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1. Curse of dimensionality

We consider high-dimensional observed data containing experimental (technical)
noise. Assume that we have n samples (observations) with d features, with the
jth observation being represented by the d-dimensional real-valued column vector
xj = (x1j , . . . , xdj)

T ∈ Rd consisting of measured values for each of those features.
We denote the observed data matrix as X = (x1, . . . , xn) ∈ Rd×n.

In general, we cannot determine the true values because of experimental errors
in data sampling. We model the presence of noise by variables eij for i = 1, . . . , d
and j = 1, . . . , n. Their values are defined as the differences between the observed
and true values.

eij := xij − xtrueij .

Here, xtrueij represents the true value corresponding to xij . Now, we assume that for
each index of feature i = 1, . . . , d, the random variables xi1, . . . , xin (ei1, . . . , ein,
respectively) are independent and identically distributed. We denote the jth true
data vector and true data matrix as xtruej = (xtrue1j , . . . , xtruedj )T ∈ Rd and Xtrue =

(xtrue1 , . . . , xtruen ) ∈ Rd×n, respectively. Thus, we similarly have noise vectors

ej := xj − xtruej

for j = 1, . . . , n.
For example, when the observed data are the gene expression levels detected

by single-cell RNA sequencing (scRNA-seq), the true data are the actual amounts
of RNA in each single cell, and the sample size n and dimension d represent the
number of single cells and genes, respectively (Fig ST1). In general, gene expression
data can be considerably high-dimensional. For example, mammalian cells contain
approximately 20,000 or more genes.

Figure ST1. Diagram of true data, observed data, and noise in
scRNA-seq data.

When analyzing high-dimensional observed data, the “curse of dimensionality”
(COD), encompassing many issues in this setting, must be addressed. In this study,
we consider the problem of noise significantly affecting the computation of values,
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such as distances, if the dimension d is extremely high. This occurs even if the noise
e for each coordinate is minimal. In particular, we identify two main problems: the
loss of closeness (COD1) and inconsistency of statistics (COD2).

1.1. Curse of dimensionality 1: Loss of closeness. We present several mathe-
matical results that characterize the COD by affecting the computation of distances
between observations. First, we obtain the following proposition.

Proposition 1.1 (Curse of dimensionality 1-i). Assume that the noise vectors
e1, e2, . . . , en are independent and identically distributed (i.i.d.) d-dimensional ran-
dom variables, each with mean vector 0 and covariance matrix σ2Id, where σ2 is a
positive real number and Id is the d × d identity matrix. Moreover, let xtruej and
ej′ be independent of each j, j′ = 1, . . . , n. Then, the expected value of the squared
Euclidean distance between xj and xj′ for distinct j, j′ ∈ {1, . . . , n} satisfies

E(∥xj − xj′∥2) = E(∥xtruej − xtruej′ ∥2) + 2σ2d,

where ∥ · ∥ is the Euclidean norm.

We provide a proof in Appendix B. In the following, we present an interpretation
of the result. If ∥xtruej − xtruej′ ∥ is sufficiently large (∥xtruej − xtruej′ ∥ ≫ σ

√
2d), then

we can regard the distance between the observed data xj and xj′ as a reasonable
approximation of the true distance (∥xj − xj′∥ ≈ ∥xtruej − xtruej′ ∥). In contrast, if

xtruej and xtruej′ are sufficiently close (∥xtruej − xtruej′ ∥ ≪ σ
√
2d), then the distance

information is drowned out by the noise term σ
√
2d.

Proposition 1.1 assumes independence between xtruej and ej′ for the sake of
simplicity. In the following, we do not assume that condition. We present another
result related to the COD. We denote the d-dimensional multivariate Gaussian
distribution with mean µ and the covariance matrix Σ by N(µ,Σ).

Proposition 1.2 (Curse of dimensionality 1-ii [8, Section 2]). Assume that
ej ∼ N(0, Id) are i.i.d. Then, for a distinct j, j′ ∈ {1, . . . , n} such that xtruej =
xtruej′ ,

∥xj − xj′∥ =
√
2d+Op(1) as d → ∞.

Here, the notation Yd = Op(ad) denotes the stochastic boundedness of Yd/ad as
d → ∞ (see Appendix A). We consider equal true data xtruej = xtruej′ ; therefore, the

true distance is 0. However, the observed distance scales as
√
2d; thus, it can be

far from 0 for high dimensions.
In the case of noise distributions that are not Gaussian distributions, Yata and

Aoshima [4] reported the following result, which is an extension of Proposition 1.2.

Proposition 1.3 (Curse of dimensionality 1-iii [4]). Let x1, . . . , xn be i.i.d.
d-dimensional random variables with mean µ and covariance matrix S. If the con-
ditions

(1)
tr(S2)

tr(S)2
→ 0 as d → ∞

and

(2)
Var(∥xj − µ∥2)

tr(S)2
→ 0 as d → ∞
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are satisfied, then for j, j′ = 1, . . . , n with j ̸= j′, it holds that

∥xj − xj′∥ =
√
2tr(S) + op(

√
tr(S)) as d → ∞.

Here, the notation Yd = op(ad) denotes the convergence to zero in the probability
of Yd/ad as d → ∞ (see Appendix A). We summarize its proof [4] in Appendix B. In

this setting, the observed distance scales as
√
2tr(S). Note that tr(S) is the sum of

the variances of the components in the d-dimensional distribution, and this increases
with d assuming each component has some constant variance (noise). The results
show that the Euclidean distances between observations in a high-dimensional space
can contain large noise terms despite the small size of the noise in each coordinate.
Many data analysis methods rely on the computation of the distances between
points. Hence, if this issue is not addressed when dealing with high-dimensional
data, the accuracy of the results may be questionable. However, although principal
component analysis (PCA) does not require any distance calculations, it is affected
by another aspect of the COD, as discussed in the next section.

1.2. Curse of dimensionality 2: Inconsistency of statistics. To explain the
inconsistency of statistics arising from the COD, we first provide a quick review of
PCA, as the inconsistency is closely related to the eigenvalues in PCA.

PCA is a multivariate analysis method that identifies a new coordinate system
corresponding to the directions of the maximal variances of the data. The data can
then be expressed in terms of the new coordinate system.

The underlying theory of PCA can be explained as follows. First, recall that the
sample covariance matrix of X is given as

SX :=
1

n− 1
(X −X)(X −X)T,

where X := XP and P is an n × n matrix such that all the components are 1/n.
That is, X consists of the means of the rows of X. Then, we solve the eigenvalue
problem SXu = λu by using the following solutions:

(3) SXuX,i = λX,i uX,i for i = 1, . . . , d.

where λX,i are the eigenvalues and uX,i are the eigenvectors that are chosen such
that λX,1 ≥ · · · ≥ λX,d and that UX = (uX,1, . . . , uX,d) is an orthogonal matrix.
Note that λX,i = 0 for i = dPCA +1, . . . , d, where dPCA is the maximum dimension of
the PCA-transformed data, that is, dPCA := min{n− 1, d}. The existence of such a
solution is based on the basic linear algebra of symmetric matrices.

The transformed data matrix XPCA in the PCA coordinate system are given as

XPCA := UT
X(X −X).

We call projection UT
X( · −X) PCA projection for data matrix X. Let us consider

the sample covariance matrix SXPCA . Noting thatXPCA = XPCAP = UT
X(X−XP )P =

0 because P 2 = P , we obtain

SXPCA =
1

n− 1
XPCAXPCAT = UT

XSXUX = Λ,

where Λ is a diagonal matrix with diagonal entries λX,1, . . . , λX,d. That is, the
eigenvalue λX,i corresponds to the variance of the data in the ith principal compo-
nent.
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However, in the case of high-dimensional and low-sample-size data, these eigen-
values (and thus, the corresponding variances) may not converge to the true eigen-
values (true variances). [22, Theorem 3.1 and Theorem 3.3] (see Proposition 1.4).
In particular, the explained variances in PCA may be inaccurate. Another perspec-
tive on this problem comes from an application of Chebyshev’s inequality. For a
random variable x with mean µ and variance σ2, the values that x is likely to take
can be characterized by Chebyshev’s inequality.

Pr(|x− µ| ≥ ησ) ≤ 1

η2
for all η > 0,

where Pr(·) represents the probability. Chebyshev’s inequality can be interpreted
as a confidence interval based only on the mean and variance. Thus, the confidence
intervals obtained from Chebyshev’s inequality1 may not reflect the true data space.

Let us review the aforementioned nonconvergence results. Hereafter in this sec-
tion, we consider that the data xj (j = 1, . . . , n) are i.i.d. d-dimensional random
variables with mean µ and covariance matrix S. We also assume that the true
eigenvalues λi (i = 1, . . . , d) of the covariance matrix S are represented by the
generalized spike model

λi =

{
cid

αi , for i = 1, . . . ,m,

ci, for i = m+ 1, . . . , d

with constants ci ≥ 0 for i = 1, . . . , d and α1 ≥ · · · ≥ αm > 0 as the parameters.
Here, we note that for d ≤ n, the eigenvalue λX,i is known to converge in probability
to the true eigenvalue λi as the sample size increases to infinity (n → ∞) [1].
However, this is not always true for d > n, which is considered high-dimensional
and low-sample-size data.

Let ζj := Λ−1/2UT
X(xj − µ) for each j = 1, 2, . . . , n, where Λ−1/2 is the diagonal

matrix with diagonal entries λ
−1/2
1 , . . . , λ

−1/2
d . We consider the following condition:

(c0) The components ζ1j , . . . , ζdj of ζj are independent for each j = 1, . . . , n.

For example, if the data matrix X follow a Gaussian distribution, then condition
(c0) is satisfied. In general, the following statement holds.

Proposition 1.4 (Curse of dimensionality 2-i [19, Corollary 1], [22, Theorem
3.1 and Theorem 3.3]). Assume that condition (c0) holds. For i = 1, 2, . . . ,m such
that αi > 0, under the condition

(c1) d → ∞ and n → ∞ for i such that αi > 1

or the condition

(c2) d → ∞ and d1−αi/n → 0 for i such that αi ∈ (0, 1],

the convergence in probability

λX,i
p→ λi

holds. Moreover, if d1−αi/n ̸→ 0 in condition (c2), then

λX,i

p

̸→ λi.

1In practice, Chebyshev’s equality should be modified to use the sample mean and sample

variance [15]. However, this does not resolve the nonconvergence of the variance.
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Although the proof appears in the aforementioned references, we also provide an
outline of the proof in Appendix B. Next, we consider cases in which condition (c0)
is not satisfied, such as when the data are taken from a t-distribution. Without
assuming condition (c0), the following holds.

Proposition 1.5 (Curse of dimensionality 2-ii [19, Theorem 1]). For i =
1, 2, . . . ,m such that αi > 0, under condition (c1) or the condition

(c3) d → ∞ and d2−2αi/n → 0 for i such that αi ∈ (0, 1],

the convergence in probability

λX,i
p→ λi

holds.

The difference between Proposition 1.4 and Proposition 1.5 is the exponent under
conditions (c2) and (c3). Condition (c2) is weaker than condition (c3). From the
propositions, as d tends to infinity, even increasing the sample size n to infinity
cannot guarantee that the eigenvalues will converge to the true eigenvalues owing to
the effects of noise. We illustrate the regions of convergence given by Proposition 1.4
and Proposition 1.5 in Fig ST2 (a) and (b), respectively.

2. Existing statistical approaches for the curse of dimensionality

In this section, we review the existing statistical approaches established by
Aoshima, Yata, and others [2, 19, 20, 21] for COD2 (inconsistency of statistics). Al-
though the authors reported mathematical results for eigenvectors and PC scores,
we only focus on the eigenvalues of the covariance matrix of data in this section. In
particular, we review the noise reduction methodology [21] in Section 2.1 and cross-
data matrix methodology [20] in Section 2.2. These methodologies are necessary to
develop RECODE in the following section.

2.1. Noise reduction methodology. Yata and Aoshima [21] developed the noise
reduction methodology (NRM) that modifies the eigenvalues of the covariance ma-
trix of data in order to solve COD2 under condition (c0). The eigenvalues after the
modification by the NRM are given as follows:

Noise reduction methodology [21]: The NRM defines the modified eigenvalues

λ̃NRMX,i (i = 1, 2, . . . , d) as

(4) λ̃NRMX,i :=


λX,i −

1

dPCA − i+ 1

dPCA∑
j=i+1

λX,j , i = 1, 2, . . . , dPCA,

0, otherwise.

The key point of modifying the eigenvalues is given by the following result [21],
which corresponds to an improvement in Proposition 1.4 because the conditions for
convergence are weakened.

Proposition 2.1 ([21, Theorem 3]). Assume condition (c0). For i = 1, 2, . . . ,m,
under the conditions

(c1′) d → ∞ and n → ∞ for i such that αi > 1/2.
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or

(c2′) d → ∞ and d1−2αi/n → 0 for i such that αi ∈ (0, 1/2],

the convergence in probability

λ̃NRMX,i

p→ λi

holds.

2.2. Cross-data matrix methodology. In cases in which the data do not satisfy
condition (c0) (e.g., data generated from a multidimensional t-distribution), Propo-
sition 2.1 cannot be used. Accordingly, the NRM does not ensure the resolution of
COD2. In such a setting, Yata and Aoshima proposed another method called the
cross-data matrix methodology (CDM) [20].

Cross-data matrix method [20]: We divide data matrix X = (x1, . . . , xn) into

two disjoint datasets X(1) = (x
(1)
1 , . . . , x

(1)
n1 ) and X(2) = (x

(2)
1 , . . . , x

(2)
n2 ) such that

n1 ≥ n2 and |n1 − n2| ≤ 1. The cross-data matrix SCDM is defined as

SCDM =
(X(1) −X

(1)
)T(X(2) −X

(2)
)√

(n1 − 1)(n2 − 1)
,

where X
(k)

= X(k)P for k = 1, 2. Then, the CDM defines the modified eigenvalues

λ̃CDMX,i (i = 1, 2, . . . , n2 − 1) by the singular value decomposition of the cross-data
matrix:

(5) SCDM =

n2−1∑
i=1

λ̃CDMX,i u
(1)
i (u

(2)
i )T

with λ̃CDMX,1 ≥ · · · ≥ λ̃CDMX,n2−1 .

Then, the following holds for the CDM-modified eigenvalues [20, Theorem 1]:

Proposition 2.2. For j = 1, 2, . . . ,m, under condition (c1′), or the condition

(c3′) d → ∞ and d2−2αi/n → 0 for i such that αi ∈ (0, 1/2],

the convergence in probability

λ̃CDMX,i

p→ λi

holds.

Similar to Proposition 2.1, Proposition 2.2 improves Proposition 1.5 because it
requires a weaker condition for convergence.

2.3. Comparison of NRM and CDM. Finally, in Fig ST2, we illustrate the
differences between the conditions required for convergence in Proposition 1.4,
Proposition 1.5, Proposition 2.1, and Proposition 2.2 when the sample size n and
dimension d are related as n = cdγ .
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Figure ST2. Regions corresponding to conditions (c1), (c2), (c3),
(c1′), and (c2′) that appear in Proposition 1.4, Proposition 1.5,
Proposition 2.1, and Proposition 2.2 in the case of n = cdγ , where
c is a positive constant independent of n and d. The gray areas
indicate the regions of non- or unknown convergence in probability.
The schematic views of (a) and (c) were originally presented in [3]
(see also [2]).

3. RECODE

This section discusses our approach to resolving COD1 (loss of closeness) and
COD2 (inconsistency of statistics).

3.1. Method. First, we develop a method that modifies the observed data to re-
solve COD2. In other words, the eigenvalues of the modified observed data can be
obtained to match the modified eigenvalues in Section 2.

For a high-dimensional observed data matrix X ∈ Rd×n and given any nonneg-

ative real numbers λ̃X,i , we construct a modified data matrix X̃ ∈ Rd×n satisfying
the following requirements:

µX̃ = µX ,(6)

SX̃uX,i = λX̃,iuX,i for i = 1, 2, . . . , d,(7)

λX̃,i = λ̃X,i for i = 1, 2, . . . , d.(8)

Here, µX and µX̃ are the mean vectors of X and X̃, respectively. Moreover, SX̃ is

the sample covariance matrix of X̃.
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The first requirement (6) simply requires the same central position for X and

X̃. The second requirement (7) means that the original eigenvectors also serve as
eigenvectors for the modified data. That is, the structure of the data extracted by
PCA is preserved. The third requirement (8) means that the eigenvalues of the

sample covariance matrix of X̃ coincide with the chosen eigenvalues λ̃X,i . We set

the eigenvalues λ̃X,i (i = 1, 2, . . . , d) as ones λ̃NRMX,i defined by the NRM in Eq. (4).

Alternatively, if the data are not assumed to satisfy condition (c0), then we can use

the eigenvalues λ̃CDMX,i defined by the CDM in Eq. (5).

We need the following lemma for the construction (see Appendix B for the proof).

Lemma 3.1. For a diagonal matrix L ∈ Rd×d, let

(9) Y := UXLUT
X(X −X) +X.

Then, the mean µY and covariance matrix SY of Y satisfy

µY = µX

and

SY uX,i = λX,iL
2
iiuX,i for i = 1, 2, . . . , d,

respectively.

Lemma 3.1 shows that the transformation in Eq. (9) can arbitrarily modify the
eigenvalues of the covariance matrix of the data while satisfying the requirements

(6) and (7). Let Λ̃
1/2
X and Λ

−1/2
X be d × d diagonal matrices with diagonal entries

λ̃
1/2
X,1, . . . , λ̃

1/2
X,d and λ

−1/2
X,1 , . . . , λ

−1/2
X,d , respectively, where we set (Λ

−1/2
X )ii = 0 when

λX,i = 0. Then, replacing L in Lemma 3.1 with Λ̃
1/2
X Λ

−1/2
X (L2

ii = λ̃X,i/λX,i for i

such that λX,i ̸= 0), we define a data matrix X̃ as

(10) X̃ := UX Λ̃
1/2
X Λ

−1/2
X UT

X(X −X) +X.

Then, from Lemma 3.1, the following theorem immediately holds.

Theorem 3.2. For a data matrix X ∈ Rd×n and given any nonnegative real number

λ̃X,i , the data matrix X̃, as defined in Eq. (10), satisfies the requirements (6)–(8).

Suppose we compute the modified data matrix X̃ using the eigenvalues defined
by the NRM in Eq. (4) or the CDM in Eq. (5). Then, under the conditions of
Proposition 2.1 or Proposition 2.2, the modified eigenvalues converge to the true

eigenvalues λi. From Theorem 3.2, the eigenvalues of the modified data matrix X̃
are exactly equal to the modified eigenvalues. That is, COD2 is resolved.

However, the modified data could still be affected by COD1. To comprehensively
resolve COD1 and COD2, we propose the following noise reduction method called
RECODE (resolution of the curse of dimensionality).
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Figure ST3. Illustration of the eigenvalue transformation by RECODE.

RECODE� �
For a data matrix X and parameter ℓ ∈ {1, 2, . . . , d}, RECODE defines the
modified data matrix

(11) X̃ℓ := UX Λ̃
1/2
X,ℓΛ

−1/2
X UT

X(X −X) +X,

where Λ̃
1/2
X,ℓ = diag(λ̃

1/2
X,1, . . . , λ̃

1/2
X,d ) and

λ̃X,i :=

{
λ̃NRMX,i , i ≤ ℓ (PC variance modification),

0, i > ℓ (PC variance elimination).� �
Using a proof similar to that for Theorem 3.2, we present the following theorem.

Theorem 3.3. The RECODE-modified data matrix X̃ℓ satisfies the requirement
(6)–(8). In particular, λX̃ℓ, i

= 0 for i = ℓ+ 1, . . . , d.

RECODE regards the first ℓ principal components (PCs) as the essential part
and the other PCs as the noise part. Thus, RECODE transforms the PC variances
(eigenvalues) by the NRM (4) for the essential part (PC variance modification)
and them to zero to eliminate the noise effect for the noise part (PC variance
elimination) (Fig ST3).

We provide the following result, which explains the modification made by RE-
CODE from another perspective.

Proposition 3.4. Let X − X = UXΣV T
X be the singular value decomposition of

X −X. Then, the RECODE-modified data matrix X̃ℓ can be represented as

X̃ℓ −X = UXΣ̃V T
X .

Here, Σ̃ is the d× n rectangular diagonal matrix with diagonal entries given by

Σ̃ii =

{√
(n− 1)λ̃X,i , i = 1, . . . , ℓ,

0, i = ℓ+ 1, . . . ,min{n− 1, d}.
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In particular, when λ̃X,i is given by the NRM (4),

Σ̃ii =


√√√√Σ2

ii −
1

dPCA − i+ 1

dPCA∑
j=i+1

Σ2
jj , i = 1, . . . , ℓ,

0, otherwise.

Proposition 3.4 can be proved using the fact that Σ is the diagonal matrix
diag(

√
(n− 1)λX,1 , . . . ,

√
(n− 1)λX,d ). From Proposition 3.4, RECODE can be

interpreted as a modification of the singular values of the centered data matrix
X −X (Fig ST4).

In the next section, we present a procedure for estimating the parameter ℓ for
the data and show that RECODE resolves COD1.

3.2. Theory and parameter estimation. In this section, we introduce theories
of RECODE and a method for inferring parameter ℓ. To this end, we assume the
following condition:

(C1) There exists m < dPCA such that the information of the true data matrix Xtrue

is fully explained by the first m PCs of the observed data, that is,

uT
X,i (X

true −Xtrue) = 0 for i = m+ 1, . . . , d.

Here, we note that when Xtrue is sampled from a finite-dimensional manifold,
condition (C1) is satisfied by increasing the sample size n. Under condition (C1),
the information of the true data can be fully captured using at most the first m
PCs of the observed data, that is, a PCA space with a dimension of at most m.
Therefore, the optimal value for the parameter ℓ of RECODE is the minimum m
for condition (C1). Moreover, we obtain the following theorem, which can be seen
as a resolution, via RECODE, of the COD, as shown in Proposition 1.1.

Theorem 3.5. For a fixed data matrix X ∈ Rd×n, let UX and ΛX be defined from
the eigenvalue decomposition SX = UXΛXUT

X of its covariance matrix SX . Let

λ̃X,i (i = 1, 2, . . . , d) be modified eigenvalues such that λ̃X,i ≤ λX,i. Assume that
the noise ej = (e1j , . . . , edj)

T (j = 1, . . . , n) are i.i.d. random vectors with mean 0
and covariance matrix σ2Id and that xtruej and ej are independent for j = 1, . . . , n.
Then, for distinct j, j′ ∈ {1, . . . , n} with the random variables xj = xtruej + ej and
xj′ = xtruej′ + ej′ satisfying the condition that for some m < min{n− 1, d},

uT
X,i (x

true
k − µXtrue) = 0 for i = m+ 1, . . . ,min{n− 1, d}, k ∈ {j, j′},(12)

the inequality

(13) E(∥x̃j − x̃j′∥2) ≤ E(∥xtruej − xtruej′ ∥2) + 2σ2m

holds, where x̃j and x̃j′ are defined by

x̃k := UX Λ̃
1/2
X,mΛ

−1/2
X UT

X(xk − µX) + µX , k ∈ {j, j′}.(14)

The proof is provided in Appendix B. Note that for this theorem, the random
variables xj and xj′ are not columns from the fixed data matrix X, which is con-
stant. Condition (12) corresponds to condition (C1), and the transformation (14)
corresponds to transforming xk using RECODE (11) based on the fixed data ma-

trix X. Moreover, the condition λ̃X,i ≤ λX,i is satisfied if we use the modified
eigenvalues provided by the NRM in Eq. (4).
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⋱

Σℓℓ
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RECODE

a

Elimination
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Figure ST4. Interpretation of RECODE from singular value de-
composition. a, Illustration of the decompositions of observed data

matrix X and RECODE-modified data matrix X̃. These decom-
positions are derived from the singular value decompositions of the

difference data, that is, X−X = UXΣV T
X and X̃ℓ−X = UXΣ̃V T

X .
b, Relationship between the rectangular diagonal matrices Σ and

Σ̃ when the eigenvalue modification is given by the NRM.

From Theorem 3.5, because the second term on the right-hand side of Eq. (13)
does not depend on the dimension d, the transformation (14) prevents the diver-
gence of the distances between the observed data. This is in contrast to the loss of
true information shown in Proposition 1.1. Consequently, we can expect a smaller
error in the observed distance for a smaller m. That is, the minimum m for which
condition (C1) holds is the optimal value for the parameter ℓ in RECODE. With
such a setting, RECODE can resolve COD1 and recover accurate measurements.

To estimate the minimum m for which condition (C1) holds, we present the
following theorem. The proof is provided in Appendix B.
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Theorem 3.6. For m satisfying condition (C1),

λX,i = uT
X,i SEuX,i

holds for i = m + 1, . . . , d, where SE is the covariance matrix of the noise matrix
E = (e1, . . . , en).

From Theorem 3.6, if the covariance matrix SE of the noise is known, we can
numerically estimate the optimal value ℓopt of the parameter ℓ using

(15) ℓopt = min

{
k ∈ {1, . . . , d};

d∑
i=k+1

λX,i ≤
d∑

i=k+1

uT
X,i SEuX,i

}
,

which is an approximation of the minimum m for which condition (C1) empirically.
However, it is difficult to accurately estimate the covariance matrix SE of the
noise from the observed data. Assuming the independence of ei∗ for i = 1, . . . , d,
where ei∗ is the distribution followed by ei1, . . . , ein, the covariance matrix SE

can be evaluated as SE = diag(Var(e1∗), . . . , Var(ed∗)). Therefore, under the
aforementioned assumption, if the noise variances Var(ei∗) (i = 1, . . . , d) are known,
then we can evaluate the optimal parameter ℓopt using Eq. (15). In particular, if
there exists s2 > 0 such that Var(ei∗) = s2 for i = 1, . . . , d, that is, all the noise
variances are equivalent, then we have

d∑
i=k+1

uT
X,i SEuX,i =

d∑
i=k+1

d∑
j=1

Var(ej∗)u
2
X,ji

= s2
d∑

i=k+1

d∑
j=1

u2
X,ji

= (d− k)s2.

Consequently, under the aforementioned conditions, we can estimate the optimal
value ℓopt using

(16) ℓopt = min

{
k ∈ {1, . . . , d};

d∑
i=k+1

λX,i ≤ (d− k)s2

}
.

The previous argument relies on the knowledge of noise variances. Thus, we intro-
duce the following method to estimate noise variances.

Noise variance estimation. We assume the following additional conditions:

(C2) The noise variances for features are equivalent, that is,

∃s2 > 0 such that Var(ei∗) = s2 for i = 1, . . . , d.

(C3) In true data, there are some features without any variation, that is,

∃k (1 ≪ k ≤ d),∃Ik = {i1, . . . , ik} ⊆ {1, . . . , d} s.t. Var(xtruei∗ ) = 0 for i ∈ Ik.

Here, xtruei∗ is the distribution followed by xtruei1 , . . . , xtruein .

From conditions (C2)–(C3), we can evaluate the noise variance s2 as

s2 ≈ s2X⋆,i for i ∈ Ik,
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where s2X⋆,i are the sample variances and the symbol ⋆ indicates the sample values.

To verify this, we note that if i ∈ Ik, then Var(xtruei∗ ) = 0, and s2X⋆,i ≈ Var(xi∗) =

Var(ei∗) = s2 consequently.
Therefore, if k is sufficiently large, the mode of the sample variances becomes s2.

This mode can be estimated by constructing a histogram of the variances, that is,

s̃2 =
k̃∆bin + (k̃ + 1)∆bin

2
,(17)

k̃ := argmax
k∈N

#
{
i = 1, . . . , d | k∆bin ≤ s2X⋆,i < (k + 1)∆bin

}
.

Here, N is the set of nonnegative integers, and ∆bin is the bin size for the histogram.
For example, Fig ST5 shows a scatter plot and a histogram of the variances of

the test data in Section 3.4 with a sample size of 1,000 and dimension 20,000. The
dashed lines indicate the estimated noise variance s̃2. Here, the bin size ∆bin for the
histogram is automatically set using the histogram binwidth optimization method
[16].

Figure ST5. Variance plots of test data in Section 3.4. a, Scatter
plot of variances and features. b, Histogram of variances. The red
dashed lines indicate the estimated value s̃2 of the noise variance.
The true noise variance s2 is 1/3.

3.3. Computation. In Fig ST6 and Fig ST7, we show the algorithms of RECODE
and RECODE with parameter estimation, respectively. The procedures (R1)–(R3)
and (E1)–(E2) are given as follows:

(R1) Compute the PCA projection UT
X⋆( · −X⋆) for the sample data matrix X⋆

by solving the eigenvalue problem SX⋆uX⋆,i = λX⋆,i uX⋆,i (i = 1, . . . , d), in
which the eigenvalues satisfy λX⋆,1 ≥ · · · ≥ λX⋆,d (e.g., by using singular
value decomposition methods).

(R2) Compute the diagonal matrix Λ̃
1/2
X⋆,ℓ = diag(λ̃X⋆,1, . . . , λ̃X⋆,ℓ, 0, . . . , 0), where

modified eigenvalues λ̃X⋆,i (i = 1, . . . , ℓ) are computed by the NRM (4).

(R3) Compute the RECODE-modified data matrix X̃⋆ using (11), that is,

X̃⋆ = UX⋆Λ̃
1/2
X⋆,ℓΛ

−1/2
X⋆ UT

X⋆(X⋆ −X⋆) +X⋆.

(E1) Estimate the noise variance s̃2 using the noise variance estimation (17).
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(R2) Eigenvalue modifica�on

(R3) Denoising

Output: modified data matrix X~�

(R1) PCA projec�on

Input: observed data matrix X� Input: parameter �

Figure ST6. Flowchart of RECODE.

(R2) Eigenvalue modifica�on

(R3) Denoising

Output: modified data matrix X~�

(R1) PCA projec�on

Input: observed data matrix X�

(E2) Compute parameter �opt

� = �opt

(E1) Es�mate noise variance

Figure ST7. Flowchart of RECODE with parameter estimation.

(E2) Compute the optimal parameter ℓopt using (16).

Recall that the symbol ⋆ indicates sample values.

3.4. Verification. We investigate the COD and verify its resolution via RECODE
using PCA, multidimensional scaling (MDS), t-distributed stochastic neighbor em-
bedding (t-SNE), and uniform manifold approximation and projection (UMAP),
which are standard data analysis methods for scRNA-seq [12, 13, 17].

The test data are set as follows. We sample 1,000 points from two figure-
eight shapes in three-dimensional space as reference data (Fig ST8). The refer-
ence data are embedded in 20,000-dimensional space to satisfy condition (C3) with
k = 18,000, yielding the true data. The observed data are set as the true data with
noise following a uniform distribution in [−1, 1] for each feature. Note that the
rank of the true data is 3, and the noise variance Var(ei∗) is 1/3 for i = 1, . . . , d.
Moreover, in this setting, noise does not affect the PCs in the PCA. Therefore,
conditions (C1)–(C3) are satisfied.

We apply RECODE with parameter estimation, as shown in Fig ST7, to the
observed data. In the process of noise variance estimation (E1), the estimated
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Figure ST8. Reference data (two figure-eight shapes).

value s̃2 of the noise variance is evaluated as 0.3304 (see Fig ST5). In the process of
parameter estimation (E2), the optimal parameter ℓopt is evaluated as 8 (Fig ST9).

Figure ST9. Parameter estimation and modified eigenvalue. a,
Estimation of optimal parameter ℓopt using Eq. (16). b, Modified
eigenvalues λX̃,i (1 ≤ i ≤ 100) by RECODE.

Fig ST10 shows the two-dimensional projections by PCA, MDS, t-SNE, and
UMAP for the true data, observed data, and RECODE-modified data. As the
computations for MDS, t-SNE, and UMAP involve the computation of distances,
COD1 (loss of closeness) renders them unable to recover the correct structure of the
reference data. We also consider the cumulative contribution rates (Fig ST11 and
Table ST1) of the PCs of the PCA. As explained in Section 1.2, the contribution
rates of PCA are affected by COD2 (inconsistency of statistics). However, the
correct structure of the data and contribution rates are recovered using RECODE
(Fig ST11 and Table ST1). Consequently, we conclude that RECODE can resolve
COD1 and COD2.
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Figure ST10. Two-dimensional projections by PCA, MDS, t-
SNE, and UMAP for true data, observed data, and RECODE-
modified data. Colors correspond to those used in the reference
data in Fig ST8.

Figure ST11. Contribution rates (blue) and cumulative contribu-
tion rates (red) for the first 50 PCs of PCA.
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Table ST1. Contribution rates of PCA.

PC1 PC2 PC3

True data 72.11% 21.07% 6.82%

Observed data 2.58% 0.83% 0.34%

RECODE 67.40% 19.78% 6.47%

4. RECODE for single-cell RNA-sequencing data

In this section, we propose an extension of RECODE to scRNA-seq data rep-
resented by unique molecular identifier (UMI) counts. Specifically, scRNA-seq in-
volves the examination of the entire RNA information of single cells. As scRNA-seq
technology reacts to and sequences randomly selected RNA molecules in single cells,
scRNA-seq data involve noise from random sampling. Generally, the variance of
noise from random sampling increases in proportion to the true expression values.
Therefore, the variations in genes with low expression values are hidden by those
in genes with high expression values. Moreover, scRNA-seq data do not satisfy
the condition that the variances of noise are constant; meeting such a condition
is required in parameter estimation in RECODE, as explained in Section 3.2. To
resolve this issue, we analyze the statistics of noise in scRNA-seq data and propose
an extension of RECODE that involves pre- and postprocessing.

4.1. Statistical theory and method. We introduce the notation used in this
subsection. For each pair (i, j) (i = 1, . . . , d, j = 1, . . . , n), let cij and ctrueij be
random variables representing the UMI count and RNA count of gene i in cell j,
respectively. Note that cij and ctrueij are nonnegative integers. Let tj and ttruej be
the total counts of UMI and RNA of cell j; that is,

tj =

d∑
i=1

cij and ttruej =

d∑
i=1

ctrueij ,

respectively. As the scales of cij and ctrueij can vary significantly, we consider the
observed and true data scaled as xij = cij/tj and xtrueij = ctrueij /ttruej , respectively.
Then, the noise eij of gene i for cell j is defined as follows:

eij = xij − xtrueij .

Next, we consider the distribution of the UMI count data. The procedure for
obtaining scRNA-seq data consists of six technical steps (Fig ST12), which can be
divided into three types: copying, amplification, and sequencing. The copying and
sequencing steps consist of random sampling errors because they involve randomly
selecting molecules. In contrast, the amplification step involves an error caused
by amplification, which is different for each molecule. UMI count data are known
to be free from amplification errors because of the use of UMI tags [10]. In the
UMI count data, each RNA is given a different UMI tag before amplification. This
cancels the amplification errors. Therefore, we assume that the UMI count data
are mainly affected by random sampling errors.

In this subsection, we recall that the random variables cij , which represent the
UMI counts, are i.i.d. for j = 1, . . . , n. When tj and xtrueij are given, the probability
of cij = k can be regarded as the probability of obtaining exactly k successes in
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Library sequencing
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Figure ST12. Workflow of scRNA-seq and classifications of data
sampling processes.

tj independent Bernoulli trials with probability xtrueij . Then, the observed data cij
follow a binomial distribution conditioned on the values of tj and xtrueij :

Pr(cij = k|tj = t, xtrueij = y) = tCky
k(1− y)t−k, k = 0, 1, . . . ,

where aCb is the binomial coefficient

aCb =

(
a

b

)
=

a!

(a− b)!b!

indexed by a ≥ b ≥ 0. Here, because the dimension d is large, each RNA count
ctrueij is small relative to the total number of RNA counts ttruej . It is reasonable to
assume that the ratio xtrueij = ctrueij /ttruej of the RNA content is small. Accordingly,
under the assumption that the total number of UMI counts tj is sufficiently large,
the UMI counts cij approximately follow a Poisson distribution with parameter
tjx

true
ij . Thus, in the following, the conditional probability of cij is assumed to be

a Poisson distribution:

(18) Pr(cij = k|tj = t, xtrueij = y) = Poisson(k;λ = ty) =
(ty)ke−ty

k!
.

As discussed in many studies [5, 7, 10, 11, 18], UMI counts cij are known to
be related to Poisson distributions. However, we note that the parameter λ de-
pends on the random variables tj and xtrueij ; hence, cij do not necessarily follow a
Poisson distribution. In fact, we may observe larger variances than those when a
Poisson distribution is assumed. These phenomena are often called overdispersions.
To explain these phenomena, distributions such as a gamma or negative binomial
distribution have been considered [5, 7]. However, these distributions require the
fitting of parameters in order to infer statistics.
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In contrast, using our analysis, we can derive the variance Var(xij) of scaled data
without using any parameters, as follows:

Theorem 4.1. Under the conditional probability (18),

Var(xij) = Var(xtrueij ) + E(xij/tj), i = 1, . . . , d, j = 1, . . . , n

holds.

We provide a proof in Appendix B. A previous study [7] and its related literature
claimed that the noise variance Var(eij) is explained by the mean E(xij) of the
scaled data xij = cij/tj . In contrast, we emphasize that when xtrueij is constant, the
noise variance can be expressed as Var(eij) = E(xij/tj) from Theorem 4.1. That is,
the noise variance Var(eij) of the scaled data is explained by the mean E(xij/tj) of
the square-scaled data xij/tj = cij/t

2
j . Therefore, we should examine the E(xij/tj)–

Var(xij) relationship rather than the mean–variance relationship, which is verified
in Section 4.3 (see also Fig ST15).

We now introduce the following classification of genes:
ith gene is significant

def⇐⇒ xtrueij ̸= const. for j = 1, . . . , n,

ith gene is non-significant
def⇐⇒ xtrueij = positive const. for j = 1, . . . , n,

ith gene is silent
def⇐⇒ xtrueij = 0 for j = 1, . . . , n.

From this definition, significant genes capture cell-identifiable features, whereas
the non-significant genes (e.g., housekeeping genes) do not identify cell differences.
Silent genes are those that have no functions.

To infer the classification of each gene based on its distribution, we show the
relationships between their means and variances. Let Isig, Inon-sig, and Isilent be
the index sets of significant, non-significant, and silent genes, respectively. From
the definition of gene classification, for j = 1, . . . , n, we have

E(xtrueij )


> 0, i ∈ Isig,

> 0, i ∈ Inon-sig,

= 0, i ∈ Isilent,

Var(xtrueij )


> 0, i ∈ Isig,

= 0, i ∈ Inon-sig,

= 0, i ∈ Isilent.

Therefore, from Theorem 4.1, for j = 1, . . . , n, we obtain the following corollary:

Corollary 4.2. Under the condition of Theorem 4.1, for j = 1, . . . , n,

Var(xij) =


Var(xtrueij ) + E(xij/tj), i ∈ Isig,

E(xij/tj), i ∈ Inon-sig,

0, i ∈ Isilent

holds.

As stated earlier, non-significant genes cannot be used to identify differences
among target cells. This implies that their distribution is a translation of the noise
distribution. Thus, from Corollary 4.2, for i ∈ Inon-sig, the noise variances are
explained using the means of xij/tj .

Furthermore, we note that the variances of non-significant genes with high ex-
pression values may be much larger than those of significant genes with low expres-
sion values, that is, for i ∈ Isig and i′ ∈ Inon-sig,

Var(xij) = Var(xtrueij ) + E(xij/tj) ≪ E(xi′j/tj) = Var(xi′j).(19)
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This causes a problem in PCA; that is, condition (C1) may not be satisfied. In
particular, the PCA may extract the i′th non-significant gene as a principal com-
ponent. We call this third problem of the COD in scRNA-seq data the inconsistency
of principal components (COD3).

On the basis of the aforementioned discussions, we present a normalization to
make the noise variances constant. Let fα : R → R be a function

fα(x) :=


x√
α
, α > 0,

0, α = 0

parameterized by α ≥ 0, with inverse

f−1
α (x) =

√
αx.

Then, we define a normalized random variable zij as

zij := fE(xij/tj)(xij).

We call this normalization a noise variance-stabilizing normalization (NVSN), the
terminology of which is justified below. From Corollary 4.2, it follows that the
variance of zij is

(20) Var(zij) =


Var(ztrueij ) + 1, i ∈ Isig,

1, i ∈ Inon-sig,

0, i ∈ Isilent,

where ztrueij := fE(xij/tj)(x
true
ij ). Thus, the following inequality holds for significant

and non-significant genes:

(21) Var(zij) ≥ 1, i ∈ Isig ∪ Inon-sig.

Let the noise of zij be denoted by

e′ij = zij − ztrueij .

In scRNA-seq data creation, it is considered that the noise derived from random
sampling occurs independently from the behavior of true data, meaning that e′ij
and ztrueij may be independent. Then, from Var(zij) = Var(ztrueij ) + Var(e′ij), we
have

(22) Var(e′ij) =

{
1, i ∈ Isig ∪ Inon-sig,

0, i ∈ Isilent.

Therefore, NVSN stabilizes the noise variances such that they are constant. Note
that NVSN is different from the well-known variance-stabilizing transformation (z-
score transformation), which makes the variances of all features constant.

The baseline of the variances Var(zij) for Isig ∪ Inon-sig is set to one, and the
variances only in Isig take values larger than one. This ensures that the inequality
(19) never occur, that is, for all i ∈ Isig and i′ ∈ Inon-sig,

Var(zij) = Var(ztrueij ) + 1 > 1 = Var(zi′j).

Thus, the normalized data matrix Z = (zij) are expected to satisfy condition (C1)
with a sufficiently small m. Therefore, the normalized data matrix Z = (zij)
are more suitable for regular RECODE than the original UMI count data matrix
C = (cij) or the scaled data matrixX = (xij). Moreover, because the noise variance
is explicitly given by Eq. (22), we can use parameter optimization (15) without the
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noise variance estimation. Furthermore, by eliminating the silent genes in advance,
we can use the simple form (16) of parameter optimization because all the noise
variances of the genes are equal to one (s2 = 1).

After we derive the modified data matrix Z̃ = (z̃ij) by applying regular RECODE
(11) to the normalized data matrix Z = (zij), the modified UMI count data matrix

C̃ = (c̃ij) are obtained by rescaling

x̃ij = f−1
E(xij/tj)

(z̃ij),

c̃ij = tj x̃ij .

We summarize the formulation of RECODE for scRNA-seq data as follows.

RECODE for scRNA-seq data� �
For the scRNA-seq data matrix C = (cij) ∈ Rd×n without silent genes, RE-
CODE defines the modified data matrix

C̃ := F−1(UF (C)Λ̃
1/2
F (C),ℓoptΛ

−1/2
F (C)U

T
F (C)[F (C)− F (C)] + F (C)).

Here,

F : Rd×n → Rd×n such that [F (C)]ij := fE(cij/t2j )
(cij/tj),

ℓopt := min

{
k ∈ {1, . . . , d};

d∑
i=k+1

λF (C),i ≤ (d− k)

}
.

� �
4.2. Computation. We now explain the computations of RECODE to sample
scRNA-seq data. We use the symbol ⋆ to indicate sample values; for example,
C⋆ = (c⋆ij) (i = 1, . . . , d, j = 1, . . . , n) for the sample UMI count data matrix. We
remove silent genes such that c⋆ij = 0 for j = 1, . . . , n in advance from the sample

UMI count data, that is, {1, . . . , d} = Isig ∪ Inon-sig and Isilent = ∅. The total
UMI counts t⋆j and scaled data matrix X⋆ = (x⋆

ij) (i = 1, . . . , d, j = 1, . . . , n) are
computed as

t⋆j =

d∑
i=1

c⋆ij and x⋆
ij =

c⋆ij
t⋆j

,

respectively. We define µ(X/T )⋆,i as

µ(X/T )⋆,i :=
1

n

n∑
j=1

x⋆
ij

t⋆j
.

Note that µ(X/T )⋆,i is the sample mean of square-scaled data x⋆
ij/t

⋆
j = c⋆ij/(t

⋆
j )

2,
which corresponds to an estimate of E(xij/tj) and represents the estimated noise
variance. Then, the normalized data matrix Z⋆ = (z⋆ij) is computed as

(23) z⋆ij = fµ(X/T )⋆,i
(x⋆

ij), i = 1, . . . , d, j = 1, . . . , n.

We apply regular RECODE (11) to the normalized data matrix Z⋆ = (z⋆ij); that
is, we compute the RECODE-modified normalized data matrix

(24) Z̃⋆ = UZ⋆Λ̃
1/2
Z⋆,ℓoptΛ

−1/2
Z⋆ UT

Z⋆(Z⋆ − Z⋆) + Z⋆.
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Here, because the silent genes have already been removed, all noise variances can
be estimated as Var(ei∗) = 1 (i = 1, . . . , d). Therefore, the covariance matrix SE

in the evaluation of the optimal parameter (15) is evaluated as the identity matrix,
that is,

SE = Id.

Consequently, we can compute the optimal parameter ℓopt using

(25) ℓopt = min

{
k ∈ {1, . . . , d};

d∑
i=k+1

λZ⋆,i ≤ (d− k)

}
.

After applying RECODE, the modified data matrix X̃⋆ = (x̃⋆
ij) and modified UMI

count data matrix (RECODE-modified data matrix) C̃⋆ = (c̃⋆ij) are evaluated as
follows:

x̃⋆
ij = f−1

s2E,i
(z̃⋆ij),(26)

c̃⋆ij = t⋆j x̃
⋆
ij .(27)

We summarize the algorithm of RECODE for scRNA-seq data as follows:

I. Compute the normalized data matrix Z⋆ = (z⋆ij) from the UMI count data
matrix C⋆ = (c⋆ij) using the noise variance-stabilizing normalization (NVSN)
(23).

II. Compute the PCA projection UT
Z⋆( · − Z⋆) for the sample data matrix Z⋆

by solving the eigenvalue problem SZ⋆uZ⋆,i = λZ⋆,iuZ⋆,i (i = 1, . . . , d), in
which the eigenvalues satisfy λZ⋆,1 ≥ · · · ≥ λZ⋆,d (e.g., by using singular value
decomposition methods).

III. Compute the diagonal matrix Λ̃
1/2
Z⋆,ℓopt = diag(λ̃Z⋆,1, . . . , λ̃Z⋆,ℓopt , 0, . . . , 0), where

modified eigenvalues λ̃Z⋆,i (i = 1, . . . , ℓopt) and optimal parameter ℓopt are
computed by the NRM (4) and Eq. (25), respectively.

IV. Compute the RECODE-modified normalized data matrix Z̃⋆ by Eq. (24).

Furthermore, compute the RECODE-modified data matrix C̃⋆ = (c̃⋆ij) using

Eqs. (26) and (27). If there exist negative values in C̃⋆ = (c̃⋆ij), these negative
values are modified to zero.

The flow chart is shown in Fig ST13 (see also Fig 3a in the main manuscript).

4.3. Verification by scRNA-seq data. In this section, we test RECODE numer-
ically using the “3k PBMCs from a Healthy Donor” data, an example of scRNA-seq
data represented by UMI counts; these data are obtained from the single-cell gene
expression datasets provided by 10X Genomics, Inc. [6]. The library creation
of scRNA-seq data is conducted with 10X Chromium with version 3.1 chemistry.
The sample data contain 2,700 cells (n = 2,700) and 32,738 genes with 16,104
silent genes. Thus, the dimensions of the data without silent genes are 16,634
(d = 16,634).

We apply RECODE to the scRNA-seq data (Fig ST14). The optimal parameter
value ℓopt, calculated using Eq. (25), is 439 (Fig ST14d). The numbers of significant
and non-significant genes are 8,275 (49.7%) and 8,359 (50.3%), respectively. Here,
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I.   Normaliza�on (NVSN)

III. Eigenvalue modifica�on

IV. Denoising

Output: modified data matrix C~�

II.  PCA projec�on

Input: UMI count data matrix C�

(without silent genes)

Figure ST13. Flowchart of RECODE for scRNA-seq data.

we determine the significance of the genes by the magnitude of the sample variance
s2Z⋆,i of the normalized data as

s2Z⋆,i > 1 ⇔ significant (i ∈ Isig),

s2Z⋆,i ≤ 1 ⇔ non-significant (i ∈ Inon-sig).

Here, s2Y ⋆,i is the sample variance of feature i for the sample data matrix Y ⋆ = (y⋆ij),
that is,

s2Y ⋆,i =
1

n− 1

n∑
j=1

(y⋆ij − µY ⋆,i )
2,

and µY ⋆,i is the sample average, that is,

µY ⋆,i =
1

n

n∑
j=1

y⋆ij .

We first examine the variance model derived by Theorem 4.1. Fig ST15 shows the
relationship among the sample statistics of the genes: (a) the sample mean µX⋆,i of
scaled data c⋆ij/t

⋆
j versus the sample variance s2X⋆,i of scaled data and (b) the sample

mean µ(X/T )⋆,i of square-scaled data c⋆ij/(t
⋆
j )

2 versus the sample variance s2X⋆,i of
scaled data. The blue crosses denote the values of the housekeeping genes that code
the ribosomal proteins and mitochondrial ribosomal proteins (224 genes), which are
biologically categorized as non-significant genes. Suppose that the true value xtrueij

and the noise eij are independent and that the noise variance Var(eij) is explained
by a variable ξij , that is, Var(eij) = φ(ξij) and Var(xij) = Var(xtrueij ) + φ(ξij) (φ:
a function of ξij). Then, it holds that

Var(xij) ≥ Var(xi′j) for i ∈ Isig ∪ Inon-sig and i′ ∈ Inon-sig s.t. ξij = ξi′j .

In other words, the variances of the non-significant genes become minimal for each
value of ξij . In the case of Fig ST15a (ξij = E(xij)), which corresponds to conven-
tional studies that consider Poisson, gamma, and negative binomial distributions,
the variances of some housekeeping genes (blue crosses) are not the minimum val-
ues. In contrast, in the case of Fig ST15b (ξij = E(xij/tj)), most variances of
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III

III IV

a

ed

b c

Figure ST14. Variance (eigenvalue) distributions in the computa-
tional processes in RECODE. The notations over the arrows cor-
respond to those in the flowchart in Fig ST13. The genes on the
horizontal axes (a, b, e) are sorted by means of scaled data. The
PC on the horizontal axes (c, d) denote the principal component.

a b

House Keeping genes Othersmarker genes

Figure ST15. Relationships among sample statistics of genes. a,
sample mean of scaled data versus the sample variance of scaled
data; b, sample mean of square-scaled data versus the sample vari-
ance of scaled data. The red circles and blue crosses denote the val-
ues of the marker genes of PBMC (IL7R, CD79A, MS4A1, CD8A,
CD8B, LYZ, CD14, LGALS3, S100A8, GNLY, NKG7, KLRB1,
FCGR3A, MS4A7, FCER1A, CST3, and PPBP) and the house-
keeping genes that code ribosomal proteins and mitochondrial ri-
bosomal proteins, respectively.

housekeeping genes attain the minimum values; this fact is based on the aforemen-
tioned inequality. Consequently, the mean E(xij/tj) of the square-scaled data can
explain the noise variances more precisely.
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Next, we examine the effectiveness of NVSN. Recall that Fig ST14b shows the
variances s2Z⋆,i of normalized data for each gene. The normalized data matrix Z⋆

satisfy s2Z⋆,i ≥ 1 (i = 1, . . . , d) for almost all genes i, corresponding to Eq. (21), and
some of them are distributed around one. In the biological setting, we can suppose
that the number of non-significant genes is relatively large, meaning that s2Z⋆,i = 1
is satisfied for most genes. This implies that the result may provide further evidence
that our modeling of noise variance (Theorem 4.1 and Fig ST14b) is optimal. These
discussions lead to the applicability of RECODE, which is introduced in Section 5.2.

Next, we verify the effectiveness of RECODE by comparing the RECODE-
modified data with the original data. Hereafter, in the same manner as in this

study, we use X⋆,LN = (x⋆,LN
ij ) for the original data and X̃⋆,LN = (x̃⋆,LN

ij ) for the
RECODE-modified data with size and log scaling, so-called log-normalize method,
given by

x⋆,LN
ij = log2(10

4 × x⋆
ij + 1), x̃⋆,LN

ij = log2(10
4 × x̃⋆

ij + 1).

Fig ST16 shows the variance and coefficient of variation (CV) of the original and
RECODE-modified data after the size and log scaling. As can be observed, the scat-
ter plot for the original data forms a curve at the bottom of the distribution, which
is actually caused by noise. In contrast, this curve is reduced to be approximately
zero after applying RECODE.

Fig ST17 shows the verification of RECODE for COD1 (loss of closeness). The
dendrograms of the hierarchical clustering (Fig ST17a) clearly show that RECODE
preserves large-scale (long-distance) structures and uncovers finer (short-distance)
structures. From Fig ST17b, small Euclidean distances and high correlation coeffi-
cients can be observed after RECODE. Moreover, because the ranges of Euclidean
distances and correlation coefficients after RECODE are wider than those of the
original data, RECODE can discern finer differences among single cells.

Fig ST18 shows the verification of RECODE for COD2 (inconsistency of statis-
tics) and COD3 (inconsistency of principal components). The contribution rates
of the RECODE-modified data are higher than those of the original data owing to
the modification of the eigenvalues (Fig ST18a, c. 4.52% → 14.59% in PC1; 1.60%
→ 5.02% in PC2; 1.15% → 3.53% in PC3). Moreover, the three major principal
components are different before and after the application of RECODE; the former
is correlated with the depth (total counts in each cell) that is known to be inde-
pendent of biological signals (Fig ST18a, b) whereas the latter can represent the
difference among the three major cell types (Fig ST18c). Furthermore, the distri-
butions of cell-specific gene expressions become more significant (Fig ST18d). As
a result, RECODE enables us to correctly infer cell classifications.

From the results in this subsection, we conclude that RECODE can appropriately
resolve the curses of dimensionality in the scRNA-seq data.
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a

b

House Keeping genes Othersmarker genes

Figure ST16. Variance and coefficient of variation (CV) of the orig-
inal and RECODE-modified data after size and log scaling. a,
Scatter plots of mean versus variance. b, Scatter plots of mean
versus CV. The red circles and blue crosses denote the values of
the marker genes of PBMC and the housekeeping genes, respec-
tively.
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a

b

Figure ST17. Verification of RECODE for COD1 (loss of close-
ness). a, Dendrograms of hierarchical clustering based on Ward’s
method for 100 randomly selected cells and heat map for 12 marker
genes. b, Density plots of the Euclidean distances and the corre-
lation coefficients among all cells.
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a b

c d

Original

Original

RECODE

RECODE

Cluster

Cluster 1        Cluster 2        Cluster 3

Original RECODE

Figure ST18. Verification of RECODE for COD2 (inconsistency
of statistics) and COD3 (inconsistency of principal components) a,
PCA plots colored based on depth (total UMI counts). b, Absolute
values of Pearson correlation for depth and principal components.
c, PCA plots colored by clusters. d, Violin plot of gene expression
values of marker genes (IL7R, CD14, and MS4A1 ) for clusters.
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5. Extensions of RECODE

5.1. Fast algorithm. Since (Λ̃
1/2
Z⋆,ℓopt)ii = 0 for i ≥ ℓ+ 1, we can obtain Z̃⋆ by

Z̃⋆ = UZ⋆,ℓoptΛ̂
1/2
Z⋆,ℓoptΛ

−1/2
Z⋆,ℓoptU

T
Z⋆,ℓopt(Z

⋆ − Z⋆) + Z⋆,

where UZ⋆,ℓopt = (uZ⋆,1 . . . uZ⋆,ℓopt) ∈ Rd×ℓopt , Λ̂
1/2
Z⋆,ℓopt = diag(λ̃

1/2
Z⋆,1, . . . , λ̃

1/2
Z⋆,ℓopt) ∈

Rℓopt×ℓopt , and Λ
−1/2
Z⋆,ℓopt = diag(λ

−1/2
Z⋆,1 , . . . , λ

−1/2
Z⋆,ℓopt) ∈ Rℓopt×ℓopt . Moreover, using a

matrix property

d∑
i=k+1

λZ⋆,i =

d∑
i=1

λZ⋆,i −
k∑

i=1

λZ⋆,i = tr(SZ⋆)−
k∑

i=1

λZ⋆,i,

we obtain

ℓopt = min

{
k ∈ {1, . . . , d}; tr(SZ⋆)−

k∑
i=1

λZ⋆,i ≤ (d− k)

}
.

Therefore, we can obtain Z̃⋆ and ℓopt by solving the eigenvalue equations SZ⋆uZ⋆,i =
λZ⋆,iuZ⋆,i for i = 1, . . . , ℓopt + 1.

In practical setting, we set an upper bound parameter ℓ̃ub < min{n, d − 1} and

define ℓ̃opt as

ℓ̃opt = min

{
k ∈ {1, . . . , ℓ̃ub}; tr(SZ⋆)−

k∑
i=1

λZ⋆,i ≤ (d− k)

}
.

Then, we obtain

ℓ̃opt =

{
ℓopt, ℓ̃ub ≥ ℓopt,

ℓ̃ub, ℓ̃ub < ℓopt.

Therefore, by setting ℓ̃ub such that ℓ̃ub ≥ ℓopt, we do not need to compute the

(ℓ̃ub + 1)th and later eigenvalues. That is, it is sufficient to solve the eigenvalue

equation (3) in the procedure II for i = 1, . . . , ℓ̃ub. As ℓopt is unknown, we should

set a sufficiently large value ℓ̃ub. Empirically, it may be sufficient to set ℓ̃ub = 1,000
in single-cell sequencing data analysis.

We compare the runtimes and memory usage of RECODE for the number of cells
(n = 1,000, 5,000, 50,000, 100,000) with those of scREOCDE and other imputation
methods (Fig ST19). We use the same scRNA-seq data as in the review paper of
imputation methods [9], which are Jurkat cell lines [6] (n = 1,000, 5,000) and the
bone marrow cells from sample MantonBM6 [14] (n = 50,000, 100,000) created by

10x Genomics. The upper bound parameter ℓ̃ub in the fast RECODE algorithm
is set to 1,000. The fast algorithm of RECODE (RECODE fast) is faster than the
regular algorithm in n > 1,000 because the fast algorithm works properly when the

number of cells is larger than ℓ̃ub. Compared with that of other imputation methods,
the scalability of the fast algorithm of RECODE is superior (4.84). Meanwhile, the
memory usage is relatively large because RECODE modifies all entries of the target
matrix to real numbers.
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Figure ST19. Comparison of runtime and memory usage of im-
putation methods and RECODE. The dashed lines are the values
of the imputation methods obtained from Hou et al. [9] using
the methods computable when n = 100,000. The solid lines are
computed using our computing environment (CPU: Intel Xeon W-
2223 3.60 GHz). The horizontal axis shows the number of cells
(n = 1,000, 5,000, 50,000, 100,000). The parentheses in the left fig-
ure denote the scalability defined by the linear regression with the
number of cells. The regular algorithm of RECODE cannot be
completed owing to the lack of computational resources when n =
50,000, 100,000.

5.2. Applicability. Using biological knowledge, the applicability of RECODE can
be examined in advance. From Eq. (20), the empirical NVSN variances s2Z⋆,i (i =

1, . . . , d), which is given by

s2Z⋆,i =
1

n− 1

n∑
j=1

(z⋆ij − µZ⋆,i)
2

where µZ⋆,i is the mean of gene i of the normalized data matrix Z⋆ and is expected
to be greater than 1. Generally, most expressed genes are not directly related
to cell identification. In other words, many expressed genes are categorized as
non-significant genes in the scRNA-seq data. Therefore, most of them should be
distributed around 1.

From this consideration, we classify the scRNA-seq data as follows:

Class A (strongly applicable): Satisfy the following conditions:

(A1) The percentage such that 0 < s2Z⋆,i < 0.9 is lower than 1%;

(A2) the peak of the density of log(s2Z⋆,i) is in the interval [−0.1, 0.1].

Class B (weakly applicable): Satisfy (A1) but do not satisfy (A2).

Class C (inapplicable): Do not satisfy (A1) and (A2).
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(A1) indicates that most of the estimated noise variances are not greater than the
observed variances. This implies that the observed data contain the estimated noise.
(A2) represents the majority of variances s2Z⋆,i distributed around 1. It corresponds

to the aforementioned biological knowledge. Satisfying both (A1) and (A2) indi-
cates good estimations of the noise variances (Class A: strongly applicable). By
satisfying (A1) but not (A2), the scRNA-seq data might contain noise other than
the estimated noise. In such a case, RECODE may not remove the effects of the
additional noises (Class B: weakly applicable). Without satisfying both (A1) and
(A2), the modeling of noise may be inappropriate (Class C: inapplicable). The
scRNA-seq data used in Section 3.4 are categorized as Class A. Moreover, in the
10X Chromium datasets [6], all scRNA-seq data examined are categorized as Class
A (Fig ST20). The applicability to other library creation machines, such as Drop-
seq or Smart-seq, is investigated in the main manuscript (see Fig 4 in the main
manuscript).

Figure ST20. Applicability of RECODE to scRNA-seq data (3k
PBMCs from a Healthy Donor, used in Section 4.3). The left box
shows the scatter plots of the mean of the scaled data and the
variance of the normalized data. The right side is the density of
variance of normalized data.

5.3. Extension to single-cell epigenome data. We introduce an extension of
RECODE to scATAC-seq data (single-cell assay for transposase-accessible chro-
matin using sequencing data), which are one of the single-cell epigenome data, to
evaluate genome-wide chromatin accessibility. The features of scATAC-seq data
denote accessible DNA regions. The number of features of scATAC-seq data is
generally larger than that of scRNA-seq data. Therefore, the effect of the COD
may be significant in scATAC-seq data analysis.

To apply RECODE to scATAC-seq data, we need to address the error of double
counts. As scATAC-seq sequences the subregions of the DNA double helix, it
normally counts two times per region. However, it sometimes loses one side of
the double helix. Therefore, the scATAC-seq data mainly consist of even counts;
however, they sometimes contain odd counts (Fig ST21a left). To modify such
errors, we propose the odd–even stabilization:

cstabij := ⌈cij/2⌉, i = 1, . . . , d, j = 1, . . . , n.

Here, cij represents the scATAC-seq data with the ith peak (feature/subregion)
and jth sample, and ⌈·⌉ is the ceiling function. After the odd–even stabilization,
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the frequency of the values in scATAC-seq data smoothly decreases (Fig ST21a
right), and the applicability of RECODE becomes strongly applicable (Fig ST21b).
Therefore, when applying RECODE to scATAC-seq data, odd–even stabilization is
used as the first preprocessing.

a

b

Figure ST21. Odd–even stabilization for scATAC-seq data. a,
Histogram of count values in original and odd–even stabilized
scATAC-seq data. b, Applicability RECODE to original and odd–
even stabilized scATAC-seq data.

We show the formulation of RECODE for scATAC-seq data as follows.

RECODE for scATAC-seq data� �
For the scATAC-seq data matrix C = (cij) ∈ Rd×n that does not contain
features with all zero (ci1 + · · · + cin ̸= 0 for all i), RECODE defines the
modified data matrix

C̃ := F̂−1(UF̂ (C)Λ̃
1/2

F̂ (C),ℓopt
Λ
−1/2

F̂ (C)
UT
F̂ (C)

[F̂ (C)− F̂ (C)] + F̂ (C)).

Here,

F̂ : Rd×n → Rd×n such that [F̂ (C)]ij := fE(cstabij /(tstabj )2)(c
stab
ij /tstabj ),

tstabj =

d∑
i=1

cstabij ,

ℓopt := min

{
k ∈ {1, . . . , d};

d∑
i=k+1

λF̂ (C),i ≤ (d− k)

}
.

� �
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5.4. Discussion of extension to future data. As RECODE does not require
assumptions of true data, it has the potential to be applied to other data containing
random sampling noises, such as the scATAC-seq data, as mentioned in the previous
section. Moreover, the application of RECODE is not restricted to single-cell data.
For example, we confirm the strong applicability of RECODE for spatial gene
expression data, which are non-single-cell sequencing data (one sample contains few
single cells) created by Visium of 10X Genomics, Inc. [6] (Fig ST22). Therefore, in
addition to scRNA-seq data, we can expect the application of RECODE to existing
or future random sampling data. Furthermore, for non-random sampling data, by
analyzing noise variances and applying noise variance-stabilizing normalization in
the same manner, RECODE may resolve the COD of such data.

Figure ST22. Applicability of RECODE for spatial gene expres-
sion data (non-single-cell data) of normal human prostate (FFPE)
generated by Visium of 10X Genomics, Inc. [6].
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Appendix A. Mathematical notation

In this section, we introduce the mathematical notation used in this paper.

Bachmann–Landau notation. For real-valued functions f(x) and g(x), the notation
f(x) = O(g(x)) as x → ∞ is defined to indicate

lim sup
n→∞

∣∣∣∣f(x)g(x)

∣∣∣∣ < ∞.

Stochastic boundedness. For a sequence {Xd} of random variables and a sequence
{ad} of positive numbers, Xd/ad is said to be stochastically bounded as d → ∞,
denoted by Xd = Op(ad), if the following is satisfied:

∀ϵ > 0, ∃C > 0 s.t. lim sup
d→∞

Pr(|Xd| > Cad) < ϵ.

Convergence in probability. For a sequence of random variables {Xd} and sequences
{ad} and {bd} of numbers and positive numbers, respectively, (Xd − ad)/bd is said
to converge to zero in probability as d → ∞, denoted by Xd = ad + op(bd), if the
following is satisfied:

∀ϵ > 0, lim
d→∞

Pr(|Xd − ad| ≥ ϵbd) = 0.

When Xd = Yd/Zd and ad = 1, bd = 1 for all d, we write

Yd
p→ Zd

to denote Xd = 1 + op(1).

Appendix B. Proofs

Proof of Proposition 1.1. Based on the assumption regarding the noise terms ej ,
the difference ej − ej′ for (j ̸= j′) has a mean of 0 and covariance matrix 2σ2I.
Therefore, we have

E(∥ej − ej′∥2) = E

[
d∑

i=1

(eij − eij′)
2

]

=

d∑
i=1

E
[
(eij − eij′)

2
]

=

d∑
i=1

[Var (eij − eij′) + E (eij − eij′)
2
]

= 2dσ2.

Then, we calculate

E(∥xj − xj′∥2) = E(∥(xtruej + ej)− (xtruej′ + ej′)∥2)
= E(∥xtruej − xtruej′ ∥2) + E(∥ej − ej′∥2)
+ E[(xtruej − xtruej′ )T(ej − ej′)] + E[(ej − ej′)

T(xtruej − xtruej′ )]

= E(∥xtruej − xtruej′ ∥2) + 2σ2d.

The last equality follows from the assumption that xtruej , xtruej′ , ej , and ej′ are
independent of each other. □
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Proof of Proposition 1.3. Fix j, j′ with j ̸= j′. By Chebyshev’s inequality and
condition (2), for any ϵ > 0, we have

Pr(|∥xj − µ∥2 − tr(S)| ≥ ϵ tr(S)) ≤ Var(∥xj − µ∥2)
ϵ2tr(S)2

→ 0 as d → ∞,

since E(∥xj − µ∥2) = tr(S). It follows that

∥xj − µ∥2 = tr(S) + op(tr(S)).

Moreover, by Chebyshev’s inequality and condition (1), for any ϵ > 0, we have

Pr(|(xj − µ)T(xj′ − µ)| ≥ ϵ tr(S) ≤ tr(S2)

ϵ2tr(S)2
→ 0 as d → ∞

because E((xj − µ)T(xj′ − µ)) = 0 and Var((xj − µ)T(xj′ − µ)) = tr(S2) under the
assumption that xj and xj′ are independent. It follows that

(xj − µ)T(xj′ − µ) = op(tr(S)).

Note that for any j ̸= j′,

∥xj − xj′∥2 = ∥xj − µ∥2 + ∥xj′ − µ∥2 − 2(xj − µ)T(xj′ − µ).

Thus, we have

∥xj − xj′∥2 = 2tr(S) + op(tr(S)).

□

Sketch of Proof of Proposition 1.4. Under condition (c0), for i such that αi ∈ (0, 1],
it holds as d → ∞ and n → ∞ that

λX,i

λi
= 1 +

O(d)

nλi
+ op(1);(28)

see [22, Theorem 3.1 and Theorem 3.3]. If d1−αi/n → 0, then O(d)/(nλi) → 0,

and the convergence λX,i
p→ λi (consistency of eigenvalues) holds. Otherwise,

O(d)/(nλi) remains in the equation (28). This implies the inconsistency of eigen-

values; λX,i

p

̸→ λi. □

Proof of Lemma 3.1. Recall that P is an n × n matrix with all entries 1/n. As
P 2 = P , we have XP = X and (X −X)P = O. Hence,

Y = Y P

= UXLUT
X(X −X)P +XP.

= X.

Then, µY = µX . Using Y = X and the eigenvalue decomposition SX = UXΛXUT
X ,

we have

SY =
1

n− 1
(Y − Y )(Y − Y )T

=
1

n− 1
UXLUT

X(X −X)(X −X)TUXLUT
X

= UXLUT
XSXUXLUT

X

= UXLΛXLUT
X .
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Here, ΛX := diag(λX,1, . . . , λX,d) ∈ Rd×d. Therefore, defining D,UY ∈ Rd×d as

D := diag(L2
11λX,1, . . . , L

2
ddλX,d),

UY := (uX,1, . . . , uX,d),

we obtain the eigenvalue decomposition SY = UY DUT
Y . □

Proof of Theorem 3.5. From Eq. (14), we have

x̃j − x̃j′ = UX Λ̃
1/2
X,mΛ

−1/2
X UT

X(xj − xj′).

Then, we have

∥x̃j − x̃j′∥2 = (x̃j − x̃j′)
T(x̃j − x̃j′)

= [UX Λ̃
1/2
X,mΛ

−1/2
X UT

X(xj − xj′)]
T[UX Λ̃

1/2
X,mΛ

−1/2
X UT

X(xj − xj′)].

= [(xj − xj′)
TUXΛ

−1/2
X Λ̃

1/2
X,m][Λ̃

1/2
X,mΛ

−1/2
X UT

X(xj − xj′)].

= ∥Λ̃1/2
X,mΛ

−1/2
X UT

X(xj − xj′)∥2.

Since Λ̃
1/2
X,mΛ

−1/2
X is a diagonal matrix and [Λ̃

1/2
X,mΛ

−1/2
X ]ii = 0 for i > m, we have

∥x̃j − x̃j′∥2 = ∥Λ̃1/2
X,mΛ

−1/2
X UT

X(xj − xj′)∥2 = ∥Λ̂1/2
X,mUT

X,m(xj − xj′)∥2,

where Λ̂
1/2
X,m = diag(λ̃

1/2
X,1 λ

−1/2
X,1 , . . . , λ̃

1/2
X,m λ

−1/2
X,m ) ∈ Rm×m and UX,m = (uX,1 . . . uX,m)

∈ Rd×m. As ∥Lb∥2 ≤ maxi{L2
ii}∥b∥2 holds for a diagonal matrix L and vector b

and because λ̃X,i ≤ λX,i for i = 1, . . . , d, we have

∥x̃j − x̃j′∥2 ≤ max
i=1,...,m

{λ̃X,i /λX,i }∥UT
X,m(xj − xj′)∥2

≤ ∥UT
X,m(xj − xj′)∥2.

Moreover, we have

∥UT
X,m(xj − xj′)∥2 = ∥UT

X,m(xtruej − xtruej′ ) + UT
X,m(ej − ej′)∥2

= ∥UT
X,m(xtruej − xtruej′ )∥2 + ∥UT

X,m(ej − ej′)∥2

+ (ej − ej′)
TUX,mUT

X,m(xtruej − xtruej′ )

+ (xtruej − xtruej′ )TUX,mUT
X,m(ej − ej′).

From condition (12), for k ∈ {j, j′}, we have

xtruek − µXtrue = UXUT
X(xtruek − µXtrue)

= UX [(uX,1 . . . uX,m 0d . . . 0d) + (0d . . . 0d uX,m+1 . . . uX,d)]
T(xtruek − µXtrue)

= UX(uX,1 . . . uX,m 0d . . . 0d)
T(xtruek − µXtrue)

= (uX,1 . . . uX,m 0d . . . 0d)(uX,1 . . . uX,m 0d . . . 0d)
T(xtruek − µXtrue)

= UX,mUT
X,m(xtruek − µXtrue),

where 0d is the d-dimensional zero vector. Then, we have

∥UT
X,m(xtruej − xtruej′ )∥2 = (xtruej − xtruej′ )TUX,mUT

X,m(xtruej − xtruej′ )

= (xtruej − xtruej′ )TUX,mUT
X,m[(xtruej − µXtrue)− (xtruej′ − µXtrue)]

= (xtruej − xtruej′ )T[(xtruej − µXtrue)− (xtruej′ − µXtrue)]

= ∥xtruej − xtruej′ ∥2.
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Moreover, from the independence of the noise and true data, we have

E(∥x̃j − x̃j′∥2) ≤ E(∥xtruej − xtruej′ ∥2) + E(∥UT
X,m(ej − ej′)∥2)

+ E[(ej − ej′)
TUX,mUT

X,m(xtruej − xtruej′ )]

+ E[(xtruej − xtruej′ )TUX,mUT
X,m(ej − ej′)]

= E(∥xtruej − xtruej′ ∥2) + E(∥UT
X,m(ej − ej′)∥2).

From the independence of noise and ekj − ekj′ following a distribution with mean
0 and variance 2σ2, we have

E(∥UT
X,m(ej − ej′)∥2) =

d∑
k=1

m∑
s=1

u2
X,ksE((ekj − ekj′)

2)

=

d∑
k=1

m∑
s=1

u2
X,ksVar(ekj − ekj′)

= 2σ2
d∑

k=1

m∑
s=1

u2
X,ks

= 2σ2m.

Here, uX,i = (uX,1i, . . . , uX,di)
T. Therefore, we finally obtain

E(∥x̃j − x̃j′∥2) ≤ E(∥xtruej − xtruej′ ∥2) + 2σ2m.

□

Proof of Theorem 3.6. From the eigenvalue equation (3) and condition (C1), for
i = m+ 1, . . . , d, we have

λX,i = uT
X,i SXuX,i

=
1

n− 1
uT
X,i (X −X)(X −X)TuX,i

=
1

n− 1
uT
X,i

[
(Xtrue −Xtrue) + (E − E)

][
(Xtrue −Xtrue) + (E − E)

]T
uX,i

=
1

n− 1
uT
X,i (E − E)(E − E)TuX,i

= uT
X,i SEuX,i .

□

Proof of Theorem 4.1. We fix a gene i and consider the distributions of xij = cij/tj
for j = 1, . . . , n. It follows from the conditional probability distribution (18) that

Pr(cij = k, tj = t, xtrueij = y)

= Pr(cij = k|tj = t, xtrueij = y)Pr(tj = t, xtrueij = y)

=
(ty)ke−ty

k!
Pr(tj = t, xtrueij = y).

As E(Y ) = Var(Y ) = λ for Y following a Poisson distribution with parameter λ,
the mean and variance of xij = cij/tj can be calculated as follows:



Imoto et al. Supplementary Text 39

E(xij) =
∑
y

∑
t

∑
k

k

t
Pr(cij = k, tj = t, xtrueij = y)

=
∑
y

∑
t

∑
k

k

t

(ty)ke−ty

k!
Pr(tj = t, xtrueij = y)

=
∑
y

∑
t

yPr(tj = t, xtrueij = y)

= E(xtrueij ),

E(x2
ij) =

∑
y

∑
t

∑
k

(
k

t

)2
(ty)ke−ty

k!
Pr(tj = t, xtrueij = y)

=
∑
y

∑
t

(ty)2 + ty

t2
Pr(tj = t, xtrueij = y)

= E[(xtrueij )2] + E(xtrueij /tj),

Var(xij) = E(x2
ij)− E(xij)

2

= E((xtrueij )2) + E(xtrueij /tj)− E(xtrueij )2

= Var(xtrueij ) + E(xtrueij /tj).

Since

E(xij/tj) =
∑
y

∑
t

∑
k

k

t2
(ty)ke−ty

k!
Pr(tj = t, xtrueij = y)

=
∑
y

∑
t

y

t
Pr(tj = t, xtrueij = y)

= E(xtrueij /tj),

we have

Var(xij) = Var(xtrueij ) + E(xij/tj).

□
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