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De novo discovery of traits co-occurring with chronic
obstructive pulmonary disease
Evgeniia Golovina1, Tayaza Fadason1,2, Rachel K Jaros1, Haribalan Kumar3, Joyce John3, Kelly Burrowes3, Merryn Tawhai3,
Justin M O’Sullivan1,2,4,5,6

Chronic obstructive pulmonary disease (COPD) is a heteroge-
neous group of chronic lung conditions. Genome-wide associa-
tion studies have identified single-nucleotide polymorphisms
(SNPs) associated with COPD and the co-occurring conditions,
suggesting common biological mechanisms underlying COPD and
these co-occurring conditions. To identify them, we have inte-
grated information across different biological levels (i.e., genetic
variants, lung-specific 3D genome structure, gene expression and
protein–protein interactions) to build lung-specific gene regu-
latory and protein–protein interaction networks. We have que-
ried these networks using disease-associated SNPs for COPD,
unipolar depression and coronary artery disease. COPD-associated
SNPs can control genes involved in the regulation of lung or
pulmonary function, asthma, brain region volumes, cortical
surface area, depressed affect, neuroticism, Parkinson’s disease,
white matter microstructure and smoking behaviour. We describe
the regulatory connections, genes and biochemical pathways that
underlay these co-occurring trait-SNP-gene associations. Col-
lectively, our findings provide new avenues for the investigation
of the underlying biology and diverse clinical presentations of
COPD. In so doing, we identify a collection of genetic variants and
genes that may aid COPD patient stratification and treatment.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a heterogeneous
group of chronic lung conditions that are characterized by per-
sistent respiratory symptoms and airflow limitation due to airway
and/or alveolar abnormalities (2020 Global Initiative for Chronic
Obstructive Obstructive Lung Disease, 2021). These abnormalities
are caused by a combination of distinct pathophysiological pro-
cesses that result in diverse clinical presentations, responses to
treatment, and patterns of progression. According to the World
Health Organization, COPD accounted for more than 3.23 million

deaths in 2019 and remains the third leading cause of death
worldwide (2020 Global Initiative for Chronic Obstructive Obstructive
Lung Disease, 2021).

Given the widespread exposure to the environmental factors
(e.g., smoking, indoor and outdoor air pollution, childhood respi-
ratory infections) that contribute to the development of COPD, it is
striking thatmost individuals will never develop COPD. The variance
in individual susceptibility to COPD can be partly explained by
genetic factors. The estimated genetic heritability of COPD ranges
from 20% to 40% (Zhou et al, 2013; Gim et al, 2020; Stolz, 2020).

Co-occurring conditions are widely recognised as impacting on
COPD patient outcomes (Cavaillès et al, 2013; Burke & Wilkinson,
2021). As such, a better understanding of COPD co-occurring con-
ditions is essential to enable effective management, therapeutic
optimization and reduce the costs of managing COPD patients
(Mannino et al, 2015). Epidemiological and genetic studies have
reported that beyond respiratory impairment COPD-associated co-
occurring conditions include coronary artery disease (CAD), lung
cancer, osteoporosis, mental health problems such as anxiety,
unipolar depression (UD), Alzheimer’s disease (AD), and Parkinson’s
disease (PD) (Cavaillès et al, 2013; Li et al, 2015; Ställberg et al, 2018;
Xia et al, 2020; Burke & Wilkinson, 2021; Carmona-Pı́rez et al, 2021;
Martucci et al, 2021). The presence of these conditions in COPD
patients indicates that common or interacting biological mecha-
nisms underlie these conditions.

To date, genome-wide association studies (GWASs) have iden-
tified common single nucleotide polymorphisms (SNPs) that are
associated with COPD, or its individual co-occurring conditions
(Sakornsakolpat et al, 2019; Shrine et al, 2019; Zhu et al, 2019; Kim
et al, 2021b). Most of the COPD-associated SNPs are located within
the non-coding genome. Therefore, the impacts that these SNPs
have on the biological pathways and processes underlying the
development of COPD remain unclear. It is possible that the COPD-
associated SNPs mark regulatory regions (i.e., expression quanti-
tative trait loci [eQTLs]) that are associated with tissue-specific
gene expression. eQTLs can interact with their target genes in three
dimensions, forming spatial eQTL–gene regulatory connections
that span the genome (e.g., cis, ≤1 Mb on the same chromosome;
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trans-intrachromosomal, >1 Mb on the same chromosome; or trans-
interchromosomal, between different chromosomes). These spatial
interactions are cell and tissue type–specific (GTEx Consortium,
2020; Halow et al, 2021). As lung is the primary affected tissue in
COPD, integrating lung-specific spatial chromatin interactions and
eQTL information may help us understand how SNPs impact bio-
logical pathways that increase an individual’s risk of developing
COPD.

Little is known about functional relationships between genes
and phenotypes in the lung. However, gene regulation is widely
understood to occur through the combinatorial action of regulatory
elements, transcription factors and genes within complex networks
(i.e., gene regulatory network [GRN]) (Buenrostro et al, 2018; Chen
et al, 2021a, 2021b; Zaied et al, 2022 Preprint). Moreover, genes
encode proteins that physically interact with each other to form a
complex protein–protein interaction network (PPIN) that responds
to biological and environmental signals. Here, we integrated COPD-
associated SNPs with: (1) information on the genome organization
within the lung; and (2) lung-specific eQTL information to identify
genes that are spatially regulated within the lung tissue. We in-
tegrated information across a lung-specific GRN and PPIN to
identify conditions that were co-occurring with COPD. Collectively,
our results highlight potential regulatory mechanisms and path-
ways important for COPD etiology. These results open a new avenue
towards understanding the diverse clinical presentations of COPD
and patient stratification.

Results

COPD-associated SNPs mark putative regulatory regions in the
lung

COPD-associated SNPs (P < 5 × 10−8, n = 263) were downloaded from
the GWAS Catalog (Tables S1 and S2) and run through the CoDeS3D
pipeline (Fig 1A). ~96% of the identified eQTLs were located within
non-coding genomic regions, with 66.02% and 18.45% of them being
intronic and intergenic, respectively (Fig S1A and B [wANNOVAR
annotation], Table S2 [original GWAS Catalog annotation]). Anal-
ysis of these SNPs using the CoDeS3D (Fadason et al, 2018)
pipeline (Fig 1A) identified 103 eQTLs and 107 genes that are in-
volved in 151 significant (FDR < 0.01) eQTL–gene interactions within
the lung (Fig S1 and Table S3). Most COPD-associated eQTLs (n =
67) are involved in one-to-one, 26 eQTLs—in one-to-two and 8
eQTLs—in one-to-three eQTL–gene regulatory interactions (Fig
S1C and Table S3). Only two eQTLs (i.e., rs2277027 and rs9435731)
were associated with the regulation of ≥4 genes (i.e., ADAM19, CTB-
109A12.1, CTB-47B11.3, CYFIP2 and ATP13A2, CROCC, MFAP2, RP1-
37C10.3, respectively; Fig S1C and Table S3). Most of the identified
eQTL–gene regulatory interactions (n = 148) were cis-acting (Fig
S1D and Table S3). One trans-intrachromosomal (i.e., rs2077224-
NAV2) and two trans-interchromosomal (i.e., rs12894780-LIPC and
rs2128739-KALRN) eQTL–gene interactions were identified within
the lung (Fig S1D and Table S3). Collectively, COPD-associated
eQTLs are associated with changes in transcription levels of 84
protein-coding genes, 22 non-coding RNA genes and one pseu-
dogene (Fig S1E).

COPD-associated genes are enriched for diverse biological
processes in the lung

Functional gene ontology (GO) enrichment analysis identified
metabolic, behavioural, regulatory and protein modification pro-
cesses (e.g., “phosphorus metabolic process,” “behavioral response
to nicotine,” “regulation of postsynaptic membrane potential,”
“protein acetylation,” and “protein acylation”) as being significantly
enriched (FDR < 0.05) enrichedwithin the 107 COPD-associated genes
(Table S4 and Fig S4). These 107 genes encoded proteins that formed
nine COPD-associated lung-specific protein–protein interaction
subnetworks (Fig 2). Pathway analysis of these 107 COPD-associated
genes identified biological pathways that were enriched (FDR < 0.05)
for regulation of actin cytoskeleton, insulin signaling and resistance,
focal adhesion, phagosome, immune processes, infections and
diseases, alcoholism, long-term depression (Table S5).

COPD has associations with co-occuring traits in the lung, brain,
and blood

Patients with COPD often also suffer from cardiovascular disease, os-
teoporosis, lung cancer, sleep disorders and mental health problems
(Burke & Wilkinson, 2021; Carmona-Pı́rez et al, 2021). Yet the biology of
these interactions is rarely known. The multimorbid3D algorithm was
used to integrate COPD-associated genes, the lung-specific PPIN, the
lung-specific GRN and all catalogued GWAS SNP-trait associations (30/
03/2022) to identify co-occurring conditions and potential regulatory
mechanisms underlying these associations with COPD (Fig 1B). We
identified 39 GWAS traits that are significantly (FDR ≤ 0.05) enriched for
eQTLs that target the COPD-eQTL associated genes (“level 0”; Fig 3 and
Tables S6 and S7). Most of the level 0 co-occurring traits were “lung-”
(i.e., COPD, lung function, pulmonary function, post bronchodilator FEV1,
asthma), or “mood/brain-related” (i.e., brain region volumes, cortical
surface area, depressed affect, neuroticism, PD, white matter micro-
structure, smoking behaviour). eQTLs that regulate genes encoding
proteinswithin levels 1–4 of the expandedCOPD lungprotein interaction
network were enriched within traits that have and have not been
previously recognized as being co-occurring with COPD (Fig 3).

COPD shows associations with lung function, CAD, AD, and brain
region volumes

Proteins encoded by four COPD-associated genes (i.e., MSL1, MOCS2,
NUPR1, and SGF29) form a PPI subnetwork (level 0). These genes are
associated with eQTLs linked to COPD and lung function (Fig 4A).
Notably, MSL1, MOCS2, NUPR1, and SGF29 interact with proteins
encoded by three genes that are associated with post bronchodilator
FEV1, atopic asthma and AD (Figs 4A and S5A).

COPD-associated SSH2 and TESK2 genes form another PPI sub-
network (level 0). Within this subnetwork they are associated with
eQTLs linked to COPD, lung functioning, brain region volumes and
CAD (Fig 4B). SSH2 interactswith SSH1, SSH3, LIMK1, CFL1, CFL2, PPP3CA,
and PPP3CC proteins at the “level 1” (Fig S5B), but there were noGWAS
traits identified for the eQTLs that are associated with expression
changes of the genes encoding these proteins.

Reversing the analysis, using CAD-associated (n = 804) and
UD-associated (n = 932) SNPs (P < 5 × 10−8) confirmed COPD was
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Figure 1. Overview of the analytical pipelines used in this study.
(A) The CoDeS3D pipeline was used to identify lung-specific gene regulatory networks (GRNs). First, 263 GWAS SNPs associated (P < 5 × 10−8) with COPD were run through the
CoDeS3D pipeline to identify 151 spatial eQTL–gene regulatory interactions in the lung (COPD-associated lung-specific GRN). Next, all GTEx SNPs (MAF ≥ 0.05, n = 43,174,097) were
downloaded from dbGaP (Table S1) and analysed using CoDeS3D to identify “all” significant lung-specific spatial eQTL–gene regulatory interactions (whole lung-specific GRN).
The resultant whole lung-specific GRN is comprised of 873,133 spatially constrained regulatory interactions involving 740,028 eQTLs and 15,855 genes (Figs S2 and S3). (B) The
Multimorbid3D pipeline was used to identify potential co-occurring conditions associated with COPD. * Hi-C datasets for primary lung cells were obtained from Schmitt et al
(2016) (GEO accessions: GSM2322544 and GSM2322545). ǂ eQTL datasets for lung was obtained from GTEx v8 (dbGaP accession: phs000424.v8.p2).
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co-occurring with CAD (“level 0,” Fig S6 and Table S8). By contrast,
analysis of UD identified general lung function (FEV1/FVC), asthma
and “mood/brain-related” (i.e., bipolar disorder, depression, au-
tism spectrum disorder, and schizophrenia) as being linked to UD-
associated genes (Fig S7 and Table S8).

Discussion

We integrated genes that are targeted by spatially constrained
COPD-associated eQTLs with a lung-specific GRN, lung-specific

PPIN and all GWAS SNP-trait associations to identify traits that
are co-occurring with COPD. The results of this integration provide
insights into the regulatory mechanisms underlying these asso-
ciations. We identified co-occurring traits that have been previously
linked to COPD (e.g., lung function, asthma, depressed affect, CAD,
AD, smoking behaviour, PD [Cavaillès et al, 2013; Li et al, 2015;
Ställberg et al, 2018; Xia et al, 2020; Burke & Wilkinson, 2021;
Carmona-Pı́rez et al, 2021; Martucci et al, 2021]) and those that have
not (brain region volumes and white matter microstructure). We
contend that the eQTLs we identified, as impacting on COPD and its
co-occurring traits, represent the population-based genetic burden

Figure 2. COPD-associated protein–protein interactions.
Green colour, the protein encoding gene is associated with COPD (DOID:3083); blue colour, the gene is associated with lung disease (DOID:850); red colour, the gene is associated
with nicotine dependence (DOID:0050742) according to the DISEASES database (https://diseases.jensenlab.org/, 06/10/2022). Red text, the eQTLs is associated with up-regulation
of the gene; blue text, the eQTL is associatedwith down-regulation of the gene transcript; black text, eQTLs are associatedwith up- anddown-regulation of the gene transcript levels.
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Figure 3. Network analysis identified co-occurring conditions that are associated with COPD.
We identified 39 GWAS traits that are enriched (FDR ≤ 0.05) for eQTLs associated with COPD-eQTL target genes (level 0). Most of these co-occurring traits are “lung-
related” (i.e., COPD, lung function, pulmonary function, post bronchodilator FEV1, and asthma) and “mood/brain-related” (i.e., brain region volumes, cortical surface area,
depressed affect, neuroticism, Parkinson’s disease, white matter microstructure, and smoking behaviour). Genes interacting with COPD-associated genes (level 1) within
LSPPIN are regulated by eQTLs that have previously been associated with Alzheimer’s disease, atopic asthma, and post bronchodilator FEV1 or FEV1/FVC ratio. Level
2-genes are only regulated by eQTLs previously associated with “mood/brain-related” (e.g., depressed affect, neuroticism, and Parkinson’s disease) or “blood-related”
(e.g., blood protein levels) traits. Genes within levels 3 and 4 are mostly associated with eQTLs enriched within “blood-related” traits.
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that may contribute to an individual’s risk of developing COPD and
its diverse clinical presentations.

The results of this study should be interpreted in view of its
strengths and limitations. The main strength of this study is the
integration of independent datasets: lung-specific 3D genome
structure (Schmitt et al, 2016), common GWAS SNPs, genotypes and
gene expression data (Aguet et al, 2019 Preprint), and protein-
protein interactions (PPIs) (Szklarczyk et al, 2019). Integrating these
datasets enabled the identification of the impact of spatially
constrained COPD-associated eQTLs on genes and biological
pathways that link to co-occurring conditions. Indeed it is possible
that the “total” genetic burden we identified can be used to stratify

COPD and its multiple clinical presentations, which have previously
led to questions about the validity of classifying it as a single di-
agnostic category (Sakornsakolpat et al, 2019; Corlateanu et al, 2020;
Alabi et al, 2021). However, this study also has several limitations.
Firstly, this study was focused on the regulatory roles of common
genetic variants (MAF ≥ 0.05) ignoring the impacts of other genetic
(e.g., rare SNPs) and environmental factors, which will undoubtedly
contribute to the risk of COPD and its co-occurring conditions.
Secondly, we focused on the extended PPIN within the lung GRN, as
the lung represents the primary affected tissue in COPD. However, it
is possible that genetic variation will impact on COPD risk through
other tissues (e.g., blood) (Burke & Wilkinson, 2021). Thirdly, the

Figure 4. Identified trait-eQTL–gene
associations for two COPD-associated
PPI subnetworks (NUPR1-MSL1-SGF29-
MOCS2 and TESK2-SSH2).
(A) Within the “NUPR1-MSL1-SGF29-
MOCS2” PPI subnetwork four genes (i.e.,
MSL1, MOCS2, NUPR1, and SGF29) are
associated with eQTLs linked to COPD
and lung functioning. Proteins encoded
by these four genes interact with the
products of three genes (“level 1”) that
are associated with post bronchodilator
FEV1, atopic asthma, and Alzheimer’s
disease. (B) SSH2 and TESK2 within the
“TESK2-SSH2” PPI subnetwork are
associated with eQTLs linked to COPD, lung
functioning, brain region volumes, and
CAD. There were no trait-eQTL–gene
associations identified within level 1.
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tools and datasets used in this study are potentially biased (e.g.,
lung-specific eQTL and Hi-C data were not obtained from identical
samples). Furthermore, the identification of the co-occurring
conditions was limited to the traits that have been studied and
were present in the GWAS Catalog. Finally, mapping to Ensembl
gene identifiers potentially causes a loss of data specificity, since
alternative splicing typically produces multiple transcripts and
protein variants.

Co-occurring conditions are commonly associated with COPD
and increase the risk of hospitalisation (Schnell et al, 2012). Our
analysis of co-occurring conditions has identified risk variants and
protein interactions that connect COPD with smoking (Hopkinson,
2022), asthma (Maselli & Hanania, 2018), CAD (Xia et al, 2020), lung
cancer (Parris et al, 2019), multiple sclerosis (Egesten et al, 2008),
kidney failure (Trudzinski et al, 2019), UD (Li et al, 2019a), AD (Wang
et al, 2019), PD (Li et al, 2015), and personality traits (e.g., neurot-
icism) (Chetty et al, 2017; Terracciano et al, 2017; Caille et al, 2021).
These conditions have been previously reported as being co-
occurring conditions in COPD patients but the biological basis of
the connections was unknown.

Brain region volumes, white matter microstructure, left-right
brain asymmetry and cortical surface area (global PC1) were ad-
ditional traits that we have identified as being co-occurring with
COPD. Notably, patterns of brain structural alteration have been
reported in COPD with different levels of pulmonary function im-
pairment and cognitive deficits (Yin et al, 2019; Wang et al, 2020).
This suggests that COPD patients may exhibit progressive structural
impairments in both the grey and white matter, along with impaired
levels of lung function (Yin et al, 2019; Wang et al, 2020). In addition
to the trait associations, the results of our study provide putative
evidence for the existence of genetic and biological connections
between these traits (Higbee et al, 2021). In so doing our results stop
short of providing causal evidence for these putative connections
and two sample or multivariable Mendelian randomization (e.g.,
Transcriptome-Wide Mendelian Randomization) or mediation an-
alyses are required to clarify which if any of the interactions are
causal (Russ et al, 2021; Porcu et al, 2019).

Impaired lung function as measured by forced vital capacity or
forced expiratory volume in the first second (FEV1) has been
previously associated with insulin resistance (Sagun et al, 2015;
Piazzolla et al, 2017; Machado et al, 2018; Kim et al, 2021a). The
evidence that supports the existence of a relationship between
COPD and insulin resistance is complex. Our independent identi-
fication that PPP1CB and PPP1R3B are COPD-associated genes is
notable because these genes are directly involved in controlling
glycogen synthesis and glucose homeostasis in insulin signaling (Li
et al, 2019b) and have been linked to glycaemic traits (Niazi et al,
2019).

We also identified several COPD-associated genes enriched for
immune processes and immune-related diseases (e.g., HLA-C and
HLA-DQB1—antigen processing and presentation, HLA-DQB1—type I
diabetes mellitus, influenza A, autoimmune thyroid disease) (Table
S5). This finding is consistent with observations that proteins of the
major histocompatibility complex of classes I and II (HLA-I and HLA-
II) have been identified as potential markers of progression of
systemic and local inflammation in patients with COPD (Kubysheva
et al, 2018). Specifically, an increase in the level of HLA-I and HLA-II

molecules in the exhaled breath condensate as well as an el-
evated serum level of HLA-II is observed in COPD patients when
compared with healthy volunteers (Kubysheva et al, 2018).
Previous studies have also identified elevated levels of plasma
TGF-β, an important regulator of lung and immune system de-
velopment, in COPD patients compared with healthy controls
(Mak et al, 2009; Verhamme et al, 2015). Despite the apparent
correlative support between our results and previously pub-
lished fundings, the evidence for a role for the insulin resistance
pathway and immune system in COPD remains putative until
proven empirically.

COPD-associated eQTLs target cholinergic pathway genes (e.g.,
CHRM1 and CHRM3) that have previously been implicated as
important susceptibility loci for lung diseases (e.g., asthma and
COPD) (Palmberg et al, 2018; Rajasekaran et al, 2019). The cho-
linergic pathway mediated by the parasympathetic neurotrans-
mitter, acetylcholine, is a predominant neurogenic mechanism
contributing to bronchoconstriction (Ward, 2022). Notably,
changes in the parasympathetic neuronal control of airway
smooth muscle have been shown to increase bronchoconstriction
in response to vagal stimulation, leading to airway hyper-
responsiveness (Ward, 2022). At the biological level, these findings
emphasize the effects that COPD-associated SNPs may have on
the regulation of genes within specific biological pathways (e.g.,
through creating an imbalance in the concentration of specific
proteins), which, in turn, can be associated with an increased risk
of disease.

Integrative network-based methods have been used to explore
complex SNP-gene interactions that can impact functional bio-
logical pathways and lead to complex phenotypes (Platig et al, 2016;
Chen et al, 2021b; Zhu et al, 2021). The CONDOR algorithm was
applied to study eQTLs in COPD (Platig et al, 2016). In brief, CONDOR
built a bipartite network linking eQTLs and genes in 52 commu-
nities. 30 SNPs associated with COPD (Cho et al, 2014) mapped to
three of these communities. Notably, despite only one gene
(KANSL1) being identified in Platig et al (2016) and our current
study, the loci involved were enriched in conserved biological
processes including Alzheimer’s, Parkinson’s, and Asthma and
immune responses. This is despite fundamental difference in the
methods (e.g., eQTLs vs spatially constrained eQTLs, and the in-
clusion of the expanded protein network as additional infor-
mation in multimorbid3D) and updates in the GWAS catalog that
occurred between 2016 and 2022. As such, the apparent conver-
gence of the results is consistent with the utility of these inte-
grative approaches in the identification of the shared genetic and
biological pathway information associated with COPD and its
comorbid conditions.

In conclusion, we have integrated different levels of biological
information (i.e., genes that are targeted by spatially constrained
COPD-associated eQTLs, lung-specific GRN, LSPPIN, and all GWAS
SNP-trait associations) to identify target genes, associated with
COPD-associated eQTLs, that may interact to connect COPD to co-
occurring conditions. Collectively, these results provide multiple
new avenues for future investigation of the underlying biology and
diverse clinical presentations of COPD. Empirical confirmation of
the connections will suggest potential therapeutic COPD markers
for follow-up patient stratification.
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Materials and Methods

Hi-C data processing

Hi-C chromatin interaction libraries specific to primary lung cells
(Table S1) were downloaded from GEO database (https://www.
ncbi.nlm.nih.gov/geo/, accessions: GSM2322544 and GSM2322545)
and analysed using the Juicer pipeline (v1.5) (Durand et al, 2016) to
generate Hi-C libraries. The pipeline included BWA (v0.7.15) align-
ment of paired-end reads onto the hg38 (GRCh38; release 75)
reference genome, merging paired-end read alignments and re-
moving chimeric, unmapped and duplicated reads. We refer to the
remaining read pairs as “contacts.” Only Hi-C libraries that con-
tain >90% alignable unique read pairs, and >50% unique contacts
(<40% duplication rate) within the total sequenced read pairs were
included in the analysis. Files containing cleaned Hi-C contacts (i.e.
*_merged_nodups.txt files) were processed to obtain Hi-C chro-
matin interaction libraries in the following format: read name, str1,
chr1, pos1, frag1 mapq1, str2, chr2, pos2, frag2, mapq2 (str, strand;
chr, chromosome; pos, position; frag, restriction site fragment;
mapq, mapping quality score; 1 and 2 correspond to read ends in a
pair). Reads where both ends had a mapq ≥30 were included in the
final library. Hi-C chromatin interactions represent all captured
pairs of interacting restriction fragments in the genome and were
used by CoDeS3D to identify putative regulatory interactions be-
tween SNPs and genes.

Identification of SNPs associated with COPD, CAD, and UD

SNPs associated (P < 5 × 10−8) with COPD (n = 263), CAD (n = 804) and
UD (n = 932) were downloaded from the GWAS Catalog (www.
ebi.ac.uk/gwas/; 09/06/2021 and 11/04/2022; Table S2).

Identification of spatial regulatory interactions

The CoDeS3D (Fadason et al, 2018) pipeline was used to identify
genes that spatially interact with putative regulatory regions tagged
by SNPs (Fig 1A). Briefly, the human genome build hg38 (GRCh38;
release 75) was fragmented in silico at HindIII sites (ÂAGCTT), the
restriction enzyme that was used in the preparation of the lung-
specific Hi-C libraries (Schmitt et al, 2016). Disease associated SNP
rsID numbers were cross-checked with the GTEx v8 lung eQTL da-
tabase (GTEx Consortium, 2020) and restriction fragments that were
tagged by the COPD associated SNPs were identified. Using lung-
specific Hi-C libraries (Table S1), CoDeS3D identified the restriction
fragments that were captured interacting with the SNP-tagged re-
striction HindIII fragments. Interacting fragments that overlapped
annotated genes (GENCODE transcript model version 26) were
identified. The resulting SNP-gene pairs were used to query the GTEx
v8 lung eQTL database (GTEx Consortium, 2020) to identify cis- and
trans-acting eQTLs (i.e. genes, whose expression levels are associ-
ated with the SNP identity). Finally, significant lung-specific eQTL–
gene interactions were identified using the Benjamini–Hochberg
(BH) FDR correction to adjust the eQTL P-values (FDR < 0.05).

CoDeS3D was used to build a lung-specific gene regulatory
network (Fig S2). All SNPs (MAF ≥ 0.05, n = 43,174,097) present within

GTEx lung-specific eQTL database (GTEx Consortium, 2020) were
used to identify all significant (BH, FDR < 0.05) spatially constrained
lung-specific eQTL–gene interactions (the lung-specific GRN).
Multiple correction testing was performed across all interactions
within individual chromosomes.

The lung-specific GRN was mined using the COPD-associated
SNPs (n = 263; P < 5 × 10−8; GWAS Catalog; 09/06/2021) to identify all
COPD-associated significant (BH, FDR < 0.05) lung-specific eQTL–
gene interactions (COPD-associated GRN). This was repeated for the
CAD-associated (n = 651; P < 5 × 10−8; GWAS Catalog; 11/05/2022) and
UD-associated (n = 152; P < 5 × 10−8; GWAS Catalog; 11/05/2022) SNPs
(CAD- and UD-associated GRNs, respectively).

Functional annotation of eQTL SNPs associated with COPD

The COPD-associated eQTLs were annotated using the wANNOVAR
tool (Chang & Wang, 2012) (http://wannovar.wglab.org/, 09/06/
2021) to obtain information about the locus they tagged. All ge-
nomic positions and SNP annotations were obtained for human
genome reference build hg38 (GRCh38) release 75.

Construction of lung-specific PPIN

The STRING (Szklarczyk et al, 2019) PPI database (version 11.5,
https://string-db.org/, 15/03/2022) was downloaded and queried
(STRING API) to identify potential PPIs (combined score ≥0.7). A
lung-specific PPI network (LSPPIN) was constructed by filtering the
STRING PPI network for the proteins encoded by the genes that
were affected by eQTLs within the lung-specific GRN (Fig S3).
Ensembl protein identifiers were mapped to Ensembl gene iden-
tifiers using EnsDb.Hsapiens.v86 R package. The LSPPIN represents
a subnetwork of the entire STRING PPI network, in which a protein/
node is only present if the encoding gene is associated with a
spatially constrained eQTL within lung tissue. The size of each node
depends on the protein expression levels (no missing values, TPM >
0.1 and ≥ 6 reads in a minimum of 20% of tested samples) within the
GTEx v8 lung database (GTEx Consortium, 2020). The resulting
LSPPIN contained 210,192 PPIs between 10,188 unique proteins. To
build the COPD-specific LSPPIN, only interactions between genes
targeted by COPD-associated eQTLs were extracted from the LSPPIN
(Table S5).

Identification of potential co-occurring conditions

Themultimorbid3D pipeline was used to identify traits that were co-
occurring with COPD (Fig 1B) (Zaied et al, 2022 Preprint). At “level 0”
within the LSPPIN, we first identify the proteins encoded by the
genes targeted by the COPD-associated eQTLs. At “level 1,” the
proteins interacting with the “level 0” proteins were identified. This
process is iterated so that at each level, the proteins interacting
with the proteins at the level minus 1 were identified. Next, we
identify all eQTLs associated with the genes encoding the proteins
at each level. The GWAS Catalog (www.ebi.ac.uk/gwas/, v1.0.2, 30/
03/2022) was queried to identify traits that were enriched for the
eQTLs from each level. The hypergeometric distribution test was
used to identify significant enrichment of traits at each level within
the GWAS Catalog traits (n = 17,841). Finally, significantly enriched
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traits were identified using the BH FDR correction to adjust the
P-values (FDR ≤ 0.05; Tables S6 and S7). The same pipeline was also
used to identify the co-occurring conditions for CADandUD (Table S8).

GO enrichment and pathway analyses

GO enrichment and pathway analyses were performed using the g:
GOStmodule of the g:Profiler tool (Raudvere et al, 2019) (Tables S4 and
S5). Enrichment was tested for within the biological process, mo-
lecular function and cellular component GO terms. All known human
genes were chosen as the statistical domain scope. The significance
level was determined using the BH algorithm (FDR < 0.05). The Kyoto
Encyclopedia of Genes and Genomes database (Kanehisa & Goto,
2000) was used to identify impacted biological pathways.

Bootstrapping analysis

Bootstrapping analysis (n = 1,000 iterations) was performed to test the
specificity of the identified genes to COPD. At each bootstrap iteration,
the same number of SNPs as were present in the tested condition
were randomly selected from the GWAS Catalog (www.ebi.ac.uk/
gwas/; 20/09/2022) and run through the CoDeS3D pipeline. The P-
value was calculated as the number of the occurrences of the
identified COPD-associated genes in the iterations divided by 1,000.

Data Availability

Data access was approved by the dbGaP (https://www.ncbi.nlm.
nih.gov/gap/) Data Access Committee(s) for total RNA-seq andWGS
datasets across GTEx v8 tissues (project #22937: “Untangling the
genetics of disease multimorbidity,” accession: phs000424.v8.p2)
(Aguet et al, 2019 Preprint) (Table S1). Data analysis and visual-
isation were performed in Python (version 3.6.9) using miniconda
(version 4.8.4), and R (version 4.0.2) through RStudio (version
1.2.5033). All datasets and software used in the analysis are listed in
Table S1.

All findings, scripts and a reproducibility report are available
https://github.com/Genome3d/genetic_regulation_in_COPD.

Juicer is available at https://github.com/aidenlab/juicer.
CoDeS3D is available at https://github.com/Genome3d/codes3d-v2.
Multimorbid3D is available at https://github.com/Genome3d/

multimorbid3D.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202201609.
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