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Exploratory meta-analysis of hypoxic transcriptomes
using a precise transcript reference sequence set
Yoko Ono1 , Hidemasa Bono1,2

Gene expression studies are intrinsically biased, with many
studies influenced by concomitant information such as gene–
disease associations. This limitation can be overcome using a
data-driven analysis approach without relying on ancillary in-
formation. The FANTOM CAGE–Associated Transcriptome project
provides a comprehensive meta-assembly of the human tran-
scriptome using coding and noncoding genes. Hypoxia strongly
influences gene expression; in addition, noncoding RNA (ncRNA)
metabolism is down-regulated in response to hypoxic stimuli.
We evaluated the differential response of various transcripts to
hypoxia by determining their hypoxia responsiveness scores.
Enrichment analysis revealed that several genes associated with
ncRNA metabolism, particularly those involved in ribosomal
RNA processing, were down-regulated in response to hypoxia.
Previously published information from the FANTOM CAGE–
Associated Transcriptome project was suitable for meta-
analysis of the transcriptome sequencing data from both
coding and ncRNAs and to evaluate the hypoxia responsiveness
of target transcripts and relationship between sense–antisense
transcripts from the same locus. Our results may facilitate
functional annotation of various transcripts including ncRNAs,
allowing for both sense and antisense and coding and non-
coding evaluations.
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Introduction

Genomic research is inherently biased as it is heavily influenced by
the known associations between specific genes and their families
and the disease of interest (Mihai et al, 2021). Meanwhile, growing
evidence from global molecular biology labs has facilitated the
comprehensive functional annotation of much of the genome.
Therefore, further development requires moving away from those
familiar genes into the unknown using a data-driven approach. Our
previous study revealed a clear publication bias regarding gene
expression variation in response to hypoxia, and we identified a

specific group of genes that had not been investigated in previous
reports (Ono & Bono, 2021).

Oxygen is essential for the maintenance of vital functions, and
cells have strict molecular mechanisms designed to help them
cope with hypoxia. The study of these responses was dramatically
advanced by the discovery of hypoxia-inducible factor-1 (HIF-1) in
the 1990s (Semenza & Wang, 1992; Wang et al, 1995; Wang &
Semenza, 1995). Under normoxic conditions, HIF is hydroxylated
by prolyl hydroxylase and factor inhibiting HIF-1 (FIH-1) and then
degraded by the ubiquitin–proteasome system to inhibit tran-
scriptional activation (Jaakkola et al, 2001; Mahon et al, 2001).
However, hypoxia reduces prolyl hydroxylase and FIH-1 activity,
allowing HIF to escape its hydroxylation and promoting its inter-
actions with the aryl hydrocarbon receptor nuclear translocator
and transcriptional cofactor CREB, which in turn induces down-
stream gene expression (Ebert & Bunn, 1998). Our previous study
revealed that genes related to the noncoding RNA (ncRNA) met-
abolic process were responsive to hypoxia (Ono & Bono, 2021).

Here, we evaluated the expression of genes related to ncRNA
metabolism in response to hypoxia despite a lack of functional data
describing their specific effects. In addition, although there is a
balance in the data available for noncoding and coding RNAs, we
believe that some changes in the expression of ncRNAs can only be
revealed via data-driven analysis.

One tool facilitating these evaluations in the FANTOM5 project
was designed to provide a reliable 59 human lncRNA dataset for
transcriptomic evaluations. These data were then combined with
the data from the FANTOM5 Cap Analysis of Gene Expression (CAGE)
project to produce the FANTOM CAGE–Associated Transcriptome
(FANTOM-CAT) database. This dataset can be used to evaluate
patterns in ncRNA expression using data from these and various
coding genes. FANTOM CAGE data were used to identify ~28,000
lncRNA genes from the human genome, with ~20,000 of these
transcripts likely to have some specific function (Hon et al, 2017).

Here, we used FANTOM-CAT as a reference and comprehensively
scored the hypoxic response of various transcripts for both coding
and noncoding genes. The data obtained in this study will help in
the functional annotation of various transcripts, including ncRNAs,
especially where there are fewer clues to their function.

1Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan 2Laboratory of Bio-DX, Genome
Editing Innovation Center, Hiroshima University, Higashihiroshima, Japan

Correspondence: bonohu@hiroshima-u.ac.jp

© 2022 Ono and Bono https://doi.org/10.26508/lsa.202201518 vol 6 | no 1 | e202201518 1 of 12

on 4 April, 2024life-science-alliance.org Downloaded from 
http://doi.org/10.26508/lsa.202201518Published Online: 10 October, 2022 | Supp Info: 

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.202201518&domain=pdf
https://orcid.org/0000-0003-4616-4951
https://orcid.org/0000-0003-4616-4951
https://orcid.org/0000-0003-4413-0651
https://orcid.org/0000-0003-4413-0651
https://doi.org/10.26508/lsa.202201518
mailto:bonohu@hiroshima-u.ac.jp
https://doi.org/10.26508/lsa.202201518
https://www.life-science-alliance.org/
http://doi.org/10.26508/lsa.202201518


Results

Overview

The analyses were designed to evaluate hypoxia-responsive genes
and transcripts based on two reference transcript sets (Fig 1).

In the analyses using two reference transcripts, one describes
the quantitative gene expression data annotated using GENCODE
release 30 and focuses only on protein-coding genes, and the other
describes the expression data for both protein-coding and non-
coding transcripts using FANTOM-CAT.

Initial evaluations of the coding-only dataset revealed that
hypoxic stimulation suppressed the ncRNA metabolic process,
especially genes involved in rRNA processing. Given this, we went
on to expand the scope of our evaluations to include both protein-
coding and noncoding transcripts and comprehensively evaluated
the effects of hypoxia on both types of transcripts using a FANTOM-
CAT dataset as a reference.

This dataset and its construction were described in detail in our
previous study (Ono & Bono, 2021). The hypoxic conditions of the
analyzed data were summarized for 495 samples (Fig 2A and B).
Normoxic conditions were considered as a 20% oxygen concen-
tration, although some samples were not mentioned, whereas
hypoxic conditions ranged from 0.1 to 5% oxygen concentrations
and some cases of hypoxia induced by chemicals such as CoCl2. The

treatment time ranged from 1 h to 3 mo. The most common con-
dition of hypoxia in the dataset was a 1% oxygen concentration for
24 h of treatment. Sixty-five percent of all samples were of cancer
origin, with breast cancer as the most common tissue of origin.
Gene expression in each tissue under representative conditions
(cancer, oxygen concentration 1%, 24 h treatment) is shown as the
log2-transformed fold-change compared with under normoxic
condition (Fig 2C).

Down-regulation of ncRNA metabolism-related genes by the
hypoxic response

From a sample of hypoxia-related datasets obtained from public
databases, we selected sample pairs of hypoxia and normoxia pairs
(HN-pairs). Based on these HN-pairs, plus 1 was calculated for each
HN-pair if the expression variation was greater than 1.5-fold
compared with normoxic sample and minus 1 if the variation was
less than the reciprocal of 1.5-fold. These values were summed for
each gene and designated as the hypoxia–normoxia score (HN-
score). The HN-score qualitatively reflects hypoxia responsiveness,
unlike the method used in general gene expression analysis. This
HN-score was named as the HNg-score when the reference se-
quence was GENCODE and as the HNf-score when the sequence
was based on FANTOM-CAT. We subjected 200 genes with high HNg-
scores and 200 genes with low HNg-scores to enrichment analysis

Figure 1. Schematic overview describing our exploratory study of hypoxia-responsive transcripts.
Data source: human hypoxia RNA-seq data from the NCBI Gene Expression Omnibus database. Protein-coding genes only: evaluated using GENCODE as the reference.
Evaluation of the genes down-regulated by hypoxia revealed that they were enriched for transcripts involved in rRNA processing. Protein-coding and noncoding
transcripts: evaluated using FANTOM CAGE–Associated Transcriptome as the reference. The number of transcripts derived frommitochondrial DNA and antisense analysis
was reduced, suggesting a transcriptional regulation relationship in both sense and antisense genes (PGK1 and TAF9B).
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and evaluated whether the genes selected based on the HNg-score
could be used to examine hypoxia responsiveness.

Enrichment analysis focusing only on protein-coding genes
revealed that the top 200 genes identified by HNg-score, a measure
of susceptibility to hypoxia, were enriched for hypoxia response–
related gene sets (Fig 3A). However, enrichment analysis of the
bottom 200 genes identified based on their HNg-score revealed
suppression of expression of ncRNAmetabolism–related genes (Fig
3B). Detailed investigation showed that most of these genes were
associated with rRNA processing.

In enrichment analysis, the ncRNAmetabolic process was further
subdivided into the following Gene Ontology (GO) terms: ncRNA
processing, ribosome biogenesis, ribonucleoprotein complex bio-
genesis, rRNA processing, and rRNA metabolic process (Fig 3C). The
results of rRNA GO network analysis were visualized in UpSet plots,
which showed that the ncRNA metabolic process is heavily reliant
on most of these rRNA metabolic genes (Fig 3D).

Survey of the number of articles referring FANTOM

FANTOM-CAT is a comprehensive catalog of human lncRNAs that
improves upon existing lncRNA transcript models. The results
obtained using this dataset have greatly contributed to life science
research (Imada et al, 2020, 2021; Ramilowski et al, 2020). Despite the
usefulness of this dataset, we predicted that it is used less

frequently for RNA-sequencing (RNA-seq) quantification compared
with GENCODE; we quantitatively examined this hypothesis. If
FANTOM-CAT is used less frequently, results obtained using this
database may show a lower influence of publication bias (Ono &
Bono, 2021), as demonstrated in our previous report. The number of
articles in PubMed Central (PMC) that contained references to
GENCODE, FANTOM, and RNA-seq was calculated for each year, with
the number of RNA-seq articles exceeding 30,000 in 2021, whereas
the number of articles referencing both FANTOM and RNA-seq was
0.5%, about one-tenth of the number referencing RNA-seq and
GENCODE (Table 1).

HNf-score evaluations of transcripts using FANTOM-CAT

The HNf-scores of all transcripts, including ncRNA, were quantified
using FANTOM-CAT as a reference. We then went on to evaluate
both the most increased and decreased transcripts using these
values as a guide (Fig 4A). A total of 25 transcripts for both the UP
and DOWN datasets, as delimited by HNf-score, are listed in Table 2,
and a complete list of genes can be found within our archived
figshare file (https://doi.org/10.6084/m9.figshare.19679493.v1).

This investigation revealed the fact that there were several cases
where hypoxia-responsive transcripts with high HNf-scores were
located within the antisense regions of genes with high HNg-scores
(BHLHE40-AS1, SLC2A1-AS1). In addition, these evaluations

Figure 2. Contents of hypoxia-related dataset.
(A, B) The dataset is (A) summarized for oxygen concentration and (B) treatment time. (C) Gene expression information for PGK1 derived from cancer cells treated for
24 h with a 1% oxygen concentration, the most representative condition, is displayed in a boxplot.
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uncovered that most of the low HNf-score transcripts were asso-
ciated with mitochondrial genes (MT-ND2, MT-ATP8). Hypoxic
stimuli were shown to affect mitochondria. Visualization of the HNf-
score for each chromosome showed that themedian HNf-score was
negative for mitochondria-derived transcripts (Fig 4B).

Investigating the HNf-score of antisense transcripts

We investigated each antisense transcript individually as we could
not perform enrichment analysis which requires information to
comprehensively evaluate the effects of sense and antisense
transcripts. The antisense transcripts for each of the UP200 and
DOWN200 hypoxia-responsive coding genes were classified into

one of four categories based on their gene expression behavior (Fig
5A and Table 3).

These evaluations revealed that ~75% of the antisense tran-
scripts mirrored the behavior of their sense counterparts. However,
there was still a small number of sense–antisense pairs presenting
with opposite expression behaviors. This indicated that they were
under different transcriptional control.

We also investigated transcripts with high or low HNf-scores to
qualitatively evaluate hypoxia responsiveness. This evaluation also
revealed that the top 10 antisense transcripts in the UP200 gene list
were dominated by both short and long ncRNAs (lncRNAs), whereas
the bottom 10 transcripts from this group were shown to be pre-
dominantly mRNA transcripts. Interestingly, among the antisense
transcripts from the DOWN200 gene set, phosphoglycerate kinase 1

Figure 3. Hypoxic stimulation suppresses the expression of noncoding RNA (ncRNA) metabolic process-related genes involved in rRNA processing.
(A, B) Enrichment analysis for (A) the 200 UP regulated gene list and (B) the 200 DOWN regulated gene list. (C, D) Gene ontology (GO) network and (D) UpSet plot showing
the number of genes included in GO in this analysis, describing the relative changes in ncRNA metabolism associated genes in the down-regulated gene list. In the GO
network, the ncRNA metabolic process and rRNA processing focused on in this study are shown in yellow.

Table 1. Number of reports describing GENCODE, FANTOM, and RNA-seq data.

Year “RNA-seq” “RNA-seq” and “GENCODE” (%) “RNA-seq” and “FANTOM” (%)

2017 17,373 769 (4.4%) 123 (0.7%)

2018 20,400 996 (4.9%) 127 (0.6%)

2019 25,668 1,254 (4.9%) 130 (0.5%)

2020 33,607 1,593 (4.7%) 176 (0.5%)

2021 40,757 1,976 (4.8%) 210 (0.5%)

2022 9,420 406 (4.3%) 39 (0.4%)
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(PGK1), which was also included in the UP200 gene set, had the
highest HNf-score.

Given this, we homed in on PGK1 and its antisense TATA-box–
binding protein–associated factor 9b (TAF9B), evaluating their
chromosomal localization using UCSC Genome Browser and HN-
score at the gene level (Fig 5B and C). This analysis revealed that
although these two genes are not described as having a sense–
antisense relationship when evaluated using the UCSC or GENCODE
datasets, FANTOM-CAT–based analysis suggests that these two
transcripts are actually in a sense–antisense relationship. By using
FANTOM-CAT as a reference, we were able to present for the first
time the possibility that these two genes affect the regulation of
expression.

Discussion

Human gene research is commonly biased toward known patho-
genic genes and pathways that are fairly well established (Stoeger
& Amaral, 2022). However, given the development of novel data-
driven tools, it is now possible to move beyond the targets iden-
tified in previous articles and into the realm of big data. Our
previous studies focusing on coding genes have revealed a clear
publication bias when evaluating gene expression changes in re-
sponse to hypoxia and identified a novel set of largely unchar-
acterized hypoxia-responsive elements (Ono & Bono, 2021). Despite
this, the details of the “ncRNA metabolic process”–related genes
whose gene expression was suppressed in response to hypoxic
conditions remain unclear.

Thus, we designed this study to further clarify the hypoxic re-
sponse using a two-pronged approach. First, we completed a de-
tailed investigation of the “ncRNA metabolic process” genes focused
on only the coding genes in the dataset, and then we expanded this
evaluation to any of the hypoxia-responsive genes annotated in the
FANTOM-CAT database, which includes both coding and noncoding
elements (Fig 1). All these data are available to everyone on figshare
(https://doi.org/10.6084/m9.figshare.c.5971218.v2). We believe that
these datasets and this analysis approach will help further elucidate
the mechanisms regulating the hypoxic response.

We previously reported that the expression of several genes
associated with the “ncRNA metabolic process” was down-
regulated by hypoxic stimuli. However, the specific metabolic
processes remain unknown. Given this, we started our evaluations
by completing a Gene Ontology evaluation in an effort to identify
the likely functions of these target transcripts. Subsequent en-
richment analysis of the top and bottom 200 genes, identified using
their HNg-score which was calculated using GENCODE, revealed
that the top 200 genes were commonly associated with hypoxia
response–related transcripts, whereas the bottom 200 genes were
enriched for ncRNA metabolic processes (Fig 3A and B). Then, GO
network analysis revealed a strong relationship between the ncRNA
metabolic process and rRNA processing genes (Fig 3C and D)
(https://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0034660). This
suggests that among the most common down-regulated tran-
scripts, most targeted or formed part of the rRNA processing
pathway.

rRNA is a critical part of the ribosome known to facilitate protein
synthesis. rRNA has also been linked to the degradation of cyto-
plasmic lncRNAs after their interaction with the ribosomes
(Carlevaro-Fita et al, 2016), and several other reports describe
ncRNA-mediated silencing of the rRNA (Schmitz et al, 2010), all of
which suggests an intimate relationship between these two sets of
RNA mediators. However, given our previous focus on only the
coding genes, the effects of hypoxia on the total transcript pop-
ulation, including the ncRNAs, remain unclear. Given this, we went
on to calculate the more comprehensive HNf-score, which evalu-
ates all RNA transcripts including ncRNAs via the application of a
FANTOM-CAT reference.

FANTOM-CAT is expected to provide additional insights through
integration with other studies, such as its use in a comprehensive
expression atlas across the broad human transcriptome called FC-
R2 (Imada et al, 2020). The application of this dataset allows for a
more comprehensive evaluation of changes in the gene expression
data from human experiments, expanding the evaluations to the
ncRNA transcripts. However, to the best of our knowledge, FANTOM-
CAT is only published as a General Transfer Format (GTF) file and is
not available in FASTA format; thus, the underlying data are not
publicly available. As this dataset may not be commonly applied as

Figure 4. Hypoxia–normoxia (HN) score of coding
and noncoding genes’ (HNf-score) evaluation of
transcript using FANTOM CAGE–Associated
Transcriptome.
(A) HNf-score distribution of FANTOM
CAGE–Associated Transcriptome transcripts. (B) Violin
plot of the HNf-score of each chromosome.
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Table 2. Top 25 up- and down-regulated transcripts identified using their HNf-scores.

Transcript ID HNf-score Chr Gene name Gene class Antisense

Top 25 up-regulated transcripts

1 ENST00000607600.1 321 chr6 RP1-261G23.7 Short ncRNAs AS_VEGFA

2 ENST00000481651.1 309 chr7 RP11-61L23.2 Pseudogenes

3 ENST00000307365.3 301 chr10 DDIT4 Protein-coding mRNAs

4 FTMT21000000269.1 300 chr3 BHLHE40-AS1 lncRNA, intergenic AS_BHLHE40

5 ENST00000368636.4 289 chr10 BNIP3 Protein-coding mRNAs

6 ENST00000335174.4 275 chr4 ANKRD37 Protein-coding mRNAs

7 ENST00000290573.2 272 chr2 HK2 Protein-coding mRNAs

8 FTMT24300004891.1 267 chr11 LDHA Protein-coding mRNAs

9 HBMT00000242044.1 265 chr11 SBF2 Protein-coding mRNAs AS_ADM

10 FTMT24200000803.1 265 chr11 CATG00000004979.1 lncRNA, antisense AS_LDHA

11 ENST00000380629.2 265 chr8 BNIP3L Protein-coding mRNAs

12 ENCT00000004975.1 263 chr1 SLC2A1-AS1 lncRNA, divergent AS_SLC2A1

13 ENST00000543445.1 257 chr11 LDHA Protein-coding mRNAs

14 ENST00000378357.4 257 chr9 CA9 Protein-coding mRNAs

15 ENST00000453116.1 254 chr10 MXI1 Protein-coding mRNAs

16 ENST00000471240.1 253 chr10 DDIT4 Protein-coding mRNAs

17 ENST00000460806.1 251 chr3 BHLHE40 Protein-coding mRNAs

18 FTMT20200001505.1 250 chr1 SLC2A1 Protein-coding mRNAs

19 HBMT00000734702.1 250 chr19 CATG00000040757.1 lncRNA, divergent AS_GPI

20 FTMT21100041760.1 249 chr3 BHLHE40 Protein-coding mRNAs

21 ENST00000250457.3 246 chr14 EGLN3 Protein-coding mRNAs

22 HBMT00000734730.1 245 chr19 CATG00000040757.1 lncRNA, divergent AS_GPI

23 ENST00000426263.3 243 chr1 SLC2A1 Protein-coding mRNAs

24 HBMT00000727478.1 242 chr19 RAB11B-AS1 lncRNA, divergent AS_ANGPTL4

25 ENST00000534464.1 241 chr11 ADM Protein-coding mRNAs

Top 25 down-regulated transcripts

1 ENST00000320270.2 −248 chr8 RRS1 Protein-coding mRNAs

2 ENST00000368232.4 −246 chr1 GPATCH4 Protein-coding mRNAs

3 ENST00000361453.3 −245 chrM MT-ND2 Protein-coding mRNAs

4 ENST00000361851.1 −230 chrM MT-ATP8 Protein-coding mRNAs

5 ENST00000361227.2 −221 chrM MT-ND3 Protein-coding mRNAs

6 ENST00000361390.2 −215 chrM MT-ND1 Protein-coding mRNAs

7 ENCT00000264196.1 −200 chr20 IDH3B Protein-coding mRNAs AS_NOP56

8 ENST00000362079.2 −194 chrM MT-CO3 Protein-coding mRNAs

9 FTMT30000000001.1 −193 chrM MT-ND5 Protein-coding mRNAs AS_MT-ND6

10 ENCT00000020267.1 −188 chr1 CATG00000042732.1 lncRNA, divergent

11 FTMT20300078215.1 −188 chr1 APOA1BP Protein-coding mRNAs AS_GPATCH4

12 FTMT26100009680.1 −188 chr16 POLR3K Protein-coding mRNAs

13 FTMT24100001922.1 −187 chr11 H2AFX Protein-coding mRNAs AS_HMBS

14 MICT00000370386.1 −185 chrM MT-TA Structural RNAs AS_MT-ATP6, etc.

15 ENST00000416718.2 −177 chr1 RP5-857K21.11 Pseudogenes

16 HBMT00000533809.1 −176 chr16 ALG1 Protein-coding mRNAs AS_EEF2KMT

(Continued on following page)
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a reference point for RNA-seq, we investigated the number of
articles referencing both “RNA-seq” and “FANTOM” in PMC.

To investigate how often RNA-seq quantification is performed
using FANTOM-CAT, the number of RNA-seq publications using
FANTOM-CAT and GENCODE was searched and quantified in PMC.
The number of articles with both “RNA-seq” and “FANTOM”
accounted for less than 1% of the total that describes “RNA-seq”
data even after 2017 when the FANTOM-CAT article was first pub-
lished (Table 1). These data also indicated that there were only
a few reports describing gene expression quantification using
FANTOM-CAT as a reference and thatmost studies continue to focus
on more well-established gene sets, potentially overlooking critical
actors in the under-evaluated data (Ono & Bono, 2021). When we
combined these observations, we decided that a comprehensive
analysis, including the ncRNAs, was likely worth the effort when
discussing hypoxia. Given this, we went on to complete a FANTOM-
CAT–based evaluation of the hypoxia data described above.

To this end, we created a new FASTA file using the FANTOM-CAT
genome annotation GTF file and then added the HNf-score to each
of the FANTOM-CAT lv4 transcripts (Fig 4A). Subsequent analysis of
this file then revealed that the bottom 25 genes in the HNf-score
dataset were predominantly mitochondrial DNA–derived tran-
scripts. Visualization of this patterning then revealed likely regu-
lation of gene expression by chromosome (Fig 4B and Table 2) and
confirmed that these effects were most pronounced for mito-
chondrial transcripts. The down-regulation of mitochondrial genes
such as MT-ND2, MT-ATP8, and MT-ND by hypoxic stimulation is
already well known (Arnaiz et al, 2021), validating our data. It has
also been reported (Zhang et al, 2008) that mitochondrial auto-
phagy is commonly induced in response to hypoxia and that this
process requires hypoxia-dependent factor-1–dependent BNIP3
expression, which also supports our results. On the contrary, the
top 25 transcripts from the HNf-score dataset were dominated by
antisense reads, such as BHLHE40-AS1 and SLC2A1-AS1 (Table 2).
This was an interesting observation, and its implications were
supported by the fact that the sense transcripts for both BHLHE40
and SLC2A1 are well-established hypoxia response genes. In ad-
dition, RP1-261G23.7, which had the highest HNf-score, is a short
ncRNA localized to the antisense of vascular endothelial growth
factor A, a well-known hypoxia response gene. This short ncRNA has
been reported to be functionally involved in the transcriptional

regulation of vascular endothelial growth factor A during hypoxia
(Nieminen et al, 2018). Based on these findings, we thought that
the transcripts from the antisense strands of known hypoxia-
responsive genes were likely worth further investigation.

Antisense transcripts are transcribed from the complementary
strand of the DNA molecule and usually overlap with other sense
transcripts encoding both proteins and noncoding regulators. It is
also worth noting that ~30% of human (Ozsolak et al, 2010) and
mouse (Katayama et al, 2005) transcripts originate from the anti-
sense strand. Given this, we went on to select 200 hypoxia-
responsive genes from both the up- and down-regulated gene
sets using their HNg-score. We then evaluated the HNf-score of all
antisense transcripts of these genes.

This revealed that 75% of the up- and down-regulated antisense
transcripts presented with a similar pattern of expression to their
sense partner, whereas the other 25% of antisense transcripts were
shown to be regulated in opposition to their sense partner (Fig 5A).
Several functions are regulated in the same direction. Some an-
tisense transcripts enhance the translational function of sense
transcripts or repress degradation and translational repression
(Faghihi et al, 2010; Carrieri et al, 2012).

Further evaluation then revealed that the bottom 10 antisense
transcripts in the DOWN200 gene set were dominated by mito-
chondrial genes (Table 2 and Fig 4B). Interestingly, the top 10
transcripts from the DOWN200 gene set included PGK1 and anti-
sense TAF9B, whose expression was suppressed in response to
hypoxia (Fig 5C). This is of specific interest as PGK1 catalyzes the
reversible conversion of 1,3-diphosphoglycerate to 3-phospho-
glycerate in the glycolytic system to generate ATP (Valentin et al,
1998), and this gene is well known for its increased expression in
response to HIF1A signaling after hypoxic induction (Li et al, 1996).
Meanwhile, TAF9B is one of the proteins associated with the TFIID
and plays an important role in transcriptional initiation (Tora, 2002;
Frontini et al, 2005). TAF9B is also known to be up-regulated in
response to HIF1A knockdown and down-regulated under hypoxic
conditions (Mathieu et al, 2011). Using FANTOM-CAT, the relationship
between PGK1 and TAF9B was shown to be that of a sense–
antisense pair. This relationship is not present in either the UCSC
gene or GENCODE annotations (Fig 5B).

In addition, the regulation of genes by their antisense transcripts
has been extensively studied (Katayama et al, 2005; Okada et al,

Table 2. Continued

Transcript ID HNf-score Chr Gene name Gene class Antisense

17 FTMT22300045607.1 −176 chr6 SRSF3 Protein-coding mRNAs

18 ENST00000585075.1 −175 chr17 RP11-649A18.12 lncRNA, divergent AS_SLC25A19

19 ENST00000295304.4 −175 chr2 CHAC2 Protein-coding mRNAs

20 MICT00000370388.1 −175 chrM MT-TA Structural RNAs AS_MT-ATP6, etc.

21 ENST00000361899.2 −175 chrM MT-ATP6 Protein-coding mRNAs

22 ENST00000458605.1 −174 chr22 RRP7B Pseudogenes

23 HBMT00000611042.1 −172 chr17 METTL23 Protein-coding mRNAs

24 ENST00000371538.3 −170 chr1 SELRC1 Protein-coding mRNAs

25 ENST00000293860.5 −169 chr16 POLR3K Protein-coding mRNAs
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Figure 5. Hypoxia–normoxia (HN) score of coding and noncoding genes’ (HNf-score) antisense transcripts in connection to their sense counterparts.
(A) Distribution of HNf-scores for each antisense transcript from each gene in the UP200 and DOWN200 gene lists. (B) Visualization of PGK1 and TAF9B loci in the UCSC
Genome Browser. In FANTOM CAGE–Associated Transcriptome, PGK1 transcripts are a sense–antisense pair for TAF9B, but GENCODE does not show this relationship.
(C) HN-score for coding genes for PGK1 and TAF9B.
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Table 3. Top and bottom 10 antisense transcripts for UP200 and DOWN200 HNg-score gene sets, as identified based on their HNf-scores.

Transcript ID HNf-score Gene name Gene class Antisense

Antisense transcripts from the UP200 gene set

Top 10

1 ENST00000607600.1 321 RP1-261G23.7 Short ncRNAs AS_VEGFA

2 FTMT21000000269.1 300 BHLHE40-AS1 lncRNA, intergenic AS_BHLHE40

3 HBMT00000242044.1 265 SBF2 Protein-coding mRNAs AS_ADM

4 FTMT24200000803.1 265 CATG00000004979.1 lncRNA, antisense AS_LDHA

5 ENCT00000004975.1 263 SLC2A1-AS1 lncRNA, divergent AS_SLC2A1

6 HBMT00000734702.1 250 CATG00000040757.1 lncRNA, divergent AS_GPI

7 HBMT00000734730.1 245 CATG00000040757.1 lncRNA, divergent AS_GPI

8 HBMT00000727478.1 242 RAB11B-AS1 lncRNA, divergent AS_ANGPTL4

9 ENCT00000211059.1 241 RAB11B-AS1 lncRNA, divergent AS_ANGPTL4

10 HBMT00000734676.1 234 CATG00000040757.1 lncRNA, divergent AS_GPI

Bottom 10

1 ENCT00000244163.1 −152 RP11-259N19.1 lncRNA, divergent AS_HK2

2 HBMT00000507967.1 −124 CATG00000025826.1 Protein-coding mRNAs AS_ISG20

3 ENST00000309424.3 −115 CD3EAP Protein-coding mRNAs AS_PPP1R13L

4 FTMT21900007493.1 −111 SRFBP1 Protein-coding mRNAs AS_LOX

5 ENST00000524270.1 −94 SPSB2 Protein-coding mRNAs AS_TPI1

6 ENST00000357429.6 −87 C7orf50 Protein-coding mRNAs AS_GPR146

7 ENST00000462901.1 −81 CGGBP1 Protein-coding mRNAs AS_ZNF654

8 ENST00000439489.1 −81 DIABLO Protein-coding mRNAs AS_B3GNT4

9 MICT00000230070.1 −80 PPIL2 Protein-coding mRNAs AS_YPEL1

10 ENST00000422285.2 −79 PDHA1 Protein-coding mRNAs AS_MAP3K15

Antisense transcripts from the DOWN200 gene set

Top 10

1 MICT00000376640.1 175 PGK1 Protein-coding mRNAs AS_TAF9B

2 ENCT00000468735.1 145 PGK1 Protein-coding mRNAs AS_TAF9B

3 ENST00000229270.4 128 TPI1 Protein-coding mRNAs AS_SPSB2

4 FTMT29100015042.1 120 PGK1 Protein-coding mRNAs AS_TAF9B

5 ENST00000566326.1 114 MAP2K1 Protein-coding mRNAs AS_SNAPC5

6 ENST00000329078.3 99 SPNS2 Protein-coding mRNAs AS_MYBBP1A

7 ENST00000222256.4 87 RAB3A Protein-coding mRNAs AS_MPV17L2

8 ENCT00000059259.1 76 PDZD7 Protein-coding mRNAs AS_TWNK

9 MICT00000139943.1 71 SPNS2 Protein-coding mRNAs AS_MYBBP1A

10 FTMT25300024476.1 70 ZBTB25 Protein-coding mRNAs AS_MTHFD1

Bottom 10

1 ENCT00000264196.1 −200 IDH3B Protein-coding mRNAs AS_NOP56

2 FTMT30000000001.1 −193 MT-ND5 Protein-coding mRNAs AS_MT-ND6

3 FTMT20300078215.1 −188 APOA1BP Protein-coding mRNAs AS_GPATCH4

4 FTMT24100001922.1 −187 H2AFX Protein-coding mRNAs AS_HMBS

5 MICT00000370386.1 −185 MT-TA Structural RNAs AS_MT-ATP6

6 MICT00000370386.1 −185 MT-TA Structural RNAs AS_MT-ATP8

7 MICT00000370386.1 −185 MT-TA Structural RNAs AS_MT-CO3

(Continued on following page)
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2008; Pelechano & Steinmetz, 2013), with many studies focusing
on antisense transcript–mediated epigenetic regulation and the
possibility that when transcription is initiated simultaneously from
both sense and antisense start sites, the factors involved in their
transcriptionmay interact to repress gene expression. These results
suggest that the 39 end of PGK1 affects the expression of TAF9B.

The datasets used in these evaluations were not derived from
strand-specific RNA sequencing. However, these findings suggest
that strand-specific RNA-seq or knockdown experiments may fa-
cilitate a better understanding of the hypoxic response and should
be considered in the future.

Thus, this article describes the use of FANTOM-CAT and other
open data sources to facilitate the exploratory analysis of existing
data. We first evaluated the ncRNA metabolic process and provided
a dataset that will help generate hypotheses for clarifying specific
ncRNA intracellular responses. We used this approach to further
characterize hypoxia-responsive transcripts and overcome the
native bias in genome research toward known genes. Our study used
the increased processing power of computers to enable the appli-
cation of big data analysis to drive discovery. We believe that this
data-driven approach is increasingly necessary to help advance
genomic research. Our data suggest that FANTOM-CAT has not been
widely used in research despite its obvious value. Thus, we designed
this study to showcase the value of FANTOM-CAT–derived transcript
annotation as a means to uncover new targets for investigation and
validation. Our evaluation of the hypoxia data uncovered a novel
connection between PGK1 and TAF9B which was not reported in any
other evaluations despite their critical value in hypoxia.

Thus, we suggest that this approach can be applied to other
questions to facilitatemore nuanced and less biased evaluations of
large RNA-seq datasets and propose that FANTOM-CAT should be
commonly evaluated as an indispensable tool in transcriptome
evaluations.

Materials and Methods

Evaluating the number of articles with descriptions of FANTOM

We used the following queries across our PMC web search (con-
ducted on 9 April 2022):

RNA-Seq: “rna-seq”[MeSH Terms] OR “rna-seq”[All Fields] OR
(“rna”[All Fields] AND “seq”[All Fields]) OR “rna seq”[All Fields]. RNA-
Seq AND GENCODE: (“rna-seq”[MeSH Terms] OR “rna-seq”[All Fields]
OR (“rna”[All Fields] AND “seq”[All Fields]) OR “rna seq”[All Fields])
AND “gencode”[All Fields].

RNA-Seq AND FANTOM: (“rna-seq”[MeSH Terms] OR “rna-seq”[All
Fields] OR (“rna”[All Fields] AND “seq”[All Fields]) OR “rna seq”[All

Fields]) AND “fantom”[All Fields] to identify any relevant publica-
tions. Once identified, we downloaded the relevant article infor-
mation inMEDLINE format and calculated the number of publications
per year based on the date of publication.

Public gene expression data

We then collected the RNA-seq data (https://doi.org/10.6084/m9.figshare.
14141219.v1) from495pairsof humanhypoxia–normoxia samples evaluated
in our previous study (Ono & Bono, 2021).

Gene expression quantification

The expression of coding genes was quantified using ikra 1.2.3
(https://github.com/yyoshiaki/ikra) as previously reported. The
following procedure was used to quantify gene expression when
FANTOM-CAT was used as the reference sequence. As there were no
FASTA-formatted files for these data recorded in the FANTOM-CAT
repository, we created a FASTA file based on the GTF file data using
gffread v0.12.1 and the following command:

%gffread FANTOM_CAT.lv4_stringent.only_lncRNA.gtf -g hg19.fa
-w lv4.fa.

We used salmon 0.14.0 for index creation and quantification (https://
github.com/no85j/hypoxia_code/tree/master/salmon/salmon_v0.14.0),
with some modifications to Pitagora-cwl (https://github.com/pitagora-
network/pitagora-cwl/tree/master/tools/salmon) and tximport 1.18.0
(https://github.com/no85j/hypoxia_code/tree/master/tximport)
to match as closely as possible with the quantification method used in
our previous studies (Bono & Hirota, 2020; Ono & Bono, 2021). We then
calculated scaledTPM for use this as a representative value for gene
expression (Soneson et al, 2016). Our quantitative RNA-seq data are
accessible at figshare (https://doi.org/10.6084/m9.figshare.19679520.v1).

HN-score

The fold change of the [scaledTPM] + 1 values for each of the 495
sample pairs was calculated, and differential expression was de-
termined at a 1.5-fold cutoff. We then produced the hypoxia–
normoxia (HN) score for this data by taking the number of samples
demonstrating significant up-regulation and subtracting the
number of samples with significant down-regulation of their overall
expression profile. Here, we added a second HN-score calculation
method using different reference transcripts to allow for a more
nuanced evaluation. These scores were then referred to as HNg
(coding genes) and HNf (coding and noncoding gene), respectively.
This first score was designed to evaluate the coding gene and was
calculated from the previously published dataset (https://doi.org/
10.6084/m9.figshare.14141135.v1) and the previously described

Table 3. Continued

Transcript ID HNf-score Gene name Gene class Antisense

8 MICT00000370386.1 −185 MT-TA Structural RNAs AS_MT-ND1

9 MICT00000370386.1 −185 MT-TA Structural RNAs AS_MT-ND2

10 MICT00000370386.1 −185 MT-TA Structural RNAs AS_MT-ND3
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HN1.5 cutoff value. This means that the HNf-score is effectively a
descriptor of the HN-score for any FANTOM-CAT transcripts. This
HNf-score was calculated as described above except that FANTOM-
CAT was used as a reference. Transcript annotation was obtained
from the FANTOM-CAT website (https://fantom.gsc.riken.jp/cat/v1/
#/genes), and the HNf-score data are accessible at figshare
(https://doi.org/10.6084/m9.figshare.19679508.v2).

Enrichment analysis

We created UP200 and Down200 gene sets for the top and bottom
200 gene lists of the HNg-score, respectively, and performed en-
richment analysis in Metascape (https://metascape.org/) (Zhou et
al, 2019). We used the default parameters for Metascape settings.

Antisense transcript

We used the bedtools (v2.30.0) program to complete the following
evaluations (Quinlan & Hall, 2010), including the creation of a bed
file in which all the regions of each gene were merged based on the
transcript id of the UP200 and DOWN200 genes identified in the coding
gene dataset. We then used this bed file to identify the transcripts in
the reverse strand using the intersect command.

Visualization

We used TIBCO Spotfire Desktop version 11.5.0 (TIBCO Spotfire, Inc.) to
produce all of our bar and scatter plots, and we used the UpSetR (1.4.0)
package fromR (4.0.3) to createourUpSetplots.We thenused thepandas
(1.2.5), matplotlib (3.2.2), and seaborn (0.11.0) packages in Python (3.8.10) to
complete our violin plotting and visualized the genome coordinates by
adding “FANTOM5 summary Tracks” to the UCSC Genome Browser.

Data Availability

Identifiers of the RNA-seq data used in this study are listed in the
link to the left (https://doi.org/10.6084/m9.figshare.14141219.v1).
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