Correction

Correction: Building in vitro models of the brain to understand the role of *APOE* in Alzheimer's disease

Rebecca L Pinals^{1,2}, Li-Huei Tsai^{1,2,3}

¹Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA ²Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA ³Broad Institute of Harvard and MIT, Cambridge, MA, USA

Correspondence: lhtsai@mit.edu

DOI https://doi.org/10.26508/lsa.202201845 | Received 22 November 2022 | Accepted 23 November 2022 | Published online 1 December 2022

Article: Pinals RL, Tsai L-H (2022 Sep 27) Building in vitro models of the brain to understand the role of APOE in Alzheimer's disease. Life Sci Alliance 5(11): e202201542. doi: 10.26508/lsa.202201542. PMID: 36167428.

In the initially published version of this article, a section in the Introduction reads:

In the amyloidogenic pathway, β -secretase first cleaves APP at the ectodomain, followed by γ -secretase at the intramembrane site, liberating the longer A β -42 species. This contrasts with the physiologically normal pathway in which α - then γ -secretases consecutively cleave APP, shedding the shorter A β -40 species.

This section should instead read:

In the amyloidogenic pathway, β -secretase first cleaves APP at the ectodomain, followed by γ -secretase at the intramembrane site, liberating AB peptides including AB-40 and AB-42 (among other peptide lengths).

Life Science Alliance

License: This article is available under a Creative Commons License (Attribution 4.0 International, as described at https:// creativecommons.org/licenses/by/4.0/).