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Genome-scale metabolic models for natural and
long-term drug-induced viral control in HIV infection
Anoop T Ambikan1,*, Sara Svensson-Akusjärvi1,* , Shuba Krishnan1, Maike Sperk1, Piotr Nowak1,2, Jan Vesterbacka2,
Anders Sönnerborg1,2, Rui Benfeitas3, Ujjwal Neogi1,4

Genome-scale metabolic models (GSMMs) can provide novel in-
sights into metabolic reprogramming during disease progression
and therapeutic interventions. We developed a context-specific
system-level GSMM of people living with HIV (PLWH) using global
RNA sequencing data from PBMCs with suppressive viremia either
by natural (elite controllers, PLWHEC) or drug-induced (PLWHART)
control. This GSMMwas compared with HIV-negative controls (HC)
to provide a comprehensive systems-level metabo-transcriptomic
characterization. Transcriptomic analysis identified up-regulation
of oxidative phosphorylation as a characteristic of PLWHART, dif-
ferentiating them from PLWHEC with dysregulated complexes I, III,
and IV. The flux balance analysis identified altered flux in several
intermediates of glycolysis including pyruvate, α-ketoglutarate,
and glutamate, among others, in PLWHART. The in vitro pharma-
cological inhibition of OXPHOS complexes in a latent lymphocytic
cell model (J-Lat 10.6) suggested a role for complex IV in latency
reversal and immunosenescence. Furthermore, inhibition of
complexes I/III/IV induced apoptosis, collectively indicating their
contribution to reservoir dynamics.
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Introduction

During HIV-1 infection, cellular metabolic activity, combined with
glycolytic enzymes, regulates susceptibility to HIV-1 at the cellular
level (Clerc et al, 2019; Valle-Casuso et al, 2019). Elevated oxidative
phosphorylation (OXPHOS) and glycolysis thus favor infection in
CD4+ T cells (Clerc et al, 2019; Valle-Casuso et al, 2019). CD4+ T cells
up-regulate glycolysis to meet the energy-demanding turnover for
HIV-1 virion production, resulting in their eventual death (Hegedus
et al, 2014; Palmer et al, 2014). After initiation of combination
antiretroviral therapy (cART), virus-induced short-term metabolic
changes do not restore the transient metabolic modulation caused

by the infection. Altered amino acid (AA) metabolism has been
reported in untreated people living with HIV-1 (PLWH) as well as
within the first 2 yr after initiation of cART compared with the HIV-
negative controls (Cassol et al, 2013; Peltenburg et al, 2018). In our
recent extensive multi-omics system biology studies on cohorts
from India (Babu et al, 2019; Gelpi et al, 2021), Cameroon (Gelpi et al,
2021), and Denmark (Gelpi et al, 2021; Villumsen et al, 2022), we
mapped the in-depth metabolomic dysregulation associated with
long-term treatment in PLWH. Our group (Babu et al, 2019; Gelpi et
al, 2021; Villumsen et al, 2022), and others (Mukerji et al, 2016;
Rosado-Sánchez et al, 2019; Valle-Casuso et al, 2019; Meeder et al,
2021; Shytaj et al, 2021), have highlighted how the coordinated
modulation of central carbon metabolism, AA metabolism,
glutaminolysis, and fatty acid biosynthesis can potentiate
accentuated immune aging and cognitive decline in a subset of
PLWH on therapy who have dysregulated metabolic profile.

Elite controllers (EC) are a unique group of PLWH that naturally
control viral replication and maintain a low viral reservoir. Our
recent study indicated that EC had a distinct lipid profile, reduced
inflammation, and increased antioxidant defense which may
contribute to the EC status (Akusjärvi et al, 2022). Moreover, the
integrative proteomic and transcriptomic analysis suggested that
the EC group had a unique metabolic uptake and flux profile
through hypoxia-inducible factor signaling and glycolysis, which
could contribute to the natural control of HIV-1 infection (Akusjärvi
et al, 2022). A study also showed how suboptimal inhibition of
glycolysis in CD4+ T cells decreased the latently infected reservoir
(Valle-Casuso et al, 2019). However, EC is heterogeneous, and one
mechanism of elite control does not exist (Zhang et al, 2018;
Akusjärvi et al, 2022). Instead, PLWH on long-term successful
therapy with prolonged suppressive viremia are more homogenous
in their immune profile (Zhang et al, 2017). A deep understanding of
the immune profile of these groups of HIV-1–infected individuals
could help to develop strategies for analytical treatment inter-
ventions (ATI) to achieve a clinically relevant ART-free HIV cure or
remission (Julg et al, 2019).
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Genome-scale metabolic models (GSMMs) can provide novel
insights toward understanding host–pathogen interactions and
metabolic reprogramming during acute and chronic infections.
When applied to PBMCs, GSMM can contribute to unraveling the
mechanistic processes at the systems level (Ambikan et al, 2022).
By combining contextualized PBMC-specific biological network
analysis, GSMMs, and multi-omics integration, one can attain
holistic and dynamic characterizations of complex rearrange-
ments during disease progression or therapeutic interventions
(Yang et al, 2021; Zeybel et al, 2021).

In the present study, we sought to understand and infer changes
in HIV-1 infection at the system level by comparing successfully treated
PLWH on prolonged cART (herein PLWHART) with the HIV-seropositive
ECs (herein PLWHEC) and HIV-negative controls (herein HC). Contex-
tualized PBMC-specific GSMMs and biological networks were thus
developed for PLWHART and PLWHEC to identify the metabolic alter-
ations during prolonged therapy. We further modulated the key
pathways pharmacologically to determine their role in HIV-1 reservoir
dynamics and immune senescence profile. By combining the multi-
dimensional omics data, our study is the first to provide a compre-
hensivemapping of the immunometabolic dysregulations using GSMM
in PLWHART with successful long-term treatment. Furthermore, our
comparative analysis with PLWHEC offers mechanistic insights into
natural immune control.

Results

Clinical characteristics

The study population included three PLWH cohorts, where two
groups had suppressed viremia (PLWHART and PLWHEC, n = 19 each),
and one untreated group was viremic (herein PLWHVP, n = 19). In
addition, we included 19 HC. Given that extensive transientmetabolic
changes occur in the PLWHVP due to the acute viremic phase, we used
this group to develop the cART-specificmodel only (see the Materials
and Methods section). The clinical characteristics are given in Table
S1. The median (IQR) duration of diagnosed HIV-1 seropositivity in-
fection for PLWHEC was 9 (5–14) yr, and none had received treatment.
In PLWHART, themedian duration of suppressive therapy was 13 (7–17)
yr with no viral blips except for two individuals. At the time of sample
collection, both PLWHART and PLWHEC had undetectable plasma viral
load (<20 copies/ml) and CD4+ T-cell counts (>500 cells/μl) in-
dicative of significant immune reconstitution.

System-level PBMC-based gene expression identifies
dysregulation of OXPHOS in PLWHART

To identify the system-level host response during HIV-1 infection,
we performed transcriptomic profiling of total RNA isolated from
PBMCs. The differential gene expression analysis was performed
between all pair-wise comparisons among the four groups (ad-
justed P < 0.05, Supplemental Data 1). No genes were found to be
dysregulated between PLWHEC and HC, whereas 949 genes were
differentially expressed between PLWHART and HC (adjusted P <
0.05). To identify whether the changes in gene expression between

the groups were due to the altered cell-type proportions, we
performed digital cell quantification (DCQ), estimating cell-type
proportions in each group (Racle & Gfeller, 2020). We character-
ized 18 immune cell populations (Figs 1A and S1). As expected, the
proportion of several cell types was significantly different in
PLWHVP compared with the other groups. No significant difference
in the proportion of cell types was observed between PLWHEC and
HC and the only difference in regulatory T cells (Tregs) was ob-
served between PLWHEC and PLWHART (P < 0.05). Based on the
differentially expressed genes, we identified 1,037 specifically
dysregulated genes in PLWHART (see the Materials and Methods
section) with an explicitly differential regulation in PLWHART

(Supplemental Data 2). Sample clustering using the cART-specific
genes separated PLWHART samples from the other groups (Fig 1B).
One PLWHART sample (marked by an arrow) (Fig 1B) was identified as
belonging to a patient who had been classified in the past as an EC
but started treatment 23 yr after HIV-1 diagnosis (date of diagnosis:
05 January, 1989, treatment initiation 11 December, 2012) due to two
successive viral loads were above the detection limit (240 and 185
copies/ml, respectively). The patient maintained viral load below
detection level following treatment. Gene set enrichment analysis
(GSEA) using MSigDB hallmark gene sets on the ART-specific genes
highlighted that the primary mechanisms related to the long-term
treatment were OXPHOS (adjusted P < 0.05) and reactive oxygen
species (ROS) pathways (adjusted P < 0.1), as the top significantly
regulated gene sets (Fig 1C).

Larger viral reservoir and up-regulated OXPHOS differentiate
PLWHART from PLWHEC

Next, we performed a comparative analysis between PLWHEC and
PLWHART to identify the immune signature during suppressive vi-
remia that is naturally controlled, or cART induced. First, we per-
formed relative reservoir quantification on total PBMC HIV-1 DNA
and observed that PLWHART had a significantly larger reservoir than
PLWHEC (Fig 2A). Furthermore, we performed differential gene ex-
pression analysis between PLWHEC and PLWHART to identify the cART
related changes during suppressive viremia. We identified 1,061
significantly dysregulated genes in PLWHART compared with PLWHEC

(adjusted P < 0.05). There were 400 genes up-regulated and 661
genes down-regulated in PLWHART compared with PLWHEC (Fig 2B).
The dysregulated genes displayed distinct expression patterns in
the two groups and hierarchical clustering, showing apparent
clustering of PLWHART and PLWHEC samples (Fig 2C). No other factors
like age, duration of treatment, and gender showed any clustering
pattern. The GSEA analysis using the MSigDB hallmark gene set
showed that OXPHOS and ROS pathways were significantly enriched
with most of the genes up-regulated in PLWHART (Fig 2D) (false
discovery rate [FDR] < 0.2). Pathways with most genes down-
regulated in PLWHART were not statistically significant. Pathways
such as mTORC1 signaling and glycolysis also appeared in the
analysis, with most of the genes up-regulated in PLWHART but
without passing the significance threshold (FDR > 0.2). OXPHOS was
identified as significantly altered in long-term treated patients.
Therefore, we looked at OXPHOS in detail to find which complexes
were most affected. Among the genes in the five complexes of
OXPHOS (I to V), complexes I (34%), III (45%), and IV (45%) were
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primarily affected in PLWHART compared with PLWHEC (Fig 2E). We
also checked the overlap between the ART-specific genes (n = 1,037)
and the differentially regulated genes between the PLWHART and
PLWHEC (n = 1,061). We observed that 557 genes were overlapping
between the two sets of genes. The gene list enrichment analysis
using MSigDB hallmark gene set identified OXPHOS (adjusted P <
0.001), MYC targets V1 (adjusted P = 0.004), and ROS pathway
(adjusted P = 0.04) as significant pathways. Combining all the data,
up-regulation of the OXPHOS was the hallmark of PLWHART and
complexes I, III, and IV were primarily affected.

Altered flux balance in PLWH on cART is linked to OXPHOS,
glycolysis, and TCA cycle

Given that significant metabolic pathway-centered perturbations
were found in PLWHART, we next performed reporter metabolite
analysis to identify metabolites around which most of the tran-
scriptional changes occurred. Fivemetabolites, namely, superoxide,
ubiquinol, ubiquinone, ferrocytochrome C, and ferricytochrome C
were significantly up-regulated in PLWHART compared with PLWHEC

(adjusted P < 0.2) (Fig 3A). In addition, nicotinamide adenine

Figure 1. System-level transcriptomics signature in PLWHART.
(A) Digital cell-type quantification using Estimating the Proportions of Immune and Cancer cell (EPIC) methodology. Mean cell proportions estimated from the samples
of each of the four cohorts are visualized in the bar graph. (B) Visualization of sample distribution using expression of combination antiretroviral therapy–specific genes
and dimensionality reduction by UMAP. (C) Network visualization of pathways identified as significantly enriched by combination antiretroviral therapy–specific genes.
Nodes are genes and edges represent association with pathways. Node size is relative to the mean expression of the genes among the PLWHART. Genes overlapping
between pathways and high abundance genes are labeled.
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dinucleotide hydrogen, S-adenosyl methionine, and S-adenosyl-L-
homocysteine were predicted to be significantly dysregulated in
PLWHART (adjusted P < 0.2) (Fig 3A). The overall results suggested a
significant change in porphyrin, glycine, serine, and threonine
metabolism, and a positive regulation in OXPHOS. The reactions
involving significant reporter metabolites, catalyzed by genes in
complexes I, III, and IV of OXPHOS (Fig S2), had a distinct expression
pattern in PLWHART compared with PLWHEC. Next, we performed
context (disease state)-specific GSMM and flux balance analysis

(FBA) to calculate the metabolic flux in response to transcriptional
changes in the PLWHART, PLWHEC, and HC cohorts (Fig 3B). Context-
specific metabolic models for PLWHART, PLWHEC, and HC having
6,179, 6,237, and 6,199 reactions and 1,799, 1,842, and 1,834 genes/
transcripts catalyzing them, respectively, were developed (avail-
able: github.com/neogilab/LongART). After excluding the reactions
with same directional fluxes in all the three cohorts and reactions
with insignificant flux (<10−5 mmol/h/gDCW), 80 reactions (Sup-
plemental Data 3) were found to be uniquely regulated in PLWHART

Figure 2. Comparative analysis of PLWHART and PLWHEC.
(A) Relative reservoir quantification using total HIV-1 DNA in PLWHART (n = 17) and PLWHEC (n = 14). (B) MA plot showing differential gene expression results of PLWHART
versus PLWHEC. Negative log2-fold change values represent down-regulation and positive values represent up-regulation in PLWHART. Grey-colored dots denote non-
significant genes (adjusted P > 0.05). (C) Heatmap showing the expression pattern of significantly regulated genes between PLWHART and PLWHEC (adjusted P < 0.05).
Column annotation denotes cohort, age, gender, and duration of combination antiretroviral therapy of the corresponding samples. Row and column clustering was
performed using Euclidian distance. (D) Gene set enrichment analysis results using MSigDB hallmark gene set between PLWHART versus PLWHEC. A positive enrichment
score represents up-regulation and negative score represents down-regulation in PLWHART. Statistically significant pathways are labeled and highlighted by asterisk.
Bubble size is relative to the adjusted P-values of the pathways. *Indicates FDR < 0.2. (E) Schematic visualization of the five complexes of OXPHOS pathway. The heat-
map shows expression pattern of genes belonging to OXPHOS pathway in PLWHART and PLWHEC. Column annotation denotes OXPHOS pathway complexes and row
annotation denotes the cohort. The bottom annotation shows the log2 fold change values of the genes. Red color represents up-regulation and green color represents
down-regulation of the gene in PLWHART compared with PLWHEC.
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compared with PLWHEC and HC cohorts. These reactions belonged
to the AA, nucleotide, carbohydrate, and energy metabolism
pathways. There were also 33 significant transport reactions that
were transporting metabolites between cell compartments. Of the
energy metabolism, pathways surrounding the tricarboxylic acid
(TCA) cycle, including glycolysis, glutaminolysis, and OXPHOS, were
affected in PLWHART (Fig 3C). The OXPHOS reaction converting ADP

to ATP (HMR-6916) had a positive flux in PLWHART whereas no
flux was shown in PLWHEC and HC, indicating that higher energy
was required in PLWHART. There were also cytoplasmic reactions
that appeared to increase the production of α-ketoglutarate
(αKG) in PLWHART. Reactions producing fructose-6-phosphate
(HMR-7749 and HMR-4489), which further feeds the reaction pro-
ducing glutamate (HMR-4300), showed a positive flux in PLWHART,

Figure 3. Context-specific genome-scale metabolic modeling and flux balance analysis.
(A)Network visualization of significant reporter metabolites (adjusted P < 0.2) identified in PLWHART versus PLWHEC. Red-colored nodes represent up-regulated reporter
metabolites and steel-blue colored nodes represent dysregulated (non-directional) reporter metabolites. (B) Workflow diagram of context-specific genome-scale
metabolic model reconstruction. (C) Reaction diagram showing flux balance analysis results. Reactions show specific flux changes in PLWHART compared with PLWHEC and
HC cohorts highlighted with colored arrows. The direction of the arrow represents the flux change of the corresponding reaction in the cohort. (D) Communities
identified from the topology analysis of the metabolic network in PLWHART, PLWHEC, and HC. Node size is relative to betweenness centrality measurement. The top five
ranked genes and metabolites based on betweenness centrality are labeled.
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whereas showing a negative or no flux in PLWHEC and HC, re-
spectively, indicative of higher glutamate production and conver-
sion in PLWHART. The reaction converting glutamate and oxaloacetic
acid (OAA) to αKG and aspartate (HMR-3829) also showed a flux
towards αKG production in PLWHART and the opposite direction in
PLWHEC and HC. Also, the transporter reaction (HMR-6024) trans-
porting αKG from extracellular space to the cytoplasm showed a
flux in PLWHART. The reactions mentioned above signify increased
accumulation of αKG in the cytoplasm in PLWHART that can feed the
TCA cycle in the mitochondria. The reaction producing OAA from
pyruvate (HMR-4143) and the reaction producing αKG from oxa-
losuccinate (HMR-4112) had positive flux in PLWHART indicating
activation of the TCA cycle. To further understand the metabolic
rearrangements, we performed a topological analysis on metabolic
networks generated for PLWHART, PLWHEC, and HC cohorts. The
metabolic networks were generated by drawing edges between
reactants, products, and associated genes of the reactions found to
exhibit significant (>10−5 mmol/h/gDCW) and diverging flux among
the three cohorts. Communities were identified and betweenness
centrality of the nodes was calculated to rank the genes and
metabolites for their influence in the network. The top five
metabolites and genes in PLWHART, PLWHEC, and HC based on
node centrality measurements are shown in Fig 3D. The metabolites
fructose-6-phosphate, OAA, glutamate, and pyruvate uniquely play a
central role in PLWHART indicative of a role of TCA cycle and glycolysis
in differentiating PLWHART from PLWHEC and HC. Transporter genes of
the SLC16 gene family (monocarboxylate transporters) SLC16A3,
SLC16A6, and SLC16A7 were central in all three groups further sug-
gesting a role for pyruvate and lactate transport. Combining these
results, it can be concluded that reactions surrounding the TCA cycle
including glutaminolysis, OXPHOS, and glycolysis differentiate
PLWHART from PLWHEC and HC.

Long-term cART disrupts redox homeostasis in the lymphocytic
cell population

The earlier used antiretrovirals frequently induced severe adverse
effects that were linked to the occurrence of oxidative stress and
mitochondrial damage (Smith et al, 2017). As we observed an up-
regulation of superoxide, ubiquinol, ubiquinone, ferricytochrome C,
and ferrocytochrome C in PLWHART we evaluated total cellular ROS
levels in different PBMCs subpopulations from PLWHART (n = 16),
PLWHEC (n = 16), and HC (n = 18), using flow cytometry (Fig S3A). The
distribution of CD4+ and CD8+ T cells, classical (CM), intermediate
(IM), and non-classical monocytic (NCM) populations are depicted
in UMAP (Fig 4A). The percentage of CD4+ T cells were decreased,
whereas CD8+ T cells were increased in PLWHEC and PLWHART

compared with HC (Fig S3B). PLWHEC also exhibited a decreased
proportion of CM compared with HC, but no other differences were
identified on the monocytic subpopulations (Fig S3C). We did not
observe any significant differences in ROS on CD4+ or CD8+ T cells
(Figs 4B and S3D). In CM, ROS was significantly higher in PLWHART

samples compared with HC (Fig 4B). Some of the PLWHART had
higher ROS, whereas others expressed lower ROS on lymphocytic
cell populations (Fig 4C). Therefore, to determine if long-term
successfully treated HIV-1 infection influenced ROS production,
we divided arbitrarily the PLWHART group into long-term ART ([>10 yr,

n = 8] with a median of 19 [16–22] yr treatment) and short-term
cART ([<10 yr, n = 8] with a median of 7 [6–8] yr treatment). In-
terestingly, levels of ROS were increased in long-term ART com-
pared with short-term ART on CD4+ T cells and compared with
short-term ART and PLWHEC on CD8+ T cells (Fig 4D). ROS levels
were not affected by cART treatment on the monocytic cell
populations (Fig S3E). These data highlights the effects of long-
term cART treatment on oxidative stress and redox homeostasis in
lymphocytic cell populations.

Pharmacological inhibition of OXPHOS influences latency reversal
and immunosenescence in an HIV latent lymphocytic cell model

In the ex vivo part of this study, we showed how up-regulation of
OXPHOS was a signature of PLWHART that differentiated them from
the PLWHEC and how long-term treatment influenced oxidative
stress and redox homeostasis on lymphocytic cell populations.
Therefore, we decided to study the effect of inhibiting OXPHOS
complexes I-V in a lymphocytic latency cell model (J-Lat 10.6) to-
gether with the parental cell line (Jurkat) by targeting complex I
(metformin), complex II (D-α-tocopheryl succinate, aTOS), complex
III (antimycin), complex IV (arsenic trioxide), and complex V (oli-
gomycin) (Fig 5A) with respect to apoptotic properties, latency
reversal and cellular senescence. The drugs did not have any effect
on cell viability (Figs 5B and S4A), although inhibition of complex I,
III, and IV in J-Lat 10.6 increased the levels of Annexin V (a marker
of apoptosis) compared with the respective untreated control,
whereas only inhibition of complex I and IV showed the same effect
in Jurkat cells (Figs 5C and S4B). This indicates the role of OXPHOS
complex III in the apoptotic properties of the HIV-1 latent cell
model. It was only when inhibiting complex IV a significant increase
in HIV-1 reactivation was observed in J-Lat 10.6 cells (Figs 5D and
S4C). Several studies including ours have shown that PLWHART has a
potential for attenuated immune aging due to a shift in gluta-
minolysis, in a subset of PLWHART who had dysregulated metabolic
profiles. A recent pivotal study also indicated a role of gluta-
minolysis in senolysis (removal of senescence cells) as senescent
cells are dependent on glutaminolysis (Johmura et al, 2021). To
prove this, we measured the senescence markers CD57, Ki-67, and
PCNA using flow cytometry and DNA damage marker H2A.X (S139) by
Western blot. Cell surface expression of CD57 was not altered
compared with the respective control when inhibiting the OXPHOS
complexes although a baseline increase in CD57 was seen in J-Lat
10.6 cell compared with Jurkat (Fig S5A–C). The proportion of Ki-
67–negative J-Lat 10.6 cells increased after inhibiting complexes II,
III, and IV, whereas only inhibition of complex IV increased the
proportion of Ki-67 negative Jurkat cells (Figs 5E and S5D). A mild
decrease in KI-67 negative cells was also observed in J-Lat 10.6 cells
when inhibiting complex I (Figs 5E and S5D). Inhibition of complex III
increased PCNA negative J-Lat 10.6, whereas no significant differ-
ences were observed in Jurkat cells (Figs 5F and S5E). Furthermore,
phosphorylation of H2A.X (S139) increased when inhibiting complex
IV and decreased when inhibiting complex I, irrespective of the cell
type (Figs 5G and H and S5F). The original blots were presented as a
source file to Fig 5. Collectively, our data highlighted the potential
role of pharmacological inhibition of the OXPHOS complexes with
differential regulation of latency reversal, apoptotic properties, and
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cellular senescence in lymphocytic HIV-1 latent cell model,
depending on compounds and targeted complexes.

Discussion

In the present study, we combined system-level blood cell tran-
scriptomics and developed context-specific GSMM to provide a
comprehensive system-level characterization of HIV-1 infected
individuals with suppressive viremia either by natural (PLWHEC) or
drug-induced (PLWHART) control. The transcriptomic data identified
up-regulation of OXPHOS as the characteristic feature of PLWHART,
differentiating them from HIV-1 seropositive PLWHEC, who were not
on therapy. Themain dysregulation seemed to occur in complexes I,
III, and IV of the OXPHOS pathway. FBA identified altered flux in
several glycolytic intermediates like pyruvate, αKG, glutamate, and
fructose-6-phosphate in PLWHART compared with PLWHEC and HC.
Long-term cART also affected the redox homeostasis in T lymphocytes.
The in vitro pharmacological inhibition of the OXPHOS complexes in
the latent lymphocytic cell model suggested a role of the complex
IV in latency reversal, complex I, III, and IV in apoptosis, and
complex IV in immunosenescence.

Disrupted AA and central carbon metabolism have been pro-
posed as a prominent characteristic of PLWH on long-term suc-
cessful cART as reported by us and others (Mukerji et al, 2016; Babu
et al, 2019; Rosado-Sánchez et al, 2019; Valle-Casuso et al, 2019; Gelpi
et al, 2021; Meeder et al, 2021; Shytaj et al, 2021; Villumsen et al, 2022).
Altered glutaminolysis (i.e., glutamine lysed to glutamate) and
increased plasma glutamate have been observed in several cohorts
from both high income (Gelpi et al, 2021) and low- and middle-
income countries (Gelpi et al, 2021) and are required for optimal
HIV-1 infection of CD4+ T cells (Clerc et al, 2019). Glutaminolysis is
the primary pathway fueling the TCA cycle and OXPHOS in naı̈ve and
memory T cell subsets which are critical factors for immune re-
covery in successfully treated PLWH (Rosado-Sánchez et al, 2019).
HIV-1 infection is more common in T cells with elevated glycolysis
and OXPHOS and inhibition of these metabolic activities can block
HIV-1 replication and reservoir transactivation (Valle-Casuso et al,
2019). Impairment of the metabolic steps preceding OXPHOS can
also result in lipid accumulation in macrophages (Castellano et al,
2019). Enhanced glycolysis and OXPHOS are characteristics of CD8+ T
cell exhaustion (Rahman et al, 2021). However, long-termmolecular
immune pathogenic consequences of successful cART have not
yet been evaluated. In our study, we identified system-level

Figure 4. Redox homeostasis during suppressive
viremia.
(A) Reactive oxygen species (ROS) detection in
lymphocytic and monocytic cell populations from HC
(n = 18), PLWHEC (n = 16), and PLWHART (n = 18). UMAP
representation showing the distribution of
lymphocytic (CD4+ and CD8+ T cells) and monocytic
(classical monocytes [CM], intermediate monocytes
[IM], and non-classical monocytes [NCM]) cell
populations. (B) Median fluorescence intensity (MFI) of
ROS in CD4+, CD8+, CM, IM, and NCM in the cohort.
Histograms show a representative sample from HC,
PLWHEC, and PLWHART exhibiting the median expression
in each group. (C) Graphs showing MFI of ROS in each
individual from HC, PLWHEC, and PLWHART. (D) MFI of
ROS in PLWHEC (n = 16), short-term ART (sART, n = 8), and
long-term ART (lnART, n = 8). Histograms show a
representative sample from PLWHEC, sART, and lnART
exhibiting the median expression in each group.
Statistical significance was determined using
Mann–Whitney U test (P < 0.05 with *<0.05, **<0.03,
***<0.002) and represented withmedian. See also Fig S3.
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up-regulation of OXPHOS as the main characteristic of PLWH on
long-term cART. When comparing with PLWHEC, an up-regulation of
OXPHOS, and to certain extent glycolysis, was observed in PLWHART.
Given that HIV-1 preferentially selects cells that have elevated
cellular OXPHOS and glycolysis for infection and replication, res-
ervoir seeding (Hegedus et al, 2014; Palmer et al, 2014; Valle-Casuso
et al, 2019) and cell-to-cell spread of HIV-1, this metabolic envi-
ronment permit ongoing replication during cART (Sigal et al, 2011).
Therefore, we hypothesize that up-regulation of OXPHOS in
PLWHART was the reason behind the relatively larger HIV-1 reservoir

in long-term successfully treated infection compared with PLWHEC

with natural control of viral replication. This metabolic modulation
could potentially be a barrier to the post-treatment control of viral
replication.

A recent seminal study showed that a higher HIV-1 viral set point
in untreated patients during acute HIV-1 infection correlated
positively with OXPHOS and that in vitro pharmacological inhibition
of complex I (by rotenone or metformin) and complex III (by
antimycin A) suppressed viral replication and immunometabolism
through an NLRX1 and FASTKD5-dependent mechanism (Guo et al,

Figure 5. Pharmacological inhibition of OXPHOS in lymphocytic HIV-1 latency cell model.
(A) Schematic representation of inhibition of OXPHOS complexes with metformin (complex I), aTOS (complex II), antimycin (complex III), arsenic trioxide (complex IV),
and oligomycin (complex V). (B) Drug toxicity for 24 h treatment of OXPHOS inhibitors. (C) Annexin V positive cells after treatment with OXPHOS inhibitors and respective
controls. (D) Activation from latency in J-Lat 10.6 cells after treatment with OXPHOS inhibitors and respective controls. (E) Percentage Ki-67 negative cells after treatment
with OXPHOS inhibitors or respective controls. (F) Percentage PCNA negative cells after treating with Antimycin or DMSO control. (G) Western blot detection of H2A.X
(S139) and β-Actin in Jurkat and J-Lat 10.6 after treatment with OXPHOS inhibitors or respective controls. (H) Quantification of H2A.X (S139). The graph shows fold change
(Fc) of protein expression in relation to respective control after normalization to β-Actin. Experiments were performed in three biological replicates. Significance was
determined using two-tailed t test (P < 0.05 with * < 0.05, ** < 0.033, *** < 0.002) and represented with mean and SD. Significance for each drug is compared with
respective control. See also Figs S4 and S5.
Source data are available online for this figure.
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2021). Furthermore, we recently observed that blocking glycolysis
with 2-deoxyglucose (2-DG) increased cell death in lymphocytic and
pre-monocytic HIV-1 latent cell models (Gelpi et al, 2021), in line
with other studies (Valle-Casuso et al, 2019; Guo et al, 2021). These
studies indicate a critical role for glycolysis and OXPHOS in HIV-1
immuno-pathogenesis. In the present study, we observed that
latently infected cells treated with antimycin resulted in increased
markers of apoptosis in latent J-Lat 10.6 cells compared with the
parental Jurkat cells. This indicates an increased preferential cell
death of the latently infected cells without latency reversal. Only
inhibition of complex IV by arsenic trioxide showed a small degree
of latency reversal. Both the transcriptomic data and the in vitro
assays indicated the role of complex I, III, and IV as essential
components of the electron transport chain for generation of ATP
and cellular energy requirements. Complexes I and III have a role in
ROS production and are essential in inflammatory macrophages
and T helper 17 (TH17) cells while also playing a vital role in lym-
phocyte activation, proliferation, and differentiation (Yin & O’Neill,
2021). Recently, it has been shown that complex III is crucial for the
suppressive function of Tregs (Weinberg et al, 2019). Our DCQ
identified increased frequency of Tregs in PLWHART compared with
PLWHEC which is in line with recent findings (Caetano et al, 2020);
however, PLWHEC can present more activated Tregs (Gaardbo et al,
2014; Caetano et al, 2020). Finally, an earlier study reported the Cox-
II enzyme leads to reduced T-cell apoptosis in HIV-1 infected cells
(Tripathy & Mitra, 2010). In contrast, our study indicated pharma-
cological inhibition of the complex IV with arsenic trioxide in-
creased apoptosis (as measured by the annexin V) both in latent
J-Lat 10.6 cells and non-latent Jurkat. Interestingly, inhibition of
complex IV in J-Lat 10.6 cells also showed latency reactivation which
could potentially be linked to apoptosis.

In our FBA, we identified altered flux in pyruvate, glutamate, and
αKG in the PLWHART compared with PLWHEC and HC. Recently, we
identified a higher level of glutamate in PLWHART in several cohorts
compared with HC (Gelpi et al, 2021). The level was even higher in
PLWHART with metabolic syndrome (Gelpi et al, 2021). Blood glu-
tamate level has been reported to be higher in PLWH with dementia
(Ferrarese et al, 2001). Reducing the blood glutamate concentra-
tions with blood glutamate scavengers like pyruvate facilitates the
efflux of glutamate from the brain to the blood. This can limit the
neurotoxic effect of glutamate (Boyko et al, 2012) and has been
reported to effectively improve neurological recovery in traumatic
brain injury (Gottlieb et al, 2003; Zlotnik et al, 2007; Boyko et al, 2012).
The coordination between glutamate and pyruvate and its neu-
roprotective role in chronic HIV-1 infected patients on therapy
needs further studies to understand neurological complications in
HIV infection after successful treatment.

Although immune cell senescence decreases the overall cellular
activity, it is associated with a high metabolic need, usually by
increasing aerobic glycolysis. In the case of our lymphocytic cell
culture model, we detected an enrichment of the senescent marker
CD57 compared with the parental cell line, indicative of increased
chronic activation of latently infected cells. Furthermore, we de-
tected increased levels of DNA damage (H2A.X [S139]) (Mah et al,
2010), decreased proliferation (Ki-67) (Lawless et al, 2010), and DNA
replication (PCNA) (González-Magaña & Blanco, 2020) after OXPHOS
inhibition. Earlier studies have shown how OXPHOS inhibition in

human fibroblasts induced senescence (Stöckl et al, 2006).
Therefore, high plasticity of metabolic reprogramming could induce
an increase in glycolysis during OXPHOS inhibition which could
potentially be coupled to induction of senescence in the HIV-1
latent cells during the suppressive therapy.

Our study also showed that ROS was increased in patients on
long-term (median 19 yr) compared with short-term (median 7 yr) of
suppressive therapy. This could be linked to the use of the older
nucleoside reverse transcriptase inhibitors (NRTIs) like zidovudine
(AZT), stavudine (d4T), or didanosine (ddI) as a part of the initial
treatment regimen. The cell’s epigenetic state is closely associated
with ROS-induced oxidative stress due to mitochondrial damage
and altered OXPHOS (Guillaumet-Adkins et al, 2017). It is known that
antiretrovirals such as AZT, d4T, and ddI can cause mitochondrial
damage, ultimately altering OXPHOS (Pinti et al, 2006). Recent
molecular studies have reported that PLWH on treatment has
epigenetic age acceleration (Gross et al, 2016) compared with the
non-infected individuals that can partially be reversed with cART
initiation (Esteban-Cantos et al, 2021). Therefore, understanding the
biological mechanism of potential accentuated aging in PLWH on
long-term successful therapy who were exposed to earlier gen-
eration treatment regimen and dysregulated metabolic profile
could potentially provide a clinical intervention strategy to improve
the quality of life of PLWHART.

In conclusion, our study indicated a system-level up-regulation
of OXPHOS and, to a certain extent, glycolysis in PLWHART compared
with the PLWHEC. Furthermore, we show how this up-regulation could
play a role in latent reservoir dynamics and immunosenescence in
HIV-1–infected individuals with long-term successful therapy.
Pharmacological inhibition of the OXPHOS complexes could have
a role in latency reversal, apoptotic properties, and immunose-
nescence in latently infected cells. Further studies are warranted to
elucidate the molecular mechanisms underlying the observed shift
in OXPHOS in PLWHART and how its coordination with glutaminolysis
can lead to immune dysregulation during successful therapy.

Materials and Methods

Cohort description

The study population includes three groups of PLWH, with two
groups as suppressed viremia (PLWHART and PLWHEC, n = 19 each),
and one group with viremia (PLWHVP herein, n = 19). In addition, we
enrolled 19 HC. The study was approved by the regional ethics
committees of Stockholm (2013/1944-31/4 and 2009/1485-31) and
amendment (2019-05585 and 2019-05584, respectively) and per-
formed in accordance with the Declaration of Helsinki. All par-
ticipants gave informed consent. The patient’s identity was
anonymized and delinked before analysis.

Transcriptomics analysis

PBMCs were used for RNA-sequencing (RNA-Seq) using Illumina
HiSeq2500 or NovaSeq6000 as described by us (Akusjärvi et al,
2022). Differential gene expression analysis was performed using
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the R/Bioconductor package DESeq2 v1.26.0 (DOI: 10.18129/
B9.bioc.DESeq2). Gene list enrichment analysis for cART-specific
genes was performed using enrichr module of python package
GSEAPY v0.9.16 (Subramanian et al, 2005; Chen et al, 2013) and
MSigDB hallmark gene set v7.4. GSEA between PLWHART and PLWHEC

was performed using GSEA v4.1.0 software (Subramanian et al, 2005)
and MSigDB hallmark gene set v7.4. Metabolomics data were
generated using the Metabolon HD4 (Metabolon Inc.) (Akusjärvi
et al, 2022).

DCQ

DCQ by measuring the proportion of different cells in each sample
was performed using the deconvolution algorithm adapted from
Estimating the Proportions of Immune and Cancer cells (Chen
et al, 2013). The reference gene expression profile consists of
gene-level expression data of 18 blood cell types and it is based
on Human Protein Atlas version 20.1 and Ensembl version 92.38.
Signature genes for the 18 blood cell types in the reference profile
were downloaded from CellMarker (Zhang et al, 2019) and Pan-
glaoDB (Franzén et al, 2019). The transcript per million (TPM)
transformed gene expression data of all genes from the samples
were used in the procedure along with reference profile and
signature gene list to estimate the cell proportion.

ART-specific gene identification

Significantly regulated genes (adjusted P < 0.05) in all the pair-wise
comparisons among the four cohorts were used to derive the cART-
specific genes. The list of significant genes in each of the com-
parisons was considered as individual sets and various set oper-
ation procedures were used for the derivation. The set operations
performed are represented below.

ART = {z | z 2 X1 or z 2 X2 or z 2 X3}
NULL = {z | z 2 Y1 or z 2 Y2 or z 2 Y3}
ART-specific genes = {z | z 2 ART and z Ï NULL}

where,

X1 = {z | z is gene regulated in HC versus PLWHART}
X2 = {z | z is gene regulated in PLWHEC versus PLWHART}
X3 = {z | z is gene regulated in PLWHVP versus PLWHART}
Y1 = {z | z is gene regulated in HC versus PLWHVP}
Y2 = {z | z is gene regulated in PLWHEC versus PLWHVP}
Y3 = {z | z is gene regulated in HC versus PLWHEC}

GSMM, FBA, and essentiality analysis

Group-specific human GSMMs were reconstructed by integrating
transcriptomics data on human reference GSMM obtained from
Metabolic Atlas (Robinson et al, 2020). The metabolic model re-
construction was performed using task-driven Integrative Net-
work Inference for Tissues (tINIT) algorithm (Agren et al, 2012, 2014;
Robinson et al, 2020). The algorithm creates a context-specific
model by selecting only reaction that can carry flux based on the
provided transcript expression table (transcript per million). The

reconstructed models were then checked for biological feasibility
by analyzing their capacity to carry out 56 essential metabolic
tasks. FBA was performed using MatLab function solveLP from
RAVEN toolbox v2.4.0 (Wang et al, 2018) and ATP hydrolysis as
objective function. Plasma metabolomics data were used as a
reference to constrain the exchange reactions in the model as-
suming that exchange reaction fluxes were relatively influenced
by availability of extracellular metabolites. We calculated log2-
scaled changes of exchange metabolites against the control
cohort, and it was used proportionally to compute the reaction
bounds.

Network topology analysis was performed on the metabolic
networks generated for the cohorts. The metabolic networks were
created by drawing edges between reactants, products, and en-
zymatic genes of each of the reactions, which showed significant
(>10−5) and varying flux values among the cohorts. The networks
were then analyzed using igraph toolkit. The absolute value of the
flux scaled between 0 and 1 was used as edge weight. Leiden al-
gorithm (Traag et al, 2019) was used to identify communities and the
betweenness centrality of all the nodes was computed. Nodes were
ranked based on their centrality measurement. Nodes with high
centrality were considered as most influential for the existence and
functioning of the network.

Visualization

R package ggplot2 v3.3.2 (Wickham, 2016) was used to create all
bubble plots, scatter plots, and boxplots. R/Bioconductor
package ComplexHeatmap v2.2.0 (Gu et al, 2016) was used to
create all the heat maps. Network diagrams were drawn in
Cytoscape ver 3.6.1 (Shannon et al, 2003). Venn diagrams were
generated using the online tool InteractiVenn (Chen & Boutros,
2011).

Total HIV DNA quantification

Total DNA was extracted from PBMCs using QIAamp DNA mini kit
(QIAGEN) according to manufacturers’ instructions. HIV-1 DNA
quantification was performed using Internally Controlled qPCR (IC-
qPCR) as described by Vicenti et al (2018). In brief, total HIV-1 DNAwas
quantified in PLWHART (n = 17) and PLWHEC (n = 14) using 500 ng of DNA
in duplicates. Quantification was performed using Takara Universal
Mastermix (Takara) on an ABI 7500F using primers (β globin F;
AGGGCCTCACCACCAACTT, β globin R; GCACCTGACTCCTGAGGAGAA,
HXB2 F; GCCTCAATAAAGCTTGCCTTGA, HXB2 R; GGCGCCACTGCTAGA-
GATTTT) and probes (β globin; HEX-ATCCACGTTCACCTTGCCCCACA-
TAM, HXB2; FAM-AAGTAGTGTGTGCCCGTCTG-MGBEQ) targeting β
globin and HIV-1 (HXB2) and normalized to β globin levels.

Cell culture

The latency cell model J-Lat clone 10.6 (NIH HIV reagent program)
was used together with its parental cell line Jurkat. Cells were
cultured in StableCell RPMI 1640 (Sigma-Aldrich) supplemented
with 10% fetal bovine serum (Gibco) and 20 U/ml penicillin and
20 μg/ml streptomycin (Gibco) at 37°C and 5% CO2.
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Drug treatment

Cytotoxicity assays were performed for metformin (Sigma-Aldrich),
arsenic trioxide (Sigma-Aldrich), oligomycin (Sigma-Aldrich), anti-
mycin (Sigma-Aldrich), and aTOS (Sigma-Aldrich) (Fig S3A). Exper-
imental concentrations with low cytotoxicity were chosen and
assayed for 24 h. All assays were performed in biological triplicates
and analyzed for viability using flow cytometry, as described below.

Flow cytometry

PBMCs were subjected to flow cytometry analysis. Samples were
thawed in 37°C water bath and washed with flow cytometry buffer
(PBS + 2% FBS + 2 mM EDTA). Total cellular ROS levels were mea-
sured using the CellROX Deep Red Flow Cytometry Assay Kit
(Invitrogen) according to the manufacturer’s instructions. Briefly,
750 nM of CellROX deep red reagent was added to PBMCs and
incubated for 1 h at 37°C, protected from light. The cells were then
stained with Live/Dead fixable near-IR dye (Invitrogen), and cell
surface markers were detected by incubating cells with anti-CD3
(clone OKT3, BD Bioscience), anti-CD4 (clone SK3; BD Bioscience),
anti-CD8 (clone HIT8a; BioLegend), anti-CD14 (clone M5E2; Bio-
Legend), and anti-CD16 (clone 3G8; BD Bioscience) for 20 min on ice
in flow cytometry buffer. Positive and negative controls for ROS
measurement were performed by incubating cells with either tert-
butyl hydroperoxide (200 µM) or N-acetyl cysteine (5 mM) for 45 min
at 37°C before the addition of CellROX deep red reagent. All cells
were fixed with 2% paraformaldehyde before acquiring on BD FACS
Symphony flow cytometer (BD Bioscience). Compensation setup
was performed using single-stained controls prepared with
antibody-capture beads: anti-mouse Ig, κ/negative control com-
pensation particles set (BD Biosciences) for mouse antibodies and
ArC amine-reactive compensation bead kit (Invitrogen) for use with
LIVE/DEAD fixable dead cell stain kits.

Flow cytometry for cell lines was conducted by extracellular
staining using anti-CD57 (clone HNK-1; BioLegend) and LIVE/DEAD
Near-IR viability stain (Invitrogen) followed by fixation using ki-67
fixation/permeabilization kit (eBioscience). Intracellular staining
was performed using anti-Ki-67 (clone Ki-67; BioLegend) and anti-
PCNA (clone PC10; BioLegend). Analysis of apoptosis was performed
using Annexin-V Alexa647 conjugate (Thermo Fisher Scientific)
staining in combination with LIVE/DEAD Near-IR viability stain
(Invitrogen) prior fixation using 4% PFA. Samples were acquired on
BD FACS Fortessa (BD Bioscience). Flow cytometry data were an-
alyzed and compensated with FlowJo 10.6.2 (TreeStar Inc.) and
statistical analysis was performed using Mann–Whitney U test or
two-tailed t test in Prism 9.3.0 (GraphPad Software Inc.).

Western blot

Cells were lysed in RIPA buffer (Sigma-Aldrich) supplemented with
1× PhosSTOP (Sigma-Aldrich) and 2× cOmplete protease inhibitor
cocktail (Roche) on ice for 30 min. Protein estimation was per-
formed using DC protein assay (Bio-Rad Laboratories) and 37.5–48
μL of protein run in each well on NuPage 4–12% BisTris 20 well, 1 mm
precast gels (Thermo Fisher Scientific) and transferred using the
iBlot transfer system (Invitrogen) with iBlot PVDF Transfer stack

(Invitrogen). Membranes were incubated with Phospho-Histone
H2A.X (Ser139) (Cell Signaling Technology) and β-Actin (Sigma-
Aldrich). Secondary antibody incubation was performed using
Dako Immunoglobulins/HRP (Aglient Technologies) and mem-
branes developed using ECL (Amersham) on ChemiDoc (Bio-Rad
Laboratories). Relative protein quantification was performed using
ImageLab 6.0.1 (Bio-Rad Laboratories) and statistical significance
using a two-tailed t test in Prism 9.3.0 (GraphPad Software Inc.).

Data Availability

The raw RNA sequencing (RNAseq) data have been deposited in the
NCBI/SRA with PRJNA420459. The metabolomics data are available
from dx.doi.org/10.6084/m9.figshare.19747582. All the codes are
available at github: github.com/neogilab/LongART.
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Supplementary Information is available at https://doi.org/10.26508/lsa.
202201405.
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Healy K, Vesterbacka J, Nowak P, et al (2022) Integrative proteo-
transcriptomic and immunophenotyping signatures of HIV-1 Elite
control phenotype: A cross-talk between glycolysis and HIF signaling.
iScience 25: 103607. doi:10.1016/j.isci.2021.103607

Ambikan AT, Yang H, Krishnan S, Svensson-Akusjärvi S, Gupta S, Lourda M,
Sperk M, Arif M, Zhang C, Nordqvist H, et al (2022) Multiomics
personalized network analyses highlight progressive immune
disruption of central metabolism associated with COVID-19 severity.
SSRN doi:10.2139/ssrn.3988390

Babu H, Sperk M, Ambikan AT, Rachel G, Viswanathan VK, Tripathy SP, Nowak
P, Hanna LE, Neogi U (2019) Plasma metabolic signature and
abnormalities in HIV-infected individuals on long-term successful
antiretroviral therapy. Metabolites 9: 210. doi:10.3390/metabo9100210

Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A,
Brotfain E, Shapira Y, Zlotnik A (2012) The effect of blood glutamate
scavengers oxaloacetate and pyruvate on neurological outcome in a
rat model of subarachnoid hemorrhage. Neurotherapeutics 9:
649–657. doi:10.1007/s13311-012-0129-6

Caetano DG, de Paula HHS, Bello G, Hoagland B, Villela LM, Grinsztejn B,
Veloso VG, Morgado MG, Guimarães ML, Côrtes FH (2020) HIV-1 elite
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