












Figure 4. Scc2 binding at double-strand breaks accumulates over time and depends on DNA end resection.
(A, B) Chromatin immunoprecipitation (ChIP)-qPCR time course of (A) Scc2 and (B) RPA binding at the DSB (93% at 90’ and >99% onward). Samples were taken over a 6-h
period at 90 min intervals. A log2 scale visualizes RPA binding. (C, D) ChIP-qPCR of Scc2 binding at a DSB in (C) wild type and sgs1Δexo1Δ (>99% and 86%); (D) wild type and
rad9Δ (both >99%). (E) Left: ChIP-qPCR of Scc2 binding at a DSB in the presence or absence of Scc1 in an Scc1 degron strain (>99% and 96%). Cells were grown and arrested
as indicated in Fig 1. Before break induction, cultures were split in two, with one half receiving auxin and doxycycline and the other half the corresponding amount of
EtOH for 2 h, to degrade Scc1 or not. Each culture was then split again, totaling four and receiving galactose or not. Right: Western blot showing protein levels of Scc1.
Protein samples were taken after 3 h arrest (G2/M, lane 1), subsequent 2 h of either IAA/Doxy (+IAA/Dox, lane 2), or EtOH (−IAA/Dox, lane 5) incubation and following 3 h of
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previous experiments, RPA itself does not facilitate Scc2’s re-
cruitment. A consequence of the reduced affinity of RPA for ssDNA
in the rfa1-G78E background could result in diminished Mec1 re-
cruitment. Although we have not verified this experimentally, this
possibility would support our previous observation that Mec1 is
dispensable for Scc2 recruitment. Furthermore, themodest effect of
rad51Δ on Scc2 suggests that its recruitment is reliant on events
preceding Rad51 filament formation.

Overall, our data suggest that the recruitment of Scc2/4 to DNA
DSBs occurs during, and is dependent on DNA end resection. It
further relies on phosphorylation of histone H2A by Tel1, but not on
Mec1. Although affected by deficient chromatin remodeling, we
believe that this does not extend beyond the impact chromatin
remodeling has on DNA end resection, as the reduction in Scc2
recruitment was comparable with the reduction in RPA coverage.
Whereas Scc2/4’s binding remains confined to the proximity of the
DSB and follows DNA end resection, cohesin is loaded at these sites
but translocates to more distal regions and, contrary to Scc2/4, the
loading of cohesin does require functional Mec1.

Discussion

Cohesin’s accumulation at DNA DSBs and its general dependency
on Scc2/4 for its chromatin loading are both well documented.
However, research in the field of DNA damage repair has been
focusing almost exclusively on cohesin (69). To get mechanistic
insight into how cohesin is loaded at DSBs it is therefore in-
dispensable to understand how its loader gets there in the first
place. Here we provide the first investigation focusing on the
recruitment of Scc2 to DNA DSBs in budding yeast. We find that its
accumulation depends mainly on γH2A and DNA end resection,
neither of which alone suffices to facilitate recruitment. Al-
though cohesin and its loader share several factors needed for
their accumulation at DSBs, our study also uncovered an un-
expected difference between the recruitment of Scc2 and the
loading of cohesin. Whereas both Tel1 and Mec1 are required for
de novo loading of cohesin at DSBs, Mec1 is dispensable for the
recruitment of Scc2.

The significance of DNA end resection for HR based repair is well
established, yet only recently its impact on cohesin is starting to
gain traction (49, 70). We show that Scc2 recruitment emanates from
DSBs coincident with ongoing resection. Similar observations have
been made for chromatin remodelers modulating DNA end re-
section (48); however, we did not find evidence for Scc2’s in-
volvement in this process (Fig 3C). Supported by the fact that
Scc2’s binding at DSBs was significantly reduced in a sgs1Δexo1Δ
mutant, this points towards a unidirectional relationship be-
tween the recruitment of Scc2 and DNA end resection.

In accord with previous data for cohesin, we find that the MRX
complex is required to facilitate the recruitment of Scc2 to DSBs.
This dependencymost likely relies onMRX’ ability to recruit Tel1 and
the resection machinery (71), as recruitment of Scc2 was compa-
rable with the wild type in the nuclease-deficient mre11-D56A and
mre11-H125A mutants which still allow complex formation (72, 73)
(Fig S2A). It was shown that “clean” DSBs, meaning breaks without
DNA adducts, can bypass the need for the initial incision at DNA
ends by MRX and Sae2 to promote Dna2 and Exo1 (74), which would
also explain why deletion of Sae2 had no effect on the accumu-
lation of Scc2 at DSBs (Fig S2B).

Most strikingly, we find that deletion of Mec1 has no effect on
Scc2 recruitment, yet impairs cohesin loading at the DSB. The exact
nature of cohesin’s dependency on Mec1 is still unknown. It was
suggested that phosphorylation of Scc1 at Ser83 by Chk1, pre-
sumably downstream of Mec1, was required for the generation of
damage induced cohesion, yet loading around the break was
unaffected by an S83Amutation (43). Likewise, Scc3 was found to be
phosphorylated by Mec1, both in response to DNA damage as well
as an unperturbed cell cycle (75).

Although both Scc2 and Scc4 harbor multiple consensus motifs
for Mec1/Tel1 (76), we were unable to detect phosphorylation of
these sites in response to DNA damage by mass spectrometry (data
not shown), dampening the possibility of a direct effect on Scc2/4
by either. In vitro experiments have demonstrated that second
strand capture of cohesin is favored if the target is single-stranded.
These events were counteracted by addition of RPA (66). Applying
this concept on a DSB, it can be envisioned that Mec1 phosphor-
ylates RPA (77), destabilizing its association with DNA (78) and
thereby enabling the loading of cohesin by Scc2/4. This is indeed
supported by our finding that Scc2 accumulation at the DSB is
increased in cells harboring the rfa1-G77E mutant compared with
the wild type. It could also be that recruitment of Mec1 affects the
chromatin accessibility around the break, as has been observed at
stalled replication forks (79), which in turn favors the loading of
cohesin (54).

The requirement of γH2A for the recruitment of Scc2 is consis-
tent with what has been observed for cohesin (20). However, pre-
vious studies have shown that the hta1-S129A background causes
accelerated end resection (80), indicating that DNA end resection
by itself is insufficient for Scc2 recruitment. Conversely, it was also
shown that γH2A spreading increases in the absence of Sgs1/Exo1
(81), indicating that also γH2A alone is insufficient for Scc2 re-
cruitment. The fact that recruitment of Scc2 was increased in a
rad9Δ background, likewise shown to have accelerated resection
kinetics but an unaltered γH2A profile (5), lead us to the conclusion
that recruitment is not directly mediated by DNA end resection but
rather augmented by it. However, although end resection deter-
mines Scc2 recruitment, it cannot solely account for cohesin’s
accumulation around the break as cohesin levels increase well

either break induction in the presence (−IAA/Dox +break, lane 7) or absence of Scc1 (+IAA/Dox +break, lane 4) or under no break condition in the presence (−IAA/Dox
−break, lane 6) or absence of Scc1 (+IAA/Dox −break, lane 3). Histone H3 served as a loading control. (A, B, C, D, E) Graphs showmeans and SD of (A, B, E) n = 2 and (C, D) n = 3.
(C, D) t test was used to compare values of Scc2 between wild type and (C) sgs1Δexo1Δ or (D) rad9Δ at respective locations, 180 min after break induction. (E) In (E) binding
of Scc2 in +break was compared between the presence or absence of Scc1 at respective locations, 180 min after break induction. Significance: *P < 0.05; **P < 0.01;
***P < 0.001; ns, not significant. Data were adjusted to the average cut efficiency for respective strain shown in squared brackets.
Source data are available online for this figure.
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beyond resected DNA. Our observation that a transition-state SMC3
mutant accumulates within 1 kb of the break could shed some light
on this phenomenon. As ATP hydrolysis was shown to be required
for cohesin’s translocation along DNA (14), it can be envisioned that
cohesin is loaded by Scc2/4, which is recruited during the process
of end resection, and then translocates away from its loading site.
As cohesin and γH2A show largely overlapping binding profiles in
response to a DSB (20), γH2A could in this case be interpreted as a
signpost for cohesin’s movement. A study conducted on stalled
replication forks found that cohesin ubiquitylation by the Rsp5
ubiquitin ligase enables mobilization of cohesin (82). Interestingly,
this process was driven by Mec1. It could therefore be envisioned
that Mec1 does not enable cohesin loading per se but allows its
relocation from the site of loading either through modification of
cohesin and/or phosphorylation of histone H2A. However, this
notion warrants deeper investigation beyond the aim and scope of

this study. We also cannot exclude the possibility of interspersed
loading sites between our investigated loci.

Because of the complex interplay of DNA end resection and
chromatin remodeling, we reasoned that chromatin remodelers
could dictate the recruitment of Scc2 depending on the biological
context, as previous studies have demonstrated for Scc2 under
unchallenged conditions (54). Given the role of the RSC complex in
the DNA damage response (55) and the requirement of RSC com-
ponents for cohesin loading at DSBs (83), we expected similar
results for Scc2. Although recruitment in the absence of Sth1 was
reduced overall compared with genuine wild type cells (Fig 5A),
there was still a considerable increase in Scc2 loading in response
to the DSB, arguing against Sth1 serving as an Scc2/4 loading factor
also at DSBs. We reason that this reduction is rather due to im-
paired DNA end resection, as demonstrated by hindered RPA
binding (Fig 5B).

Figure 5. Scc2 recruitment is not directly facilitated
by RSC, SWR1, or INO80.
(A) Left: Chromatin immunoprecipitation (ChIP)-qPCR
of Scc2 binding at the double strand break (DSB) site in
a wild type (97%) and a Sth1-AID (85%) strains in the
presence or absence of DSB induction. All cells were
grown in −met media and shifted to benomyl containing
YEP media supplemented with 2 mM Methionine for
G2/M arrest during 3 h. Cultures were then split, and
received galactose or not. Right: ChIP-qPCR of RPA in the
wild type and Sth1-AID strains at the DSB. Cells were
grown as for the left graph. (B) ChIP-qPCR of Scc2 (left)
or RPA (right) binding at a DSB in wild type and swr1Δ
(>99% and 89%). (C) ChIP-qPCR of Scc2 (left) or RPA
(right) binding at a DSB in wt and nhp10Δ (>99% and
91%). (A, B, C) The graphs showmeans and SD of (A) n = 2,
(B, C) n = 3. (A, B, C) t test was used to compare
normalized values of Scc2 between (A) wild type and
−Sth1 in the presence of a break (B, C) wild type and
indicated mutants at respective locations, 180 min
after break induction. In addition, a t test was used to
compare normalized values of RPA between wild
type and indicated mutant. Significance: *P < 0.05;
**P < 0.01; ***P < 0.001; ns, not significant. Data were
adjusted to the average cut efficiency for respective
strain shown in squared brackets.
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Based on our finding that Scc2 recruitment depends on γH2A, we
decided to focus on SWR1-C and INO80-C, both of which have been
proposed to depend on γH2A (57, 59), although this claim has been
contested (81). SWR1-C was demonstrated to be recruited to breaks
facilitating the incorporation of H2A.Z (60), whereas INO80-C cat-
alyzes its removal in addition to general nucleosomal eviction (84).
Although in vitro experiments have demonstrated that incorpo-
ration of H2A.Z benefits DNA end resection, the absence of Swr1 has
reportedly no resection defect in vivo (48, 85). These findings are
not reflected by our results as we do see delayed RPA binding in our
swr1Δ strain (Fig 5B, right). However, this discrepancy could depend
on timing for break induction because ongoing break induction in a
similar experimental setup raised the possibility of a minor re-
section defect (59). An alternative reason could be slower HO ki-
netics (61). Because our data demonstrate that the levels of Scc2 at
the DSB correlate with time (Fig 4A), delayed break induction would
make Scc2, and RPA, binding “lag” behind. Although the level of
break induction in our swr1Δ strain was comparable with the wild
type after 3 h (Fig S4C), we cannot exclude the possibility that the
break kinetics differ from wild type in our experimental conditions.

The absence of Nhp10 resulted in a reduction of Scc2 recruitment
on par with the results obtained for Sth1. Confirming previous
reports, DNA end resection was hampered in this strain (Fig 5C,
right), affecting Scc2 recruitment in a likewise manner (Fig 5C, left),
supporting the hypothesis of DNA end resection being a decisive
factor. Based on these data, we reached a similar conclusion as with
Sth1 and believe that neither SWR1-C nor INO80-C are directly
responsible for recruitment of Scc2 as its binding correlated well
with RPA coverage. However, their impact on DNA end resection

does affect Scc2’s presence at the DSB. Nevertheless, as our in-
vestigation did not comprehensively address all chromatin remod-
elers, we cannot exclude the possibility that other complexes are
responsible for Scc2/4 recruitment at DSBs.

The exact mechanism that facilitates the recruitment of Scc2 to
DSBs remains to be determined. Although Scc2/4 was shown to be
bind poorly to ssDNA in vitro, its affinity for Y-fork DNA was com-
parable with dsDNA (28). It can be envisioned that in the process of
end resection, a similar intermediate is formed, favoring its re-
cruitment. We have previously demonstrated that inactivation of
Scc2 in yeast modulates transcription globally and in response to a
DSB, affecting DSB proximal genes in particular (26). Studies in
human cells have shown that transcriptional repression at DSBs is
mediated by NIPBL and cohesin (86), whereas in yeast, this process
has been credited to DNA end resection (80). Accumulating evi-
dence highlights the significance of RNA and transcription in the
DNA damage response and the modulation of resection (87).
Considering our data, it would be interesting to address the impact
of transcription at DSBs on Scc2 recruitment and vice versa (88).

In summary, we demonstrate that recruitment of Scc2 relies on
phosphorylation of H2A by Tel1 and the subsequent resection of
DNA. Based on this we propose that DNA end resection affects the
loading of cohesin at DSBs in two ways. First, the actual resection
process mediates the recruitment of Scc2/4. Second, the subse-
quent recruitment of Mec1 enables Scc2/4 to load cohesin at DSB
ends, whereupon ATP hydrolysis allows cohesin translocation to
more distal sites (Fig 6C). Together, these data provide a more
detailed insight into the events which facilitate the recruitment of
Scc2 and subsequent accumulation of cohesin at DNA DSBs.

Figure 6. Scc2 competes with RPA and Rad51 for
binding to resected double strand break ends.
(A, B) Chromatin immunoprecipitation-qPCR of Scc2
binding at the DSB, 90 min after break induction in a
wild type (>99%) and (A) an rfa1-G77E mutant strains
(>99%), (B) a rad51Δ strain (>99%). (A, B) The graphs
show means and SD of (A, B) n = 3. (A, B) t test was used
to compare normalized values of Scc2 between (A, B)
wild type and indicated mutants at respective
locations, 180 min after break induction. Significance:
*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.
Data were adjusted to the average cut efficiency for
respective strain shown in squared brackets in
respective figure legend. (C) A schematic summary
illustrating the stage of DSB repair via HR where the
MRX complex has initiated end resection and Tel1 has
mediated H2A phosphorylation. The resulting
recruitment of Scc2/4 then facilitates cohesin loading
at DSB ends provided Mec1 is present. Subsequently,
ATP hydrolysis allows cohesin translocation to more
distal sites.

Recruitment of Scc2/4 to DSB Scherzer et al. https://doi.org/10.26508/lsa.202101244 vol 5 | no 5 | e202101244 10 of 14

https://doi.org/10.26508/lsa.202101244


Materials and Methods

Yeast strains and growth conditions

All S. cerevisiae strains were of W303 origin (ade2-1 trp1-1 can1-100
leu2-3 his3-11,15 ura3-1 RAD5, GAL, and psi+). Yeast extract peptone
(YEP) supplemented with 40 μg/ml adenine was used as yeast media,
unless otherwise stated. For chromatin immunoprecipitation experi-
ments, cells were grown in YEP media supplemented 2% raffinose at
25°C, unless otherwise stated. Arrest in G2/M was induced by addition
of benomyl (381586; Sigma-Aldrich) dissolved in DMSO at a final
concentration of 8 μg/ml, for 3 h, and break induction achieved by the
addition of 2% galactose (final), or not during indicated time periods.
Where applicable, 3-indoleacetic acid (auxin—I3750; Sigma-Aldrich)
was dissolved in 100% EtOH and added at a final concentration of
1 mM. Doxycycline (D9891; Sigma-Aldrich) was dissolved in 50% EtOH
and added at a final concentration of 5 μg/ml. Control samples re-
ceived the respective amount of EtOH. To create nullmutants, the gene
of interest was replaced with an antibiotic resistance marker through
lithium acetate based transformation. Some strains were crossed to
obtain desired genotypes. For a complete list of strains, see Table S1.

FACS analysis of DNA content

G2/M arrest was confirmed by flow cytometric analysis. In brief, 1 ml
of cultures were fixed overnight in 70% EtOH. Samples were
resuspended in 50 mM Tris–HCl, pH 7.8, and treated with RNAse A
(12091021; Thermo Fisher Scientific) shaking at 37°C overnight. Cells
were resuspended in FACS buffer (200 mM Tris, pH 7.5, 211 mM NaCl,
and 78 mM MgCl2) containing propidium iodide (P4170; Sigma-
Aldrich) and sonicated using a Bioruptor Standard (UCD-200;
Diagenode). Samples were analyzed on a BD FACSCalibur (BD
Biosciences) using the CellQuest Pro software.

Protein extraction and Western blotting

To verify auxin-mediated degradation of target proteins, 4 OD units of
cells were collected, washed with water, and resuspended in glass
bead disruption buffer (20 mM Tris–HCl, pH 8.0, 10 mM MgCl2, 1 mM
EDTA, 5% glycerol, and 0.3 M ammonium sulfate) supplemented with
1 mM DTT, cOmplete protease inhibitor (Roche), and 1 mM PMSF. 0.8 g
of acid washed glass beads (G4649; Sigma-Aldrich) were added and
samples vortexed on a VXR Basic Vibrax (Thermo Fisher Scientific) for
lysis. Samples were run on Bolt 4–12% Bis-Tris Plus gels (NW04120BOX;
Thermo Fisher Scientific) before transfer to nitrocellulose membranes
(GE10600002; Sigma-Aldrich). Anti-FLAG (F1804; Sigma-Aldrich), anti-
cdc11 (y-415; Santa Cruz Biotechnology), anti-H3 (ab1791; Abcam), anti-
AID tag (CAC-APC004AM-T; 2B Scientific), and anti-HA (ab137838;
Abcam) antibodies were used in conjunction with appropriate sec-
ondary antibodies from the IRDyes series (LI-COR) and detected on an
Odyssey imaging system (LI-COR).

Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR)

ChIP was performed as described (89), with some modifications. 40
OD units of cells were crosslinked in 1% formaldehyde for 30 min at

room temperature, washed twice in 1× cold TBS, frozen in liquid
nitrogen after resuspension in lysis buffer (50 mM Hepes-KOH, pH
7.5, 140 mM NaCl, 1 mM EDTA, 0.1% Na-deoxycholate, 1% Triton X-100,
1× cOmplete protease inhibitor [Roche], and 1 mM PMSF), and
mechanically lysed using a 6870 freezer/mill (SPEX, CertiPrep).
Whole Cell Extracts were sonicated using a Bandelin Sonopuls HD
2070.2 mounted with an MS73 probe, for optimally sized DNA
fragments (300–700 bp). The protein of interest was purified by
overnight incubation with anti-FLAG (F1804; Sigma-Aldrich) or anti-
RFA antibody (AS07 214; Agrisera), coupled to Dynabeads protein A
(Invitrogen). Samples were then washed successively 2× with lysis
buffer, 2× with lysis buffer (360 mM NaCl), 2× wash buffer (10 mM
Tris–HCl, pH 8, 250 mM LiCl, 1 mM EDTA, 0.5% Na-deoxycholate, and
0.5% NP-40) and once with TE buffer. After elution of samples from
the beads in elution buffer (50 mM Tris–HCl, pH 8, 10 mM EDTA, and
1% SDS) at 65°C for 15min, crosslinking was reversed for both IP and
input samples at 65°C overnight. After 1 h RNAse (VWR) and 2 h
Proteinase K (Sigma-Aldrich) treatment, DNA was purified using a
QIAquick PCR Purification Kit (QIAGEN). Analysis of DNA was per-
formed by qPCR using Fast SYBR Green Master Mix (Applied Bio-
systems) on a 7500 FAST Real Time PCR System (Life Technologies).
Where applicable, data were normalized to an average of N1 and N2
within the same sample. For a list of primers, see Table S2.

Measurement of ssDNA at resected DNA ends

10 ml of cells (OD = 0.7) were collected and resuspended in 500 μl of
extraction buffer (100mMNaCl, 50mMTris–HCl, pH 8.0, 10mMEDTA, and
1% SDS) supplemented with 2 μl β-mercaptoethanol (M6250; Sigma-
Aldrich) and 2.5 μl of Zymolase 100T (20 mg/ml). Cells were lysed for 30
min at 37°C followed by 5 min at 65°C. 250 μl KOAc was added followed
by incubation on ice for 20 min. The lysate was centrifuged and the
supernatant wasmixed with 0.2ml of 5 M NH4OAc and 1ml isopropanol.
The resulting pellet was dissolved in 100 μl of TE and 200 μl isopropanol,
washed with 80% EtOH, and resuspended in 50 μl of TE. 10 μl of each
sample were digested with 10 U of AciI (R0551S; New England Biolabs)
and 10 U MseI (R0525S; New England Biolabs) in a total reaction volume
of 30 μl using CutSmart Buffer (27204S; New England Biolabs) supple-
mented with 1 μl of Ambion RNAse A (AM2271). The digestion was
performed overnight at 37°C. Undigested control samples were treated
equally with the omission of restriction enzymes. Concentration was
measured and adjusted if necessary. Five serial dilutions of 1:5 were
made for each sample and then quantified using Fast SYBR Green
Master Mix (Applied Biosystems) on a 7500 FAST Real-Time PCR
System (Life Technologies). For a list of primers see Table S2. The
difference in average cycles (ΔCt) between digested and undigested
samples was measured and the amount of ssDNA calculated
according to (47).

%ssDNA = 100=
��
1 + 2ΔCt

��
2
�
:

Pulsed-field gel electrophoresis (PFGE) and Southern blot

Break induction at the HO cut site was confirmed with PFGE. The
procedure was carried out as previously described (19). Briefly, cells
were collected and fixed overnight in 70% EtOH at −20°C. Samples
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were resuspended in resuspension buffer (1 M Tris base, pH 7.5, 1.2 M
sorbitol, and 0.5 M EDTA) and lysed in SEMZ buffer (1 M Sorbitol,
50 mM EDTA, 28 mM β-Mercaptoethanol, and 2 mg/ml Zymolyase 100T
[IC320932; VWR]), at 37°C for 90 min. Plugs were then prepared with
SEZ buffer (1 M Sorbitol, 50 mM EDTA, and 1 mg/ml Zymolyase 100T)
and 1% low-melting temperature agarose (A9414; Sigma-Aldrich).
Embedded cells were then lysed in EST buffer (10 mM Tris, pH 8, 100
mM EDTA, and 1% sarcosyl) at 37°C for 45 min. After successive
equilibration in 0.5× TBE, plugs were loaded on a 1% PFGE agarose
(1620137; Bio-Rad) gel prepared in 0.5× TBE. Chromosomes were
separated on a Biorad Chef DIII (Bio-Rad) at 6 V/cm with a 35.4–83.6
s switch time and 120° included angle for 24 h. Gels were subse-
quently subjected to Southern blot using standard techniques. The
PCR product of primers “−1 kb Chr VI cut Fw” and “−0.3 kb Chr VI cut
Rv” served as probe for the break site. A loading control probe for
chromosome V was generated using primers “Southern Chr V Ctrl
Fw” and “Southern Chr V Ctrl Rv” (Table S2). Cut efficiency was
determined by densiometric analysis of Cut and Uncut Chr VI bands
in relation to the Chr V loading control band.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202101244.
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