gene of interest). Plasmids differ only by
their GOI, which areWT KRAS, KRASG12D, KRASG12V, or KRASG12C as GOI.

Bacterial transformation with plasmids, plasmid extraction,
and purification

The bacterial transformation of the plasmids for exogenous ex-
pression of FLAG-KRAS (pMDS-TetOn3G-kozak-FLAG-KRAS WT/
mutants) was performed using the One-Shot Stbl3 (C737303;
Invitrogen) chemically competent bacterial cells to replicate each
plasmid following the manufacturer’s instructions. Subsequently,
100 μl of the bacteria–plasmid solutions was plated into LB se-
lective agar plates containing the antibiotic spectinomycin (50 μg/
ml). Plates were incubated at 37°C, overnight. The next day, in-
dividual bacterial colonies were selected from a LB agar plate and
grown in 4 ml LB broth with the corresponding antibiotics for
6–12 h at 37°C in a shaker-incubator at 250 rpm. After incubation,
several aliquots of this original starter culture were used to generate
a bacterial glycerol stock for long-term storage at −80°C (1 ml
transformed bacteria in 1 ml 50% glycerol). The remainder of the
original starter culture was then used to grow at a large scale the
transformed bacteria under selective antibiotics overnight in 500 ml
of LB medium at 37°C in a shaker-incubator at 250 rpm. The HiSpeed
Plasmid Maxi Kit (QIAGEN) was used to generate a larger amount of
the FLAG-KRAS plasmids. The kit was used following the manufac-
turer’s instructions. The final DNA was eluted in 400 μl of TE buffer
and allowed to resuspend overnight to ensure homogeneity. The

next day, concentrations and purities were measured on the Implen
NanoPhotometer NP80, and plasmid DNA was stored at −20°C.

Transfection and expression of FLAG-KRAS in Caco-2 cells

For AP-MS experiments, Caco-2 cells were seeded 24 h before
transfection in 10-cm dishes in normal growth medium and grown
to 70–80% of confluency. Cells were transfected with 15 μg of pMDS-
TetOn3G-kozak-FLAG-GOI plasmids (containing FLAG-KRASWT or
FLAG-KRASG12D or FLAG-KRASG12V or FLAG-KRASG12C as GOI) using
Lipofectamine 2000 (11668-019; Invitrogen) according to the man-
ufacturer’s instructions in Opti-MEM reduced serum medium (31985-
062; Gibco, Thermo Fisher Scientific) for 4 h. Then, the medium was
changed and supplemented with culture medium containing the
various growth conditions. To note, cells transfectedwith the KRASWT
plasmids were always supplemented with 15 ng/ml of doxycycline
(Sigma-Aldrich). Cells were incubated for 24 h at 37°C and harvested.
FLAG-KRAS mutant plasmid transfections were not supplemented
with doxycycline as the promoter is leaky and KRAS mutant proteins
were already expressed at WT levels without adding doxycycline.

Caco-2 cell lysis, protein extractions, and concentration

Caco-2 cell lysates were obtained after trypsinization, and cell
pellets were recovered and washed twice with PBS 1X. The cell
pellets were then resuspended in the appropriate volume (e.g., 300
µl for the AP-MS experiments) of lysis buffer (50mM Tris–HCl, pH 7.5,
1 mM EDTA, 1 mM EGTA, 150 mM NaCl, 2 mM MgCl2, 1 mM DTT, and 1%
IGEPAL/NP-40 supplemented with PhosSTOP [Roche] and cOm-
plete, Mini protease inhibitor cocktail [Roche]). Cells were lysed for
30 min on a rotator at 4°C and centrifuged at 14,000 rpm for 30 min at
4°C, and the supernatants were collected in a new tube. Protein
concentrations were measured using the Pierce 660-nm Protein Assay
(22660; Thermo Fisher Scientific) per the manufacturer’s guidelines.
Samples were incubated for 5 min before absorbance was read at
660 nm on a SpectraMax M3 plate reader. Net absorbance values were
plotted against BSA protein concentration for standard curve gener-
ation (23208; Thermo Fisher Scientific). For each sample, the con-
centration was obtained by comparing net absorbance values against
the generated standard curve. A new standard curvewas generated for
each assay. Kept on ice, cell lysates were then directly used for AP.

Western blotting

Before loading the samples into the gel, a normalization of the
concentration for each sample is done, with a concentration aiming
to be 1 µg/µl. Proteins were then denatured by incubating samples
at 95°C for 5 min in 4 × Laemmli buffer and DTT before loading onto
4–12% NuPAGE gradient precast gels (Thermo Fisher Scientific). Gels
were run for 10 min at 110 V, followed by 45 min at 150 V, with gels
submerged in NuPAGE MES running buffer (Thermo Fisher Scien-
tific). After electrophoresis, proteins are dry-transferred using the
iBLOT2 device (Thermo Fisher Scientific) for 7 min into a nitrocel-
lulose membrane. The membranes were checked by Ponceau S
staining to ensure protein transfer. Then, the membranes were
washed in 1 X Tris buffer saline/Tween-20 (TBS-T) before blocking
solution for 1 h in 5% milk at room temperature in a shaking device.
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Depending on the antibody, the membranes were incubated either
overnight at 4°C or at room temperature for 4 h, with the primary
antibody diluted in 0.05% milk in TBS-T. The membranes were then
washed three times in TBS-T, 10 min each, and incubated with HRP-
conjugated secondary antibody for 1 h diluted in milk TBS-T on a
shaking device. Protein bands were developed using a high-
sensitivity ECL reagent (Thermo Fisher Scientific) with the West
Pico Western blotting substrate per the manufacturer’s instructions
and visualized using the G-Box image developer (SYNGENE). Den-
sitometry analysis was performed using ImageJ, with target protein
bands normalized to a loading control (β-actin or GAPDH). The
following antibodies were used for Western blotting: β-actin (#4970,
rabbit/monoclonal, 1/3,000 dilution; Cell Signaling), GAPDH (ab2118,
rabbit/monoclonal, 1/1,000 dilution; Abcam), pan-Ras (ab52939, rabbit/
monoclonal, 1/5,000 dilution; Abcam), KRAS (CPTC-KRAS4B-2, DSHB,
mouse/monoclonal, 0.5 μg/ml working concentration), and secondary
anti-mouse HRP (ab97023, goat/monoclonal, 1/3,000; Abcam).

AP

Caco-2 cell lysates expressing FLAG-KRAS proteins were immuno-
precipitated from 800 μg of cell lysate using anti-FLAG-M2 magnetic
beads (M8823; Sigma-Aldrich) using the KingFisher DuoPrime pu-
rification system (Thermo Fisher Scientific). Beads were washed in
TBS (according to the manufacturer’s instructions) for 5 min, twice,
at low speed. Then, beads were collected by the KingFisher magnet
and discarded into the samples wells andmixed at a slow speed for
1 h. Beads–antibody–samples were collected and went through
different wash salted solutions (Wash 1 andWash 2: RIPA buffer with
150 mM NaCl; Wash 3: RIPA buffer with 500 mM NaCl), mixed at low
speed for 30 s. Beads–antibody–samples were eluted in 50 μl of
glycine (0.1 M, pH 3.0) for 5 min. Immediately after, samples were
neutralized with 20 μl of Tris base (1 M, pH 8.0).

Caco-2 cell proteome in different culture contexts

Caco-2 cells were seeded in 6-cm dishes at 8 × 105 cell/dish (about
70% confluency) in 4 ml normal growth medium. 24 h post-seeding,
cells were transfected with 5 μg of pMDS-TetOn3G-kozak-FLAG-GOI
plasmids (FLAG-KRASG12D) or TE buffer alone (non-transfected
control) using Lipofectamine 2000 (11668-019; Invitrogen) in
serum-free DMEM for 4 h. Then, the medium was changed and
replaced by medium containing the various growth conditions at 20
ng/ml (unstimulated, DMOG, IL-6, PGE2, EGF, and TNF-α). After 18 h,
cells were harvested and directly lysed to perform both Western
blot and MS sample preparation (without AP).

Sample preparation after AP for MS

For protein cleanup, the paramagnetic bead–based SP3 (solid-
phase–enhanced sample preparation) workflow was used (Hughes
et al, 2019). For each AP experiment, sample protein concentrations
were determined using the Pierce BCA protein assay (Thermo Fisher
Scientific) following the manufacturer’s instructions, and 50 μg of
proteins was adjusted in 20 μl of buffer/MS-grade water. Samples
were homogenized and denatured in urea (final concentration,
4 M), ammonium bicarbonate (100 mM), and calcium chloride

(100 mM), then reduced in DTT (final concentration, 1 mM) for 15 min
at room temperature, and alkalinized in iodoacetamide (3 mM) in
the dark at room temperature for 15 min. The tryptic digestion
protocol was performed using the KingFisher DuoPrime purification
system (Thermo Fisher Scientific) in a series of steps. First, magnetic
hydrophobic and hydrophilic beads were washed several times in
MS-grade water and added to the deepwell plate in the KingFisher
along with the samples and the same volume as the sample of 100%
ethanol. Next, the solutions were mixed at low speed for 10 min,
after which the beads coupled to the proteins were collected with
the magnetic arm of the KingFisher and transferred to be washed in
three different deepwells each containing 80% of ethanol. The
washed beads–proteins were then released into the trypsin (V5111;
Promega)-containing deepwells at a 50:1 (w/w) protein-to-protease
ratio and mixed at low speed for 8 h of digestions into peptide
fragments at 37°C in the KingFisher. Peptide samples were trans-
ferred into low protein binding tubes; 1% of TFA was added to acidify
the samples ready to be desalted, cleaned, and concentrated on C18
tips (87784; Thermo Fisher Scientific) (Rappsilber et al, 2007)
according to the manufacturer’s instructions. Purified peptides were
dried and resuspended in low protein binding tubes before MS
analysis in 30 μl of 0.15% TFA and 1% acetic acid in MS-grade water.

MS

The peptides were analyzed using a MS shotgun proteomics
technique. This technique allows a sensitive bottom-up approach
that consists of separating peptides resulting from protein di-
gestion by liquid HPLC followed by tandemmass spectrometry (MS/
MS). Samples were run on a Bruker timsTOF Pro mass spectrometer
connected to an Evosep One liquid chromatography system. Tryptic
peptides were resuspended in 0.1% formic acid, and each sample
was loaded onto an Evosep tip. The Evosep tips were placed in
position on the Evosep One, in a 96-tip box. The autosampler is
configured to pick up each tip, elute, and separate the peptides
using a set chromatography method (Bache et al, 2018). The
chromatography buffers used were buffer B (99.9% acetonitrile,
0.1% formic acid) and buffer A (99.9% water, 0.1% formic acid). All
solvents are LC-MS–grade.

The mass spectrometer was operated in a positive ionmode with
a capillary voltage of 1,500 V, dry gas flow of 3 liters/min, and a dry
temperature of 180°C. All data were acquired with the instrument
operating in a trapped ion mobility spectrometry mode. Trapped
ions were selected for ms/ms using parallel accumulation–serial
fragmentation. A scan range of (100–1,700 m/z) was performed at a rate
of 5 parallel accumulation–serial fragmentation MS/MS frames to 1 MS
scan with a cycle time of 1.03 s (Meier et al, 2018).

The data analysis was done using MaxQuant software (Cox & Mann,
2008). The raw data were searched against theHomo sapiens subset of
the UniProt/SwissProt database (reviewed) with the search engine
MaxQuant (release 2.0.3.0). Specific parameters for trapped ion mo-
bility spectrometry data–dependent acquisition were used: Fixed Mod:
carbamidomethylation; Variable Mods: methionine, oxidation; Trypsin/
P digest enzyme: maximum two missed cleavages; Precursor mass
tolerances: 10 ppm; Peptide FDR: 1%; and Protein FDR: 1%. The nor-
malized protein intensity of each identified protein was used for label-
free quantitation (LFQ) using the MaxLFQ algorithm (Cox et al, 2014).
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The MS proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE (Perez-Riverol et al, 2022)
partner repository with the dataset identifier PXD035399.

AP-MS data filtering and ID mapping

The data were first filtered based on the label-free quantification
intensities (LFQi) using the following five steps: (i) removal of
proteins that were labeled as “only identified by site”, “potential
contaminant”, and “reverse”; (ii) removal of all observations with
LFQi equals to 0; (iii) removal of outlier samples (based on low
overall LFQi; see Fig S3); (iv) removal of proteins that are not present
in at least 60% of the samples of a group for each group (a group is
defined as the collection of three biological with two technical
replicates for one condition, which results in a group size of
maximum 6); and (v) filtering against the negative control sample,
which is only the beads used for the AP-MS sample preparations, by
only considering proteins for further analysis that are significantly
higher found in the samples compared with the negative control. In
MS analysis–based proteomics data, there are typically two types of
missing values, the missing not at random (MNAR) and the missing
at random (MAR) (Lazar et al, 2016). A mixed imputation strategy was
chosen, with kNN imputation as the strategy for MAR values (Gatto
& Lilley, 2012; Gatto et al, 2021; Rainer et al, 2022). Other missing
values were considered MNAR values and imputed at value 0. After
the imputation, differential interaction analysis was performed for
each group against the bead control. P-values were adjusted using
FDR correction as described by Benjamini and Hochberg (1995).
Afterward, all proteins were extracted for each group, which were
significantly enriched in the sample (cutoffs: P-value–adjusted:
<0.01, log fold change: >1). The data were transformed to have
consistent protein and gene name annotations after the data fil-
tering. The data are received fromMaxQuant software in UniProt IDs
and mapped to HGNC gene names using the HGNC database (re-
trieved 12/2021). However, one UniProt ID can correspond to
multiple HGNC gene names. In this case, manual selection of the
gene names of interest was performed. Finally, the HGNC names
were mapped to gene IDs of the SysGO database (Luthert & Kiel,
2020). A couple of proteins could not be found in the SysGO
database, and one protein was renamed (i.e., HGNC name: PHB1,
which was renamed PHD for SysGO). Then, the technical rep-
licates were merged using the median. In summary, we obtain a
dataset with raw LFQi (Table S2) or log2-transformed (Table S3)
data with biological triplicates. Data preparation was per-
formed in R (http://www.r-project.org/index.html) using the
following packages: dplyr (Beckerman et al, 2017), tidyr (Wickham
et al, 2019), stringr (Wickham, 2010), tidyxl, purr (Mailund, 2019), DEP
(Zhang et al, 2018), and limma (Ritchie et al, 2015; Phipson et al,
2016). The script file for the data preparation and the data pre- and
post-preparation are available on Zenodo (Camille et al, 2022).

Functional analysis of the interactome

Functional analysis of the interactome was performed in two dif-
ferent ways. The first approach consists of a differential interaction
analysis based on the filtered LFQ intensities. Imputation was
performed by a mixed imputation strategy, using bpca (Bayesian

PCA) (Oba et al, 2003; Stacklies et al, 2007) for MNAR values and
MinProb (https://cran.r-project.org/web/packages/imputeLCMD/
index.html) for MAR values. Differential analysis was performed
using limma (Ritchie et al, 2015; Phipson et al, 2016) and DEP (Zhang
et al, 2018). P-values were adjusted using FDR correction by
Benjamini and Hochberg (1995). The results of the differential in-
teraction analysis were evaluated for functional enrichment by
performing a gene set enrichment analysis using ClusterProfiler4
(Yu et al, 2012; Wu et al, 2021) against the GO biological process
(Ashburner et al, 2000; Gene Ontology Consortium, 2021).

For the second approach, LFQ intensities were collapsed on GO
BP terms by summing up all intensities of all identified proteins for
each sample for each GO term. Then, for each GO term, a three-way
ANOVA was performed with the main effects of mutation status (ge-
netic context), condition and concentration (culture context), and their
interaction terms. The P-values of these ANOVAs were collectively
corrected using correction by Holm (1979). After correction, significant
terms (P < 0.05) were further analyzed using Tukey’s Honest Significant
Difference post hoc tests. P-values were collectively corrected using
FDR correction by Benjamini and Hochberg (1995).

Both approaches identify many GO terms that are significantly
different (P < 0.05 after respective adjustment) between the groups.
To gain an overview over the results, the semantic similarity be-
tween the GO terms was determined using the methodology
proposed by Schlicker et al (2006) and Yu et al (2010). Based on the
resulting similarity matrix, GO terms were clustered using the binary
cut algorithm (Gu & Hübschmann, 2022b). The results were visu-
alized as a heatmap with data from the analysis projected as
additional heatmaps (Gu et al, 2016; Gu & Hübschmann, 2022b).

All analysis in this part was performed using the R programming
language and the tidyverse environment (Wickham et al, 2019). The
scripts and output for this analysis are available on Zenodo
(Camille et al, 2022).

Visualization of AP-MS data in the Shiny app

The results from the functional analysis together with the filtered
AP-MS data were put together in an R Shiny dashboard, allowing the
interactive exploration of our analysis and data (Sievert, 2020; Gu &
Hübschmann, 2022a). The R Shiny app is available at https://
pjunk.shinyapps.io/kras_apms_vis/, with the source code and
underlying data files available at https://github.com/PhilippJunk/
kras_apms_vis

Assessment of phenotypic and metabolic parameters of
Caco-2 cells

Caco-2 cells cultured in DMEM supplemented with 10% FBS were
seeded at about 70% confluency in nine 12-well plates (CELLSTAR,
Greiner Bio-One) to test three KRAS mutant status (WT, G12D, and
G12C) in three contexts (unstimulated, DMOG, and IL-6). 24-h post-
seeding cells were transfected with FLAG-KRASWT, FLAG-KRASG12D,
or FLAG-KRASG12C with the protocol previously described. Then, 5-h
post-transfection medium was changed and replaced with DMEM
supplemented with 1% glutamine containing either 20 ng/ml DMOG,
20 ng/ml IL-6, or no stimulus (unstimulated). In addition, for cells
transfected with KRASWT, 15 ng/ml doxycycline was added for
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plasmid activation. Cell suspension samples were collected: once
for all groups during the seeding (24 h before transfection), then
in triplicate for each group at 24, 48, and 72 h post-transfection.
Medium samples were collected: once during the context intro-
duction (5 h post-transfection), then in triplicate for each group at
24, 48, and 72 h post-transfection. Cell suspension samples were
used for cell counting using Scepter 2.0 Automated Cell Counter
with 60-μm sensors (Merck Millipore), for cell viability and cellular
ATP assessments using CellTiter-Glo Luminescent Cell Viability
Assay (Promega), and for Western blots of FLAG-KRAS (Anti-FLAG
M2, F3165, mouse/monoclonal, 1:1,000 dilution; Sigma-Aldrich)
normalized with β-actin (#4970, rabbit/monoclonal, 1:3,000 dilu-
tion; Cell Signaling) using the protocol previously described. For
the Western blot, after cell lysis, for each plasmid and at each
time, the three context replicates were pooled to obtain enough
protein to prepare 40 μl loading solution at 0.25 μg/μl (e.g., for WT
at 24 h, the three replicates are one Unstim, one DMOG, and one IL-
6 sample). Media were used for the assessment of glucose uptake
and lactate release using, respectively, Glucose-Glo and Lactate-
Glo assays (Promega).

Statistical analysis

All data are expressed as the average ± SD, with SD represented by
error bars. Statistical comparisons between two groups (typically
treated group against control samples) were performed using a t
test. The average value and SD were calculated from at least three
biological experiments. All tests were performed with a P-value of
0.05 using GraphPad Prism 9 software.

Network reconstruction and random walk analysis of AP-MS data

The starting point of the network is the 56 potential effectors of
KRAS (Ibáňez Gaspar et al, 2021). Then, beginning from these ef-
fectors, STRING (version 11.5) was used to construct the network
(Szklarczyk et al, 2019). All nodes that had a shortest path of 4 or
less to these effectors were included, while filtering out edges
with a STRING confidence score of less than 0.7. For KRAS, only
edges toward the effectors were included in the network. Apart
from the KRAS–effector edges, all interactions in the network are
considered undirected. The final network consists of 15,062
nodes and 493,838 edges.

Using the network, targeted random walks were performed
starting from KRAS, in the following called source, for each target
protein in each condition of interest. For a predetermined number
of steps, based on the current node, one of the connected nodes is
randomly chosen. For each random walk, there is always only one
target protein. As soon as the target protein is reached, or a certain
number of iterations have been exceeded, the walk ends. The
random walks are biased toward proteins found in the interactome
of a certain condition. This is facilitated by favoring nodes found in
the interactome by a factor of 20 over nodes not found in the
interactome of the specific condition. The actual probability de-
pends on the number of connecting nodes.

Pðin APMSÞ = 20*Pðnot in APMSÞ :

The number of iterations for the random walk for each target is
dynamically calculated based on the length of the shortest path
between the source and the target.

walklen = shortestpath + 2 :

Finally, the number of random walks, limited by runtime and
memory, was set to 100,000,000 for each target for each condition.
The code for the random walks was written in python using NumPy,
SciPy, pandas, Numba, and CrsGraph. The script used to run this
analysis is available on Zenodo (Camille et al, 2022).

Analysis of the random walks was performed by filtering out any
paths that were found less than 100/100,000,000 walks and
selecting the top 10 identified paths for each target by frequency.
Paths were decomposed into a sequence of edges, and all edges
for one condition were concatenated to generate a condition-
specific network of information flow from KRAS to all proteins
associated with a specific GO term. Networks were visualized, and
the effector layer of each network was extracted and visualized
together.

All analysis and visualization were performed using R, in par-
ticular, the packages dplyr, tidyr, stringr, purrr, furrr, ggplot, and
ggraph (Wickham, 2010; Wilkinson, 2011; Mailund, 2019; Wickham
et al, 2019; Pedersen, 2020).

Proximity ligation assay

PLA was performed to evaluate the recruitment of p110ɑ-PI3K to
Ras, using NaveniFlex MR (Navinci Diagnostics). First, Caco-2 cells
were seeded at a confluency of 35,000 cells/cm2 in eight-well
chamber slides, and left to adhere overnight. Cells were then
serum-starved in DMEM+GlutaMAX supplemented with 0.2% FBS for
24 h, at 37°C and 5% CO2. Cells were then stimulated with 20 ng/ml
EGF for either 0, 5, 15, or 45 min, after which media were removed
and cells were washed with ice-cold PBS. Then, cells were fixed in
3.7% formaldehyde in PBS solution for 15 min on ice. Slides were
then washed for 3 × 5 min in PBS, dried, and permeabilized in a 0.2%
Triton X-100/TBS solution for 10min at room temperature. Proximity
ligation assay was then performed as described in Wåhlén et al
(2022). Primary antibodies used were as follows: rabbit anti-Ras
(52939; Abcam) at 1:200, and mouse anti-p110ɑ-PI3K (611399; BD
Biosciences) at 1:50. Image analysis was performed as described in
Wåhlén et al (2022) with the exception that pictures were taken in
replicates of five per experimental condition, and a 63×/1.4 oil
objective was used. Images have been enhanced for visualization
purposes, but the image analysis has been performed on original
images.

Data Availability

All data are available in the main text or the supplementary materials.
TheMSproteomics datahavebeendeposited to theProteomeXchange
Consortium via the PRIDE (Perez-Riverol et al, 2022) partner repository
with the dataset identifiers PXD035399 and PXD039404. Data pro-
cessing and analysis pipeline and results are available at Zenodo
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(Camille et al, 2023). Access to the AP-MS data through the Shiny
app is available via GitHub (https://github.com/PhilippJunk/
kras_apms_vis).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202201670
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Wåhlén E, Olsson F, Söderberg O, Lennartsson J, Heldin J (2022) Differential
impact of lipid raft depletion on platelet-derived growth factor
(PDGF)-induced ERK1/2 MAP-kinase, SRC and AKT signaling. Cell
Signal 96: 110356. doi:10.1016/j.cellsig.2022.110356

Waldner MJ, Foersch S, Neurath MF (2012) Interleukin-6–a key regulator of
colorectal cancer development. Int J Biol Sci 8: 1248–1253. doi:10.7150/
ijbs.4614

Wickham H (2010) stringr: modern, consistent string processing. R J 2: 38–40.
doi:10.32614/rj-2010-012

Wickham H, Averick M, Bryan J, Chang W, McGowan L, Francois R, Grolemund
G, Hayes A, Henry L, Hester J, et al (2019) Welcome to the tidyverse.
J Open Source Softw 4: 1686. doi:10.21105/joss.01686

Wilkinson L (2011) ggplot2: Elegant graphics for data analysis by WICKHAM, H.
Biometrics 67: 678–679. doi:10.1111/j.1541-0420.2011.01616.x
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