




regulation of the oxidative phosphorylation pathway in male, but
not in female, ventricles, and less down-regulation of genes with
mitochondrial and respiratory function in females (Kararigas et al,
2014).

Proteostasis describes the maintenance of healthy protein
homeostasis. In the heart, this is of particular importance because
of the limited regeneration potential of the myocardium (Henning
& Brundel, 2017). Proteins involved in protein homeostasis are also

associated with the development of cardiac hypertrophy and
possibly HF (Hannan et al, 2003; Li et al, 2016a). The proteome
profiles of our study showed that proteostasis-associated proteins
are down-regulated in AS, affecting many ribosomal subunits
and eukaryotic initiation factors, ultimately decreasing protein
translation capacity. This down-regulation was almost only seen
in female AS patients also having less myocardial hypertrophy
compared with men.

Figure 9. Disease- and sex-specific differences in abundance of proteins related to cytoskeleton and muscle contraction.
(A) Clustered heatmap showing the condition’s mean abundance of proteins belonging to cytoskeleton- and muscle contraction–related GO terms. Annotation bars
denote significant changes in condition (I) and in sex (II—effect in sex MR; III—effect in sex AS). Proteins described in the text are labeled. (B)Median log2 of LFQ intensity of
all proteins with actin binding (left) or myofibril (right) annotation. P-values in (B) are calculated using a Wilcoxon rank test. (C) Combined results (−log10-transformed
P-value) of GO term enrichment analysis in AS andMR versus CON shown in the direction of regulation they were found in. (D) Protein ratio ofmyosin heavy chains MYH6
and MYH7 in AS, MR, and CON. P-values in (D) are calculated using a Wilcoxon rank test. (E) Graphical illustration of regulated proteins belonging to the cortical
cytoskeleton. The color indicates MR-specific increase (green). AS, aortic valve stenosis; CON, healthy control hearts; Cond., condition; MR, mitral valve regurgitation; ns, not
significant.
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Changes in cytoskeletal andmuscle contraction proteins are part
of pathological remodeling processes and can also cause cardiac
dysfunction (Sequeira et al, 2014). In our study, we found an in-
crease in cytoskeletal and contractile proteins in AS and MR. In MR,
proteins, which contribute to anchoring the cytoskeletal actin to the
sarcolemma and to cross-linking between cytoskeletal entities, are
specifically increased, and thus, structural integrity to the cell is
provided. Furthermore, alterations in the glycoprotein complex and
desmosomal changes point to an increased interconnectedness
also toward ECM and neighboring cardiomyocytes, which may be an
adaptation to increased stretch caused by volume load. In AS,
among the actin-binding proteins, many LIM domain–containing
proteins were found, which can display a role in transducing
mechanical stress toward the nucleus. In addition, proteins pro-
moting actin bundles and stress fibers are more prominent in AS.
This makes sense because pressure load in the heart may have a
stronger effect on mechanosensing than volume load. Changes in
the MYH6/MYH7 ratio are a common marker for a switch to fetal
gene expression as a response to AS and could be confirmed in our
cohort (Reiser et al, 2001).

Sex-specific differences in heart valve diseases have been re-
ported to have an impact on remodeling, outcome, and therapy
planning (Kararigas et al, 2014; Bienjonetti-Boudreau et al, 2021).
Female AS patients have been described to have better preserved
cardiac function and less hypertrophy and fibrous tissue content
than male AS patients (Petrov et al, 2014). It has been speculated
that a less pronounced induction in collagen remodeling
contributes to these findings (Kararigas et al, 2014). Our study is
the first to apply deep proteomic profiling in female and male
human AS patients, and we can confirm a less pronounced up-
regulation of ECM proteins in female AS. In addition, we observed
strong reduction in proteostasis-related proteins and less de-
crease in proteins involved in energy metabolism in female AS,
which could also render a molecular explanation for this clinical
observation.

In MR patients, we have detected sex differences at the level of
clinical parameters with less hypertrophy, less dilation, and better
LV function in female compared with male patients. Proteome
profiling revealed that in women, ECM proteins were less exclu-
sively up-regulated and metabolic proteins were less down-
regulated. These cellular adaptation processes would thus also
fit well with the phenotype and clinical picture of the patients. In
general, the gender balance analysis rendered fewer altered
proteins than the one with all subjects. The smaller number of
subjects in the gender balance analysis and differences in regu-
lation between females (healthy disease) and males (healthy
disease) might be a reason.

Conclusion

In our study, we provide detailed information on proteomic profiles
in cardiac remodeling because of severe AS and MR. This expands
our knowledge about human cardiac remodeling in female and
male patients with LV pressure and volume overload. In addition,
the comprehensive data constitute a valuable basis for future
analyses of cardiac function in human and preclinical research.

Materials and Methods

Patient cohort

41 patients with severe AS and 17 patients with moderate or severe
MR (according to current diagnostic guidelines) were included in the
study. Exclusion criteria were the presence of moderate-to-severe
valve diseases of the remaining heart valves and general contra-
indications to CMR. Controls (n = 17) were 44 ± 15-yr-old healthy
cardiac organ donors without cardiovascular diseases, whose hearts
were not used for transplantation because of non-medical reasons.

The study protocol was in agreement with the principles outlined
in the Declaration of Helsinki and was approved by the Medical
Ethics Review Committee. All patients gave written informed con-
sent before inclusion.

Sample preparation for mass spectrometry measurements

Left ventricular myocardial samples
Left ventricular myocardial samples were collected from patients
with AS and MR during aortic or mitral valve replacement surgery or
from healthy donor hearts not used for transplantation because of
non-medical reasons. Samples were taken and frozen directly in
liquid nitrogen and kept at −80°C. For protein extraction, biopsies
were lysed in 200 μl lysis buffer containing the following: 2% SDS, 50mM
ammonium bicarbonate buffer, and EDTA-free Protease Inhibitor
Cocktail (Complete, Roche). Samples were homogenized at room
temperature using FastPrep-24 5GHomogenizer (MPBiomedicals) with
10 cycles of 20 s and 5-s pause between cycles. After heating the
samples for 5min at 95°C, five freeze–thaw cycles were applied. 25 U of
Benzonase (Merck) was added to each sample, and after an incubation
for 30min, the lysates were clarified by centrifugation at 16,000g for 40
min at 4°C. Briefly, each samplewas reducedwith dithiothreitol (10mM
final; Sigma-Aldrich) for 30 min, followed by alkylation with chloro-
acetamide (40mM final; Sigma-Aldrich) for 45min and quenching with
dithiothreitol (20 mM final; Sigma-Aldrich). Beads (1 mg) and ace-
tonitrile (70% final concentration) were added to each sample, and
after 20 min of incubation on an overhead rotor, the bead-bound
proteins were washed with 70% ethanol and 100% acetonitrile. 2 μg
sequence-grade trypsin (Promega) and 2 μg lysyl endopeptidase
(LysC) (Wako) in 50 mM Hepes (pH 8) were added, and after an
overnight incubation at 37°C, peptides were collected, acidifiedwith
trifluoroacetic acid, and cleaned up using the StageTips protocol.

Protein concentration was measured using the Bio-Rad DC
Protein Assay, and 100 μg of each sample was further processed
using the SP3 clean-up and digestion protocol as previously de-
scribed (Hughes et al, 2019).

Heart reference sample for matching library

A peptide mix for each experimental group (CON, AS, and MR) was
generated by collecting 10 μg peptides from each individual sample
belonging to the corresponding group. Equal peptide amounts from
each group mixture were combined, desalted using a C18 SepPak
column (100 mg; Waters), and dried down using a SpeedVac in-
strument. Peptides were reconstituted in 20 mM ammonium
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formate (pH 10) and 2% acetonitrile, loaded on a XBridge C18 4.6 ×
250 mm column (3.5 μm bead size; Waters), and separated on an
Agilent 1290 HPLC instrument by basic reversed-phase chroma-
tography, using a 90-min gradient with a flow rate of 1 ml/min,
starting with solvent A (2% acetonitrile and 5 mM ammonium for-
mate, pH 10) followed by an increasing concentration of solvent B
(90% acetonitrile and 5 mM ammonium formate, pH 10). The 96
fractions were collected and concatenated by pooling equal interval
fractions. The final 26 fractions were dried down and resuspended in
3% acetonitrile/0.1% formic acid for LC–MS/MS analyses.

LC–MS/MS analyses

Peptide samples were eluted from stage tips (80% acetonitrile and
0.1% formic acid), and after evaporating, organic solvent peptides
were resolved in sample buffer (3% acetonitrile/0.1% formic acid).
Peptide separation was performed on a 20-cm reversed-phase
column (75 μm inner diameter, packed with ReproSil-Pur C18-AQ;
1.9 μm, Dr. Maisch GmbH) using a 200-min gradient with a 250 nl/
min flow rate of increasing buffer B concentration (from 2 to 60%)
on a HPLC system (Thermo Fisher Scientific). Peptides were measured
on an Orbitrap Fusion (individual samples) and a Q Exactive HF-X
Orbitrap (reference sample) instrument (Thermo Fisher Scientific). On
the Orbitrap Fusion instrument, peptide precursor survey scans were
performed at 120K resolution with a 2 × 105 ion count target. MS2 scans
were performed by isolation at 1.6 m/z with the quadrupole, HCD
fragmentation with normalized collision energy of 32, and rapid scan
analysis in the ion trap. The MS2 ion count target was set to 2 × 103, and
themax injection timewas 300ms. The instrumentwas operated in top
speed mode with 3-s cycle time, meaning the instrument would
continuously perform MS2 scans until the list of non-excluded pre-
cursors diminishes to zero or 3 s. On the Q Exactive HF-X Orbitrap
instrument, full scans were performed at 60K resolution using 3 × 106

ion count target and a maximum injection time of 10 ms as settings.
MS2 scans were acquired in Top 20 mode at 15K resolution with 1 × 105

ion count target, 1.6 m/z isolation window, and maximum injection
time of 22 ms as settings. Each sample was measured twice, and these
two technical replicates were combined in subsequent data analyses.

RAW data processing

Data were analyzed using MaxQuant software package (v1.6.2.6). The
internal Andromeda search engine was used to search MS2 spectra
against a decoy human UniProt database (HUMAN.2019-01, with
isoform annotations) containing forward and reverse sequences.
The search included variable modifications of oxidation (M),
N-terminal acetylation, deamination (N and Q), and fixed modifi-
cation of carbamidomethyl-cysteine. Minimal peptide length was
set to six amino acids, and a maximum of three missed cleavages
was allowed. The FDR (false discovery rate) was set at 1% for peptide
and protein identifications. Unique and razor peptides were
considered for quantification. Retention times were recalibrated
based on the built-in non-linear time-rescaling algorithm. MS2

identifications were transferred between runs with the “Match
between runs” option, in which the maximal retention time window
was set to 0.7 min. The integrated LFQ quantitation algorithm was
applied. LFQ values are given in Table S6. Gene symbols assigned by

MaxQuant were substituted with gene symbols of the reported
UniProt IDs from the FASTA file used.

Visualization

Schematic drawings were created using BioRender software.
Heatmaps are drawn using the pheatmap R package (version 1.0.12).
Proteins included in heatmaps were combined from gene names
enriched in GO terms within a category. Condition group means of
log2 (LFQ intensities) are centered, scaled protein wise, and clus-
tered with default values.

All other plots were created using ggplot2, ggpubr, and cowplot R
packages.

Clinical imaging—cardiovascular magnetic resonance imaging
and post-processing

Left ventricular mass, volume, and function
All CMR examinations were performed using a whole-body 1.5 T MR
system (Achieva R 3.2.2.0; Philips Medical Systems) using a five-
element cardiac phased-array coil. Analyses were performed using
View Forum (View Forum R6.3V1L7 SP1; Philips Medical Systems
Nederland B.V.). Gapless balanced Turbo Field Echo cine two-
dimensional short-axis sequences were obtained using the stan-
dard CMR protocol for LV mass, volume, and function.

Left ventricular fibrous tissue content
For fibrosis assessment, a single breath-hold modified Look-Locker
inversion recovery sequence in midventricular short-axis view was
acquired before and 10 min after contrast administration. Calcu-
lation of extracellular volume (ECV) was performed using the fol-
lowing method:

ECV = ð1 −hematocritÞ* ð1=Tmyo postÞ − ð1=Tmyo preÞ
ð1=T blood postÞ − ð1=T blood preÞ;

where myo = LV midwall myocardial T1 value, blood = LV blood pool
T1 value, and pre and post refer to the measurement before and
after contrast administration. Myocardial fibrous tissue content
(absolute ECV = aECV) was calculated using the following equation:
aECV = LVmyocardial volume*ECV. LVmyocardial volume = LVmass/
1.05, where 1.05 is the myocardial density given in g/ml.

Statistical analyses

Statistical analyses were performed using R (R version 3.5.3 and
4.0.3). MaxQuant results were filtered to exclude reverse database
hits, potential contaminants, and proteins only identified by site,
that is, proteins identified only by modified peptides. Furthermore,
all proteins whose lead entry was marked “Fragment” or with <50%
valid values in at least one compared group were excluded. LFQ
values were log2-transformed, and missing values were imputed by
random draw from the Gaussian distribution with 0.3*SD and
downshift of 1.8*SD of the observed values per sample.

Linear models for the full sample set were calculated using the
empirical Bayes procedures for residual variance estimation and
mean–variance trend correction from limma (v3.38.3). Contrasts to
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retrieve differential abundance were stated as follows: AS versus
CON, MR versus CON, and AS versus MR for condition comparisons;
and AS male versus CON male, AS female versus CON female, MR
male versus CON male, and MR female versus CON female for sex-
stratified comparisons. P-values aremultiple testing corrected by the
Benjamini–Hochberg methodology. Condition-specific effects are
effects that are significant in a condition versus control and versus
the respective other condition, whereas the direction, that is, neg-
ative (down) or positive (up) fold change, needs to be conserved. The
effect in the other condition versus control has to be non-significant.
Shared effects are defined through the same direction of significant
effect in both conditions when they are compared with controls.
Diverging effects show significant effects with opposing direction
when compared with control samples. In the sex-stratified analysis,
within a condition, we investigated proteins found significant in one
sex only while assuming that significant changes found in both are
also represented in the condition comparison.

Enrichment analysis was performed by the gprofiler2 R package
(version 0.1.8) with a background set of all detected proteins and
two query sets of all up/down-regulated proteins, respectively, per
condition comparison and per sex-stratified comparison in order of
largest to smallest absolute fold change against GO biological
process, cellular compartment, and molecular function. P-values
are controlled by FDR of 5%, and significant terms are filtered for
sets in which the intersection size was <5% of the measured
proteins of a set or less than one gene in the intersection. Gene sets
needed a minimum size of three. Multiple entries with identical
matched gene lists within a GO branch are reduced to the one with
the lowest P-value. Further reduction in terms for pie charts was
achieved via REVIGO using the following settings: medium reduc-
tion, against the Homo sapiens database, SimRel similarity mea-
sure, and without order of terms (Frangogiannis, 2019). For pie
charts, we chose the most frequent representative of a cluster of
redundant terms and calculated the proportions of frequency based
on the assigned categories for themerged set of enrichments fromup-
and down-regulated proteins within disease groups.

Manual category assignments for GO terms are given in Tables S1
and S2. Organelle assignments are adopted from Doll et al by
mapping UniProt protein IDs (Doll et al, 2017) (Fig S14). Enrichments
belonging to the category “other terms” are based on 88 proteins
with higher abundance in the diseased groups. Of these, 84% are
typical body fluid components. Considering the different biopsy
collection procedures for the sample groups, blood contamination
becomes the most probable source of the signal and impedes any
interpretation with regard to physiological differences in humoral
immune response between the diseased and the control group.
Enrichment analysis of AS-specific, MR-specific, and shared sig-
nificant effects was performed by the gprofiler2 R package (version
0.2.0) (concerning data in Table S3) with a background set of all
detected proteins and two query sets of up/down-regulated
proteins, respectively, against GO biological process, cellular
compartment, and molecular function. P-values are controlled by
FDR of 5%, and significant terms are filtered for sets in which the
intersection size was <5% of the measured proteins of a set or less
than one gene in the intersection. Gene sets needed a minimum
size of three. Multiple entries with identical matched gene lists
within a GO branch are reduced to the one with the lowest P-value.

For the clinical characteristics of our study population, we
compared the differences with a two-tailed t test in case of nor-
mally distributed numerical values or with a chi-squared test in
case of discrete categorical values, both from the R stats package,
version 3.5.1.

Data Availability

Mass spectrometry raw data for the deep human reference proteome
analysis of mixed patient samples and MaxQuant protein output
tables for the entire cohort are available via ProteomeXchange with
identifier PXD023800.

Supplementary Information

Supplementary information is available at https://doi.org/10.26508/lsa.
202201411
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