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Genomic insights into antibiotic resistance and mobilome
of lactic acid bacteria and bifidobacteria
Vita Rozman1 , Petra Mohar Lorbeg1, Primož Treven1, Tomaž Accetto2, Sandra Janežič3,4, Maja Rupnik3,4,
Bojana Bogovič Matijašić1

Lactic acid bacteria (LAB) and Bifidobacterium sp. (bifidobacteria)
can carry antimicrobial resistance genes (ARGs), yet data on
resistance mechanisms in these bacteria are limited. The aim of
our study was to identify the underlying genetic mechanisms of
phenotypic resistance in 103 LAB and bifidobacteria using whole-
genome sequencing. Sequencing data not only confirmed the
presence of 36 acquired ARGs in genomes of 18 strains, but also
revealed wide dissemination of intrinsic ARGs. The presence of
acquired ARGs on known and novel mobile genetic elements
raises the possibility of their horizontal spread. In addition, our
data suggest that mutations may be a common mechanism of
resistance. Several novel candidate resistance mechanisms were
uncovered, providing a basis for further in vitro studies. Overall,
1,314 minimum inhibitory concentrations matched with geno-
types in 92.4% of the cases; however, prediction of phenotype
based on genotypic data was only partially efficient, especially
with respect to aminoglycosides and chloramphenicol. Our study
sheds light on resistance mechanisms and their transferability
potential in LAB and bifidobacteria, which will be useful for risk
assessment analysis.
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Introduction

Antimicrobial (antibiotic) resistance of foodborne pathogenic
bacteria is an important food safety problem (1). Commensal
bacteria, including lactic acid bacteria (LAB) and Bifidobacterium
sp. (bifidobacteria), have recently been recognised as a reservoir
of resistance genes (ARGs) (2, 3, 4). They are introduced into the
agro-food chain as starter and probiotic cultures, protective
cultures, and feed additives. Because they come into contact
with bacteria residing in gut—a hotspot of microbial horizontal
gene transfer (5)—they pose a risk for transmission of ARGs. In
scope of the Qualified Presumption of Safety status, such strains

must be free of acquired ARGs (6). It was not until 2018 that the
guidelines for the characterisation of microorganisms used as
feed additives or as production organisms (7) included a re-
quirement for strain characterisation based on whole-genome
sequences (WGS). Since then, several studies have analysed
resistance genes in LAB and bifidobacteria based on WGS (2, 3, 4,
8, 9), but still only a handful of studies have focused on strains
intentionally added to the agro-food chain (10, 11). In addition,
these studies often lack data on intrinsic and mutational re-
sistance and transfer capability of ARGs through mobile genetic
elements (MGEs). An in-depth understanding of the resistance
mechanisms and their potential for transferability is essential to
ensure the safety of dietary supplements (probiotics), feed
additives, and products manufactured with starter or protective
cultures.

Given that most antimicrobials are natural compounds, innate
resistance mechanisms have evolved over time. Such natural
(intrinsic) antimicrobial resistance is inherent to the species and
presents a minimal potential for horizontal spread (12). On the
contrary, resistance can be acquired either by a novel genetic
mutation of chromosomal genes or by added resistance genes by
means of horizontal gene transfer. Resistance acquired through
added gene(s) is considered to have a high potential for horizontal
dissemination (12). Acquired resistance in Enterococcus sp. (en-
terococci) is widespread and considerably well described, as some
strains are important nosocomial pathogens (3, 13). On the contrary,
data on resistance, particularly on intrinsic ARGs andmutations, are
not as comprehensive in other genera of LAB and bifidobacteria.

In this context, the main goals of our study were not only to
determine phenotypic susceptibility of LAB and bifidobacteria from
different sources to antimicrobials but also to identify the potential
underlying mechanisms of acquired and intrinsic resistance. In
addition, we aimed to discover known and novel MGEs using whole-
genome sequencing and comparative genomics. To achieve these
goals, we analysed 103 strains, mainly commercial cultures but also
isolates from human milk and from fermented products of which
the genomes of 75 strains were sequenced in-house.
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Results

Antimicrobial resistance phenotypes

LAB and bifidobacteria can carry mobile ARGs, and when ingested,
they can facilitate the transfer of these genes to the resident
microbiota in the gut and thus to potential pathogens. Commercial
strains are required to be free of acquired (mobile) ARGs (6), but
data on the genetic basis for phenotypic resistance in these
bacteria are limited. The main objective of our study was to identify
the potential underlying mechanisms of acquired and intrinsic
resistance in LAB and bifidobacteria using comparative genomics.

The minimum inhibitory concentrations (MICs) of up to 27 an-
timicrobials were tested using the broth microdilution method for
103 LAB and bifidobacteria (Fig 1). We observed that resistance to
kanamycin and resistance to chloramphenicol were the most
common clinically relevant phenotypes (Fig 1). In contrast, the lower
prevalence of resistance was seen with gentamicin, erythromycin,
and ampicillin, whereas atypical vancomycin resistance (7) was not
detected (Fig 1). Multidrug resistance frequently occurred in En-
terococcus sp., Levilactobacillus brevis, Lacticaseibacillus rham-
nosus, and Pediococcus sp. Surprisingly, three strains showed
resistance to five groups of clinically important antimicrobials
(Fig 1).

Whole-genome sequence analysis

Acquired ARGs
Genomic data (n = 103) were mined for the presence of ARGs whose
intrinsic or acquired nature was determined by MGEs and pan-
genome analyses. Based on the selection criteria, a total of 36
acquired ARGs corresponding to 18 diverse reference ARGs were
found in 18 strains (Fig 2 and Table S1). Most of these ARGs (n = 33)
were expressed in the resistant phenotype. Collectively, these
genes conferred resistance to a broad array of antimicrobial classes
(Table S1).

Analysis revealed that the tetracycline resistance gene tetW was
most frequently detected, particularly in Bifidobacterium (B.) ani-
malis subsp. lactis strains and in a probiotic Limosilactobacillus
reuteri (Fig 2). Phenotypic tetracycline, but not tigecycline, resis-
tance was less frequently conferred by the tet(L), tet(M), tet(O),
tet(S), or tet(U) genes that were found in isolates from the natural
microbiota of fermented products (referred to as non-starter
strains) Enterococcus (E.) faecalis, Lactococcus (L.) lactis, and E.
italicus, and in a probiotic strain of B. breve (Fig 2). We found
that streptomycin resistance in E. faecalis and L. lactis (Fig 2)
was associated with ANT(6)-Ia that in enterococci appeared to
be linked to SAT-4 and APH(39)-IIIa, the genes responsible for
resistance to streptothricin, and kanamycin and neomycin,
respectively. In addition, a bifunctional AAC(69)-Ie-APH(20)-Ia
that reflected in atypical gentamicin, kanamycin, and neomycin
MICs was found in E. faecalis (Fig 2).

The MLSB phenotype in E. faecalis and in a probiotic strain B.
longum (Fig 2) was encoded by erm(B) and erm(49), respectively.
Markedly, we found a known mutation upstream of erm(B) in all
three enterococcal strains (TAAA duplication between −124 and −127

resulting in a premature stop codon of the leader peptide first re-
ported by Oh et al (14)), which also facilitated resistance to the 16-
membered macrolide tylosin, presumably because of the gene
overexpression. Chloramphenicol resistance and trimethoprim resis-
tance in E. faecalis (Fig 2) were attributed to the cat and dfrG gene,
respectively, whereas the low level of ampicillin and penicillin resis-
tance inCarnobacterium (C.)divergensmaybedue to the expressionof
CAD-1 β-lactamase.

Intrinsic and candidate ARGs
Most of the ARGs were recognised as intrinsic (140 ARGs in 37
strains, of which 20 were diverse based on gene homology) (Fig 2
and Table S1). Consistent with the intrinsic aminoglycoside resistance
phenotype, E. faecium strains contained AAC(69)-Ii and efmM,
whereas E. hirae and E. durans possessed AAC(69)-Iid and
AAC(69)-Iih, respectively. Interestingly, we identified homologs of
EfmM with a conserved active site (C185, C235) in the vast ma-
jority of the LAB species studied (Fig 2). The observed high
aminoglycoside MICs in B. longum and B. breve appear to be
connected to aminoglycoside phosphotransferases, though
homologs were also found in B. animalis. The efmA gene with a
surprisingly diverse sequence was present in E. faecium strains.

A total of 331 candidate ARGs were discovered (Fig 2 and Table
S1), representing 33 diverse genes in 92 strains (37 species). These
genes confer resistance to various antibiotics (Table S1). Inter-
estingly, among these genes arr-4 in L. lactis IM145 had conserved
amino acid residues His18, Tyr48, and Asp83, which are involved in
rifampicin resistance (15). E. malodoratus IM1302 encompassed
fosXCC with conserved amino acid residues in its active site (His7,
His64, Glu110, Tyr100, and Arg119), which has been linked to re-
sistance to fosfomycin in Campylobacter (16). Although most of
these genes were presumably intrinsic, we also found acquired
candidate ARGs (e.g., arr-4, catB9, lnuA, ANT(6), mefA, vga(E)). Their
actual involvement in the resistance phenotype remains to be
verified in vitro.

Mutations associated with antimicrobial resistance
We provide comprehensive data on mutations in proteins previ-
ously reported to be involved in resistance (Table S2). The results
suggest that mutations may be an important mechanism of re-
sistance, particularly in bacteria intentionally introduced into the
agro-food chain. We discovered known mutations already reported
in the studied species, as well as novel mutations in the active
(binding) sites of the target (or other) proteins not yet reported in
the species or genera considered. Their role in resistance should be
further elucidated in vitro.

Multiple sequence alignment of the S12 proteins revealed
two substitutions, K43R/N/M and K88Q (Mycobacterium tu-
berculosis numbering), in commercial streptomycin-resistant
strains (Fig 3A). Likewise, we discovered rsmG point mutations
(I55A, G164V, and D67N, M. tuberculosis numbering; and G10E
and R190H, Streptomyces coelicolor numbering, Table S2) in-
volved in low-level streptomycin resistance. Although LAB are
generally less susceptible to aminoglycosides, three strains
(Lactobacillus acidophilus IM116, and L. lactis IM1456, IM1341)
exhibited a hypersusceptible phenotype. Interestingly, these strains
harboured single nucleotide polymorphisms (SNPs) in the F0F1
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Figure 1. Phenotypic resistance profiles of 103 lactic acid bacteria and bifidobacteria.
The minimum inhibitory concentrations (MICs) determined by the microdilution tests and the cut-off MICs that define whether a strain is susceptible or resistant to a
particular antibiotic are shown as a heatmap. The names of the strains resistant to five different classes of clinically important antimicrobials are highlighted in red. C,
cut-off MICs; FD, feed additive; HM, isolate from human milk or colostrum; M, MICs determined by microdilution tests; NS, isolate of natural microbiota from fermented
products (non-starter strain); P, probiotic strain; PC, protective culture; R, resistance; Synercid, quinupristin/dalfopristin; S, starter culture.
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ATPase genes (Table S2). F0F1 ATPase is reportedly involved in
aminoglycoside transport into cells (17) that could be hampered by
these mutations. The effects of these mutations on resistance have
yet to be confirmed in vitro.

Several resistant probiotic strains had SNPs in 16S rRNA (A1408G,
C1054T, and A1197T, E. coli numbering) that presumably confer

resistance to aminoglycosides or tetracycline (Fig 3B and C). We also
identified a SNP (A986T, E. coli numbering) near the primary tet-
racycline binding site in the representatives of LAB (Table S2)
displaying high-end tetracycline MICs. Among four SNPs in 23S rRNA
(Fig 3B and C), G2057T, A2058G, and C2610T presumably encode
resistance to MLSB, whereas A2062T encodes resistance to tylosin,

Figure 2. Acquired, intrinsic, and candidate antimicrobial resistance genes (ARGs) found in 103 bacterial strains.
A gene was annotated as an ARG based on the best BLAST hit with a sequence similarity threshold greater than 70%. The intrinsic and acquired nature of ARGs was
determined with the aid of mobile genetic element prediction and pan-genome analyses. Candidate (homologous) ARGs were identified based on additional analyses of
the hits with lower BLAST similarities (sequence similarity threshold between 40% and 70%).
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chloramphenicol, quinupristin/dalfopristin, and linezolid. The
coverage and variances of 16S and 23S rRNA SNPs have been
validated by mapping the sequenced reads to the assembled se-
quences (Table S3).

As reported before, enterococci exhibit clindamycin resistance
because of the T500I substitution in the Walker B2 motif of the
intrinsic protein Lsa(A) or its homologs (18). The susceptibility of our
strains was likely related to novel mutations in key motifs of these

Figure 3. Polymorphisms in S12, Lsa(A), and
MsrC in 16S and 23S rRNA.
Shown is a section of the sequence alignment in
which themutations presumably associated with
resistance are highlighted in red.
(A) Substitution of amino acid K43 in S12 was
associated with streptomycin resistance.
Polymorphisms in 16S rRNA and 23S rRNA in
strains of (B) Lactobacillus paragasseri and
(C) Lacticaseibacillus rhamnosus confer
resistance to different groups of
antimicrobials. K-12 and CFT073 represent
Escherichia coli strains. (D) Polymorphisms in key
motifs of Lsa(A) and homologs were
associated with clindamycin resistance (SNPs
highlighted in red) and susceptibility (SNPs
highlighted in purple). (E) Phylogenetic tree of
MsrC protein sequences of E. faecium strains.
Shown are the minimum inhibitory
concentrations (MICs) of erythromycin. The
tree was rooted with an outgroup (E. faecalis
IM1312). The exceeded cut-off MICs are shown in
bold. MIC, minimum inhibitory concentration;
S, susceptible; GEN, gentamicin; KAN, kanamycin;
NEO, neomycin; TET, tetracycline; ERY,
erythromycin; CHL, chloramphenicol; AMP,
ampicillin; QDA, quinupristin/dalfopristin; LIN,
linezolid.
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proteins (see Fig 3D). Furthermore, mutations in lsa(A) also affect
the MIC of streptogramin, as observed in a non-starter isolate E.
faecalis IM1301 that carried a previously reported substitution in
the −10 promoter region (A-131T) (19).

The phylogenetic tree of intrinsic MsrC proteins (Fig 3E and
Table S2) indicates that variations in sequence (including a novel
substitution in a Walker A1 motif, T45S) may have an impact on
erythromycin MIC and resistance in E. faecium. A WT strain (TX1330,
AAK01167.1) had a MIC of 0.25–0.75 μg/ml, whereas our strains
coding for mutated MsrC exhibited MICs of at least 2 μg/ml. Re-
sistant strains (MIC ≥ 8 μg/ml) contained additional mutations
that were reflected in two clades of the phylogenetic tree, the
erythromycin-susceptible and erythromycin-resistant strains.

E. faecium strains exhibited ampicillin or penicillin resistance as
a result of variations in 20 (or 21) amino acids of PBP5 or its
promoter region described before (20, 21). Despite a hybrid PBP5
sequence (see Table 1), the probiotic strain E. faecium IM215A
exhibited higher ampicillin and penicillin MICs compared with other
E. faecium strains. We hypothesise that an insertion, which bears
partial similarity to a transposase gene, between regions −10 and
−35 of the PBP5 promoter affects overexpression of the gene and
leads to resistance in this strain.

Resistance to antimicrobials not included in the EFSA list (7)
was commonly associated with known or novel mutations (Table
2). Interestingly, most species of LAB do not carry a FolP ho-
molog, which we believe to be a reason for the extreme MICs of
sulphamethoxazole.

Phenotype–genotype agreement

In total, 1,496 phenotypic tests were performed for 103 strains, yet
resistance and susceptibility could be determined for 1,314 MICs.
The resulting catalogue is shown schematically in Fig 4 and de-
scribed in detail in Table S2. We observed an overall high agreement
(92.4%) between the presence and absence of (candidate) ARGs and
mutations and the corresponding phenotypic resistance or sus-
ceptibility, respectively (Table 3). Phenotypic resistance was vali-
dated in 65.0% of the cases by genetic analyses. In fact, all exceeded
cut-off values for six antibiotics could be elucidated (Table 3). All
but three acquired resistance genes (tetW) are expressed in
phenotypic resistance.

All in all, our method for predicting phenotype from genotypic
data was only partially efficient. Even though positive (97.8%) and

Table 1. Amino acids of PBP5 proteins associated with ampicillin susceptibility of E. faecium.

Amino acid
S R MIC (μg/ml)

Strains 24 27 34 66 68 85 100 144 172 177 204 216 324 466 485 496 499 525 586 629 667

Com15a V S R G A E E K T L D A T / M N A E V E P 21 0 0.5-1

IM1313 V S R G A E E K T L D A T / M N A E V E P 21 0 1

IM1478 V S R G A E E K T L D A T / M N A E V E P 21 0 2

IM578 V S R G A E E K T L D A T / M N A E V E P 21 0 1

IM215Ab A G R G A E E Q A L D A A / M N A E V E P 16 5 >16

IM1439 A G Q E A E Q Q A I D S A / M K I D V E P 8 13 2

TX2043 A G Q E A E Q Q A I D S A / M K T D V E P 8 13 4

C68c A G Q E T D Q Q A I G S A S A K T D V V S 1 20 256

The WT amino acids are shaded green, and amino acid changes, red. MIC, minimum inhibitory concentration; S, susceptible; R, resistant.
aPBP-S.
bInsertion upstream of PBP5 (transposase).
cPBP-R.

Table 2. Known or novel mutations associated with resistance to antimicrobials not included in the EFSA list (7).

Protein Amino acid change Phenotype Species of origin

DfrG F98Y/L trimethoprim Staphylococcus aureus (22)

DfrG P21A trimethoprim E. coli (23)

DfrG N/H23Y, D27E, A7S (E. coli numbering) trimethoprim novel mutations in the active site

GyrA S83T ciprofloxacin E. coli (24)

FusA V90I, G451A/S, H457Q, L461I/M fusidic acid Staphylococcus aureus (25)

FolP V48I sulphamethoxazole Mycobacterium leprae (26)

LiaF S48Y daptomycin novel mutation

LiaS G226E, V351I daptomycin novel mutations

LiaR E45V daptomycin novel mutation

GdpD A249T, P307Q, F478L, D552N daptomycin novel mutations
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Figure 4. Phenotype–genotype agreement analysis of 103 strains of lactic acid bacteria and bifidobacteria.
In cases where no cut-off minimum inhibitory concentration was defined and in cases where the minimum inhibitory concentration was outside the concentration
range of the microdilution test, agreement was not determined (shown in dark grey). ARG, resistance gene; Synercid, quinupristin/dalfopristin.
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negative (91.3%) predictive values and specificity (99.6%) were high,
sensitivity was lower (64.3%).

Genetic environment of the ARGs

The mobility of ARGs was estimated with the aid of the MGE analysis.
Importantly, genomic island, a region of foreign origin indicative of
horizontal gene transfer (27), was found in the genetic environment of
acquired ARGs and one candidate ARG (Fig S1). In general, intrinsic ARGs
weredevoidofMGEs. This implies that the riskof horizontal transmission
of intrinsic antimicrobial resistance can be considered minimal.

Genetic organisation of the discovered MGEs is depicted in Fig 5.
Analysis demonstrated that enterococci frequently carry MGEs. For
example, tet(M) is encoded on an integrative and conjugative el-
ement, Tn916 (24.6 kbp) (Fig 5A), whereas tet(L), which is associated
with the mobility genes pre/mob and repB, resides on an incom-
plete element that shows sequence similarity to a segment of
Tn6079 (Fig 5B). ANT(6)-Ia, SAT-4, APH(39)-IIIa, cat, and erm(B) genes
are located on an element similar to the enterococcal plasmid
pRE25 (Fig 5C). The full-length plasmid was not recovered. Moreover,
we discovered that dfrG is associated with a MGE that showed
strong homology to a short segment of ICESauTW20-2 from
Staphylococcus aureus and tet(U) with a putative novel plasmid
(Fig 5D).

Our data show that small genomic islands can be found in
bifidobacterial genomes, including in probiotics B. animalis subsp.
lactis (Fig 5E). A novel genomic island containing erm(49) and three

genes of unknown function was discovered in B. longum strain from
a dietary supplement (Fig 5F), whereas the probiotic B. breve strain
carried a genomic island consisting of three coding sequences
(tnpV, tet(O), and the RNA polymerase sigma factor) (Fig 5G) and is
also present in ICESsuLP081102 from Streptococcus suis.

The probiotic Limosilactobacillus reuteri strain has a tetracycline
(pLR581, 12.2 kbp; Fig 5H) and a lincomycin (pLR585, 14.2 kbp; Fig 5I)
resistance plasmid typical of the widely used probiotic strain
Limosilactobacillus reuteri SD2112 (28). Similarly, tet(S) and ANT(6)-
Ia reside on a 49,741-bp contig that is a putative plasmid (carries
repA) (Fig 5J). Interestingly, the results indicate that ANT(6)-Ia is
actually located within a novel integrative and mobilisable element
(harbours an integrase and a relaxase, but lacks type IV secretion
system genes) with partial homology to ICESsu(SC84) from S. suis.
The integrative and mobilisable element is delimited by the potential
attL (2098968..2098982, cgatttttgattttt) and attR (2117014..2117028) site-
specific attachment sites. The genetic environment of tet(S) on the
contrary resembles a composite transposon bounded at both ends by
an insertion sequence IS1216, which is also present on plasmid
pLraf_19_4S_1 in L. raffinolactis.

Surprisingly, only one candidate ARG (arr-4) was carried by a
putative MGE (Fig 5K). Its genomic island consists of 26 coding
sequences that share significant sequence similarity with a pu-
tative phage-inducible chromosomal island bIL310. A homologous
integrase, an accessory gene, a regulatory region, and hypothetical
genes were found. The element is flanked by the putative attL
(818..835, cgctttttactacgtt) and attR (18120..18137) sequences.

Table 3. Phenotype–genotype agreement analysis of 103 strains for individual antibiotics.

Phenotype–genotype agreement (%)a Validated phenotypic resistance (%)b

Gentamicin 95.1 28.6

Kanamycin 64.0 13.9

Streptomycin 91.7 68.0

Neomycin 84.7 21.1

Tetracycline 97.1 100

Erythromycin 100 100

Clindamycin 95.1 85.2

Chloramphenicol 79.6 38.2

Ampicillin 100 100

Vancomycin 100 /

Tylosin 93.8 75.0

Penicillin 90.2 66.7

Quinupristin/dalfopristin 100 100

Linezolid 96.8 33.3

Trimethoprim 98.0 95.0

Ciprofloxacin 94.2 85.0

Rifampicin 100 100

Total 92.4 65.0
aGenotype and phenotype matched when the susceptible or resistant phenotype reflected the absence or presence of (candidate) ARG(s) or mutation(s),
respectively.
bThe proportion of exceeded minimum inhibitory concentrations (phenotypic resistance) validated by genetic analyses.
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Discussion

Because LAB and bifidobacteria are a potential source of antibiotic
resistance for gut bacteria, including pathogens, commercial
strains should not carry mobile ARGs (6). However, data on resis-
tance mechanisms, especially intrinsic and mutational resistance,
are lacking. The main objective of our study was to identify the
potential underlying mechanisms of the observed phenotypic re-
sistance in 103 LAB and bifidobacteria and to assess the trans-
ferability potential using comparative genomics.

We confirmed that phenotypic resistance is a common trait in
LAB and bifidobacteria, which has been described by numerous
authors (2, 3, 4, 29, 30, 31). However, genetic analyses revealed
that intrinsic resistance in LAB and bifidobacteria was more
prevalent than acquired resistance. In accordance with the
Qualified Presumption of Safety status requirement (6), acquired

ARGs were not common in strains intentionally added to the
agro-food chain.

Nevertheless, several probiotic bifidobacteria harboured tetra-
cycline or erythromycin resistance genes, the presence of which on
mobile elements raises the possibility of horizontal spread. The
tetW, tet(O), and erm(49) genes were reported in Bifidobacterium sp.
before (32). In our recent study, we reported limited mobility of tetW
and erm(49) in the metagenomic sequences of the human gut
microbiota, as they were not widely disseminated and were not
found outside the species of origin (33), suggesting that these two
genomic islands do not pose a serious threat to food safety. The
tet(O) genomic island, on the contrary, had a high transmission
potential (33) and thus poses a risk if consumed. In accordance,
Martı́nez et al reported the rare occurrence of erm(49) in the
microbiomes of adults and infants (34), whereas tet(O) was fre-
quently detected (35).

Figure 5. Genetic organisation of the
detected mobile genetic elements.
(A) Gene tet(M) resides on Tn916. (B) Gene
tet(L) is located on an incomplete element that
shows sequence similarity to a segment of
Tn6079. (C) ANT(6)-Ia, SAT-4, APH(39)-IIIa, cat,
and/or erm(B) are located on elements similar
to the enterococcal plasmid pRE25.
(D) Gene tet(U) was associated with a putative
novel plasmid. Small genomic islands were
found in (E) strains of B. animalis subsp.
lactis, (F) B. longum IM810, and (G) B. breve
IM1386. Probiotic bacterium
Limosilactobacillus reuteri IM566 carries
plasmids (H) pLR581 and (I) pLR585. (J) Genes
tet(S) and ANT(6)-Ia reside on a putative
plasmid. (K) Candidate arr-4 is on a putative
phage-inducible chromosomal island. Gene
function was determined using BLAST and
HMMER3, whereas genetic organisation was
prepared using snapgene-viewer. ARG,
antimicrobial resistance gene; ID, BLAST
identity; IME, integrative and mobilisable
element; T4SS, type IV secretion system.
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Our results suggest that foodborne E. faecalis strains play an im-
portant role in the spread of resistance. For example, E. faecalis strains
harboured Tn916, which is responsible for much of the tetracycline
resistance in the gutmicrobiota, even in pathogenic strains (36, 37), and
thus poses a risk of transfer. Similarly, the pRE25 multidrug resistance
plasmid was conjugated into the chromosomes of E. faecalis, L. lactis,
and Listeria innocua (38). In concordance with our results, tet(U) was
reportedly located on a small plasmid in E. faecium (39) and tet(S) near
the transposase(s) IS1216 on a plasmid of L. lactis, E. faecium, and S.
dysgalactiae (40). Unlike acquired ARGs, intrinsic ARGs are considered
to have minimal potential for horizontal spread (12), which we con-
firmed by the MGE analysis.

Resistance data for many genera of LAB and bifidobacteria are not
as extensive as for pathogenic bacteria; thus, fewer ARGs are available
in the databases. Consequently, lower BLAST similarities are expected
to be found. We uncovered numerous candidate ARGs (Fig 2 and Table
S1), but their effect on the resistant phenotype needs to be verified in
vitro. To thebest of our knowledge, this is thefirst report of these genes
in LAB and bifidobacteria. Surprisingly, a candidate arr-4 gene in L.
lactis IM145, which we presume to encode rifampicin resistance, re-
sides on the putative phage-inducible chromosomal island (Fig 5K).
Compared with a typical prophage genome, a phage-inducible
chromosomal island is smaller in size given that it does not code
for capsid and lytic proteins, which we did not detect. These elements
were reported in staphylococci, lactococci, pneumococci, streptococci,
and enterococci andmay contain genes for diversemetabolic activities
or resistance genes (41).

Our study highlights that mutations of chromosomal genes (Fig 3
and Table S2) that are not considered a hazard (12) may be a frequent
mechanism of resistance in LAB and bifidobacteria. The use of pro-
biotic strains with mutational resistance may be beneficial, as they are
known to help restore the natural microbiota after antibiotic therapy
and reduce the severity of antibiotic-associated diarrhoea (42). Con-
sistent with reports on fitness cost (43), polymorphisms in the active
site of 16Sor 23S rRNAwere not common (Fig 3B and C). To our surprise,
probiotic Lactobacillus paragasseri IM216A carried multiple mutations
in 16S and 23S rRNA, whichwere not previously reported in this species.
The A1408G mutation in 16S rRNA causes aminoglycoside resistance
(44) and does not result in a significant fitness cost compared with the
lethal A1408C and A1408U mutations (43). We believe that a novel
A1197T polymorphism leads to tetracycline resistance because this
nucleotide is involved in hydrogen bonding with the drug (45). This
strain also carried 23S rRNA mutations (G2057T, C2610T, and A2062T)
that were found in Legionella pneumophila (46), Streptococcus
pneumoniae (47), and Mycoplasma hominis (48), respectively. Fur-
thermore, strains of Lacticaseibacillus rhamnosus also had SNPs in 16S
(C1054T) or 23S rRNA (A2058G), which is in agreement with reports for S.
pneumoniae and Lacticaseibacillus rhamnosus (49, 50). The A986T SNP
in 16S rRNA has been described in the tetracycline-resistant mutant of
Mycoplasma pneumoniae FH (51) and may therefore be linked to the
tetracycline-resistant phenotypes observed in our strains. Observed
S12mutations were reported inM. tuberculosis (52) and B. breve Yakult
(53), but not in lactobacilli. Similarly, the rsmGmutationswere reported
in other species (8, 54, 55), but not in LAB or bifidobacteria.

Overall, the correspondence of genotypes and phenotypes in our
study was high (in 92.4%) (Fig 4 and Table 3), but further genetic
studies are needed to determine the unexplained phenotypic

resistance. In accordance with our findings, Duranti et al (2017)
reported a good correspondence between phenotype and geno-
type for type strains of bifidobacteria (2), whereas for type strains of
lactobacilli, the agreement was lower (67%) (4). On the contrary,
high agreement is usually reported for enterococci (9) as a result of
more thoroughly characterised resistance mechanisms. Different
methods for detecting ARGs and similarity cut-off values chosen,
and additional screening for mutations, may also explain the ob-
served discrepancies. Technical recommendations and require-
ments for whole-genome sequencing and analysis recently
published by EFSA (56) are indeed an important step towards
harmonisation of future studies.

In conclusion, our findings improve our understanding of the
resistance mechanisms in LAB and bifidobacteria. We identified
several mobile ARGs that pose a risk of transfer to pathogenic
bacteria when ingested, but the prevalence of intrinsic ARGs was
greater. Because intrinsic ARGs are free of MGEs, their risk of
horizontal transmission can be considered minimal. We also
observed that mutations may be a common mechanism of re-
sistance. Overall, the analyses revealed high agreement be-
tween genotype and phenotype, but further genetic studies are
needed to determine the unexplained phenotypic resistance.
Our study presents a basis for risk assessment analyses that will
ultimately ensure the safety of products used in human and
animal nutrition in terms of antimicrobial resistance.

Materials and Methods

Bacterial strains

LAB and bifidobacteria were isolated from dietary supplements,
starter and protective cultures, feed additives, human milk or
colostrum, and fermented products (n = 66) or were obtained
from the manufacturer or from a culture collection (n = 17). In
addition, 20 probiotic and starter strains examined in our
previous study (11) were reanalysed to provide additional data
on candidate ARGs, mutations, and genotype–phenotype
agreement. Collectively, 103 isolates were analysed (Table S2).

Serially diluted samples were cultured on the selective agar
media (MRS, M17, Rogosa [Merck], and/or TOS-MUP [Yakult Honsha])
as indicated in Table S4. Strains derived from human milk or co-
lostrum were isolated as described by Tušar et al (57) and obtained
from the culture collection of the Institute of Dairy Science and
Probiotics (Biotechnical faculty, University of Ljubljana) and ZIM
culture collection (https://www.zim-collection.si/), which is a
member of the World Federation of Culture Collections (#810). The
strains were stored at −80°C, propagated under the conditions
indicated in Table S4, and subcultured twice in broth medium (1%
vol/vol) before all experiments.

Isolation of genomic DNA and identification of isolates at the
species level

Genomic DNA was extracted from pure overnight cultures (1 ml)
using a commercial kit (ISOLATE II Genomic DNA Kit [Bioline] or
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Wizard Genomic DNA Purification Kit [Promega]). Cultures
were centrifuged (3 min, 12,000g) (Hettich), and the pellet was
resuspended in 500 μl of TE buffer containing mutanolysin (25
U/ml) and lysozyme (10 mg/ml) and incubated for 2 h at 37°C.
Further steps were performed according to the manufacturer’s
instructions.

Strains were initially identified at the species level either by PCR
using species-specific primers and protocols (Table S5) or by se-
quencing of the 16S rDNA genes (Microsynth). Using BLAST (58), the
16S rDNA sequences were classified to species level. The taxonomic
affiliation of the strains was verified by calculating the average
nucleotide identity (ANI) to the WGS of a type (or selected) strain
(ANI > 95% (59)) using pyani 0.2.10 (60).

Antimicrobial susceptibility testing

MICs of the antimicrobials (see Table S2), covering almost all major
classes (7), were determined by the broth microdilution method in
the LSMmedium (pH = 6.7) according to the standard guidelines ISO
10932 (61). We used the precoated plates VetMIC Lact-1 and Lact-2
(Statens Veterinärmedicinska Anstalt), and Sensititre AST plates EU
Surveillance Staphylococcus EUST, EU Surveillance Enterococcus
EUVENC, and/or NARMS Gram Positive CMV3AGPF (Thermo Fisher
Scientific). In some cases, the microtitre plates for testing tylosin,
vancomycin, and/or ampicillin were prepared in-house (61). After a
48-h incubation under anaerobic conditions (bifidobacteria 72 h
and enterococci and staphylococci 24 h, aerobic incubation) at the
temperatures listed in Table S4, the MICs were read visually as the
concentration at which growth inhibition occurred. Breakpoint
values were adopted from the EFSA guidelines (7) or other pub-
lished guidelines (e.g., CLSI M100-ED31, EUCAST 2021) or data (see
Table S6) for antibiotics not covered by EFSA. Lacticaseibacillus
paracasei ATCC 334, Lactiplantibacillus plantarum ATCC 14917, B.
longum ATCC 15707, E. faecalis ATCC 29212, E. faecalis ATCC 51299, and
L. lactis ATCC 19435 were used as quality control strains.

Whole-genome sequencing and assembly

The genomes of 75 bacterial strains (Table S7) were sequenced on
the Illumina MiSeq platform (v3) using the Illumina TruSeq Nano
library (300-bp paired-end module, Microsynth) or the Nextera XT
DNA library (250-bp paired-end module, National Laboratory of
Health, Environment and Food), whereas others were retrieved
from public databases (GenBank accession numbers are listed in
Table S2).

Quality control and trimming and filtering of raw reads were
done using FastQC 0.11.9 (Babraham Bioinformatics) and Trimmo-
maticPE 0.39 (parameters: LEADING:3 TRAILING:3 SLIDINGWINDOW:4:
28 MINLEN:21) (62), respectively, whereas paired-end reads were
merged using FLASh 1.2.11 (parameters: –min-overlap=15) (63). The
resulting high-quality reads were assembled de novo using SPAdes
3.14.0 (64) with the –careful command option. To improve genome
assembly, the protocol was adjusted for some strains as indicated
in Table S7. QUAST 5.0.2 (65) was used to inspect the assembly
statistics. Genomes were annotated using Prokka 1.14.6 (66), the
level of contamination was determined using Mash Screen 2.0 (67),
and plasmids were reconstructed using MOB-suite 1.4.9 (68). A total

of 2 × 66,019,708 reads were obtained. On average, 2 × 785,691 reads
of 300 bp length and 2 × 1,179,891 reads of 250 bp length were
retrieved per genome, giving an average genome coverage of 148×
and 172×, respectively.

The whole-genome sequencing data generated in this study
have been submitted to the European Molecular Biology Laboratory
under the project accession PRJEB49530.

Sequence analysis

The ARG database consisted of five publicly available databases
(CARD 3.0.8 (69), ResFinder v. 2020-02-11 (70), ARG-ANNOT V6 (71),
KEGG (v. November 2017) (72), and NCBI’s Bacterial Antimicrobial
Resistance Reference Gene Database (73)). Redundancy was
removed using CD-HIT 4.7 (parameter -c 0.99) (74). In addition,
the following ARG sequences were added: EfrB (accession
number WP_172504673.1), bifidobacterial aminoglycoside phos-
photransferases (ABE95342.1, ABE96255.1), EfmM (ADI87521.1),
LmrC (WP_166668045.1), and CAD-1 (AAV65950.1).

Genome sequences were employed to query the joint ARG da-
tabase with the local version of the BLAST tool (v. 2.10.0+, param-
eters -evalue 1e-10, -max_target_seqs 10, query coverage ≥ 60%)
using a custom script. E. faecium DO (accession number
NZ_ACIY01000000) was used as a positive control. A gene was
annotated as an ARG on the basis of the best BLAST hit with a
sequence similarity threshold greater than 70%. The BLAST search
criterion was selected in the way to minimise the detection rate of
false positives at the expense of the true positives with lower
similarities based on the BLAST alignment of the ARGs database
against a test dataset SwissProt (EMBL-EBI) (Table S8) as described
by Hu et al (75). The ARGs discovered by BLAST were also validated
with hmmsearch (HMMER3 3.1b2, parameter -E 1e-70) (76) and
hidden Markov models (v. 2020-05-13) (77). The intrinsic and ac-
quired nature of ARGs was determined with the aid of MGE pre-
diction and pan-genome analyses. The pan- and core-genomes
were computed using Roary 3.13.0 (78). In addition to the sequenced
genomes, WGS were obtained from public databases and quality-
checked before the analyses. QUAST was used to extract genome
statistics, Mash Screen to estimate contamination, and pyani to
verify taxonomic affiliation.

Genes that had a BLAST similarity threshold between 40% and
70% (BLAST data) or an E-value less than 1E-70 (HMMER data) and
matched with the observed phenotype were considered as can-
didate ARGs. Phylogenetic analyses of these genes were conducted
using RAxML-HPC v.8 (parameters: -f a -N 100 -m PROTGAMMAAUTO
-p 12345 -× 12345) (79) and CompareM 0.1.1 (80) was used to calculate
average amino acid identity. All-to-all BLAST results of the dis-
covered (candidate) ARGs were filtered and clustered into groups
that indicate similar functions using a custom script and mcl (v. 14-
137) (The University of Utrecht). Multiple genome alignments were
constructed by progressiveMauve (81), whereas protein domain
analysis was performed using the Pfam database 33.1 and HMMER3
(hmmsearch, -E 1e-10). To examinemutations in proteins previously
reported to be involved in resistance (n = 24), multiple sequence
alignments were generated with Clustal Ω (EMBL-EBI). Subse-
quently, mutations were examined manually. To validate coverage
and variances of SNPs in the 16S and 23S rRNA genes, we have
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mapped the sequenced reads to the assembled sequences using
Bowtie2 (82).

Phenotype–genotype agreement

A total of 1,314 MICs were considered for phenotype–genotype
agreement analysis (Table S2). Genotype and phenotype matched
when the susceptible or resistant phenotype reflected the absence
or presence of (candidate) ARG(s) or mutation(s), respectively.
Sensitivity, specificity, and predictive values of phenotype prediction
based on genotypic data were calculated as indicated in Table 4.

Genetic environment of the ARGs

The genetic environment upstream and downstream (15 coding
sequences) of the (candidate) ARGs extracted with SeqKit (83) was
surveyed for the presence of MGEs by performing a BLAST align-
ment (query coverage ≥ 80%, similarity cut-off ≥ 80%) of the flanking
regions with the MGE database. A custom, comprehensive, non-
redundant database of MGEs (285,059 MGE genes) consisted of
integrative and conjugative/mobilisable elements, transposons,
insertion sequences, plasmids, integrons, prophages, and
phage-inducible chromosomal islands retrieved from public da-
tabases, including those carrying ARGs in LAB and bifidobacteria. In
addition, publicly available specialised databases of MGEs were
included: MobilomeDB (insertion sequences, v. September 2016)
(84), PlasmidFinder (v. February 2020) (85), ICEBERG 2.0 (v. May 2018)
(86), PHASTER (v. August 2019) (87), and SecReT4 (v. September 2019)
(88). Additional analyses were performed using tools progressiveMauve,
ICEBerg 2.0, PHASTER, and hmmsearch against the Pfam database.
Genetic organisation of MGEs was visualised using the snapgene-
viewer 5.2.4 (SnapGene) and/or BRIG 0.95 (89).

Data Availability

The whole-genome sequencing data from this publication have
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