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Resolution of the curse of dimensionality in single-cell
RNA sequencing data analysis
Yusuke Imoto1,* , Tomonori Nakamura1,2,3,* , Emerson G Escolar4,5, Michio Yoshiwaki5 , Yoji Kojima1,2,6,
Yukihiro Yabuta1,2, Yoshitaka Katou2, Takuya Yamamoto1,5,6 , Yasuaki Hiraoka1,5,7 , Mitinori Saitou1,2,6

Single-cell RNA sequencing (scRNA-seq) can determine gene
expression in numerous individual cells simultaneously, pro-
moting progress in the biomedical sciences. However, scRNA-seq
data are high-dimensional with substantial technical noise, in-
cluding dropouts. During analysis of scRNA-seq data, such noise
engenders a statistical problem known as the curse of dimen-
sionality (COD). Based on high-dimensional statistics, we herein
formulate a noise reduction method, RECODE (resolution of the
curse of dimensionality), for high-dimensional data with random
sampling noise. We show that RECODE consistently resolves COD in
relevant scRNA-seq data with unique molecular identifiers. RECODE
does not involve dimension reduction and recovers expression
values for all genes, including lowly expressed genes, realizing
precise delineation of cell fate transitions and identification of rare
cells with all gene information. Compared with representative
imputation methods, RECODE employs different principles and
exhibits superior overall performance in cell-clustering, expression
value recovery, and single-cell–level analysis. The RECODE algo-
rithm is parameter-free, data-driven, deterministic, and high-speed,
and its applicability can be predicted based on the variance nor-
malizationperformance.WeproposeRECODE as a powerful strategy
for preprocessing noisy high-dimensional data.
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Introduction

Single-cell RNA sequencing (scRNA-seq) enables the determination
of gene expression profiles in multiple individual cells simulta-
neously (Tang et al, 2009). When used together with recently
developedmicrofluidics platforms and cell index strategies, scRNA-
seq permits the analysis of gene expression in thousands of single
cells in parallel, accelerating progress in the biomedical sciences
(Regev et al, 2017; Cao et al, 2020). On the other hand, because of

technical limitations, scRNA-seq detects only a fraction of the
transcriptome in single cells (~1–60%; on average: ~ <10%), and
there are large variations in the detection level of each transcript by
scRNA-seq (Grun et al, 2014; Kiselev et al, 2019). Thus, unlike con-
ventional bulk RNA-sequencing, scRNA-seq, which is generally used
to process numerous cells on automated platforms, provides a
sparse representation of the true transcriptome of single cells, with
detection failures (dropouts) and variations occurring randomly
for most genes, particularly genes with low-expression levels
(Lähnemann et al, 2020). These drawbacks, collectively regarded as
nonbiological technical noise, pose a key challenge in scRNA-seq
data analysis and interpretation.

To circumvent these drawbacks, preprocessing of scRNA-seq
data, such as dimension reduction and normalization, is widely
used (Stegle et al, 2015; Kiselev et al, 2019). However, such pre-
processing does not provide a fundamental solution, because it
compresses the original data without separating the true infor-
mation from the noise information and therefore cannot recover
the true expression values. With a focus on mitigating the dropout
effects and data sparsity and based on models for transcript/noise
distributions as well as on the information from similar cells
(“nearest neighbors”), many inventive methods for modifying
scRNA-seq data have been proposed (Bonnefoy et al, 2018; Li & Li,
2018; van Dijk et al, 2018; Zappia et al, 2018; Eraslan et al, 2019; Peng
et al, 2019; Wagner et al, 2019 Preprint; Wang et al, 2019). These
“imputation” methods are classified into several categories,
including model-based imputation, data smoothing, and data re-
construction, and appear to be successful in recovering dropped-
out gene information (Lähnemann et al, 2020). However, compared
with no-imputation controls, most of these methods fail to sub-
stantially improve performance in downstream data analyses, such
as clustering analyses and dimension reduction mappings; they also
introduce “circularity,” thereby generating false positives and de-
creasing the reproducibility of specific gene expressions (Andrews &
Hemberg, 2018; Hou et al, 2020). Thus, imputations need to be used
with appropriate caution and require further improvements.
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It is fundamental to note that scRNA-seq data are high-
dimensional data (the dimension corresponds to the number of
genes, i.e., > ~10,000), with each feature (each gene expression level)
bearing technical noise (Grun et al, 2014). High-dimensional sta-
tistics theories demonstrate that such data, even when the noises
are small, suffer from the “curse of dimensionality” (COD), which
causes detrimental effects in downstream data analyses (Hall et al,
2005). Specifically, COD causes impairments of close distances in
true data structures, inconsistency of statistics such as contribution
rates of principal components (PCs), and inconsistency of PCs,
among other deleterious influences (Yata & Aoshima, 2009;
Aoshima et al, 2018) (see the Results section and Supplemental
Data 1 for details; COD in this context is distinct from that in in-
formatics, which refers to an exponential increase of computational
complexity associated with a rise in data dimension). However,
despite its significance, COD has not been explicitly addressed in
the context of scRNA-seq data analysis, including imputations.

Here, based on high-dimensional statistics (Yata & Aoshima,
2010; 2012), we formulate a noise reduction method, RECODE
(resolution of the curse of dimensionality), which resolves COD in
scRNA-seq data. RECODE is tailored to the scRNA-seq data with
unique molecular identifiers (UMIs) because its mathematical
formulation relies on the theory of random samplings, which are
involved as noise in the copying and sequencing steps for gen-
erating scRNA-seq data with UMIs. We show that RECODE consis-
tently resolves COD in the relevant scRNA-seq data. Significantly,
RECODE does not involve dimension reduction, such as selection of
highly variable genes (HVGs) and major principal components, for
the downstream data analysis, but recovers expression values,
even for lowly expressed genes, and thus enables the use of all the
gene information and the distinguishing of close cell types/
transient cell populations masked by COD. RECODE outperforms
representative imputation methods, not only in the cluster level
analysis but also in the expression value recovery and single-cell
level analysis (e.g., the identification of rare cell types). The algo-
rithm of RECODE is parameter-free, data-driven, deterministic, and
high-speed, making the method practical, and notably, the appli-
cability of RECODE is predictable. We propose the use of RECODE as
a powerful strategy for preprocessing noisy high-dimensional data,
including scRNA-seq data.

Results

COD

The noise (technical noise) of scRNA-seq data arises from varia-
tions of the copying and sequencing errors during data creation
and differs from so-called biological noise, such as transcriptional
stochasticity and biological variations. Because true expression
values do not contain technical noise, we define the noise of
scRNA-seq data as the difference between the observed UMI and
true RNA counts divided by their total counts (see RECODE in the
Materials and Methods section). A typical cell expresses more than
10,000 genes, and the noise arises in all expressed genes. Ac-
cordingly, the accumulation of such noise causes severe problems

in downstream data analyses, so-called COD. In this study,
therefore, we attempt to resolve COD in scRNA-seq data analysis.

First, we demonstrate COD using scRNA-seq simulation data with
1,000 cells and variable dimensions (200–20,000) based on the
Splatter algorithm (Zappia et al, 2017) (Figs 1A and S1A; see Simu-
lation data creation in the Materials and Methods section). Because
the Euclidean distance contains a summation of the squared
components, the distance errors of observed values grow according
to the dimension. Eventually, the distance errors obscure the
difference among neighboring samples. For example, the higher the
dimension is, the longer the “legs,” that is, distances among
neighbor cells/clusters, of the dendrogram of unsupervised hier-
archical clustering (UHC) become, leading to an impaired clustering
(Fig 1B). Similar problems occur even for other metrics, such as
correlation distance (Section 1.1 in the Supplemental Data 1) (Hall et
al, 2005). Thus, conventional data analysis methods based on
distances fail to identify true data structures in high-dimensional
data with noise. We call this type of COD the loss of closeness
(COD1), and it makes the detailed classification of high-dimensional
data impossible.

The noise accumulation also causes adverse effects on data
statistics, such as the contribution rate in principal component
analysis (PCA) and the Silhouette score (Fig 1C and D). In particular,
it has been proven that data variances of PCA-transformed data
(eigenvalues of the data covariance matrix) may not converge to
true variances for high-dimensional data with noise and low
sample sizes (Section 1.2 in the Supplemental Data 1) (Yata &
Aoshima, 2009). We call this COD the inconsistency of statistics
(COD2), and it leads to false statistical inferences.

When there is a considerable variation in the noise scale in each
feature, as in the case of scRNA-seq data, another type of COD that
induces false PCA structures may occur (Fig 1E). The PCA is robust for
noise with small variances, even for high-dimensional data (Section 3
in the Supplemental Data 1). However, in the case of random sampling
with a low detection rate, because the variances of some noises
become large, the PCA structures will be broken (Yata & Aoshima,
2009). For example, we know that the PCA structures change according
to dimension and that the principal components are affected by
nonbiological information such as the sequencing depth (the total
UMI counts per cell) or the number of detected genes (Fig 1E, Section 4
in the Supplemental Data 1) (Kiselev et al, 2019). We call this type of
COD the inconsistency of principal components (COD3).

We also note that CODs adversely affect almost all high-
dimensional data analysis, including nonlinear dimension re-
duction methods, such as uniform manifold approximation and
projection (UMAP) and t-stochastic neighbor embedding (t-SNE)
(Fig S1B and C).

CODs in scRNA-seq data analysis

We show CODs in real scRNA-seq data using public scRNA-seq
datasets generated by 10X Cellular Indexing of Transcriptomes and
Epitopes by Sequencing (CITE-seq) data for peripheral blood
mononuclear cells (human PBMC CITE-seq data, 10X genomics
demo data: 10k PBMCs from a Healthy Donor—Gene Expression with
a Panel of TotalSeq-B Antibodies; Fig S2A). These data have a
complexity level typical for in vivo human cell diversity, and the
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Figure 1. Demonstration of CODs by scRNA-seq simulation data.
(A) Data creation of reference and observed data by a splatter-based simulation. The simulation scRNA-seq data consists of 1,000 cells, 20,000 genes, and four cell types
(250 cells and 50 differential expressed genes [DEGs] per cell type). We created d-dimensional observed data by choosing d genes so as to contain all DEGs (d =
200 (only DEGs), 1,000, 5,000, 20,000). We conducted downstream data analyses for the normalized reference and observed data by a log-normalized method that
normalizes the expression counts for each cell by the total counts, multiplies this by a scale factor =10,000, and log-transforms the result. (B) Demonstration of COD1
(loss of closeness) by an unsupervised hierarchical clustering (UHC) for 100 randomly chosen cells. UHC uses Euclidean distance with cell type and total count labels. The
cell type labels get mixed up as the dimension increases. On the other hand, the total count labels are aligned, indicating that the total counts bias the UHC.
(C, D) Demonstration of COD2 (inconsistency of statistics) by the contribution rates in PCA and the mean Silhouette scores for cell types. (E) Demonstration of
COD3 (inconsistency of principal components) by PCA projections with colors of the cell types and total counts.
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corresponding RNA and protein expression data obtained from the
same single cells. We create clusters using the protein expression data
of 12 cell surface markers (Figs 2A and S3) and use them as the ground
truth clusters. We define the dimension (200, 2,000, and 33,254 [all]
genes) by picking up HVGs in order (see Analysis of scRNA-seq data in
the Materials and Methods section for details). We demonstrate the
CODs using this scRNA-seq data by changing the dimensions.

In the UHC, the legs of the dendrogram become longer as the
dimension increases because of COD1 (Fig 2B), leading to the loss of
detailed hierarchies. As a result, we may not identify clusters that
consist of a small number of cells and thus overlook rare cell types.
The contribution rates in PCA and the Silhouette scores become
worse (lower rates and lower scores) because of COD2 (Fig 2C and
D). Accordingly, we may miss some critical information from the
statistical analysis. In the PCA dimension reductions, themajor axes
(first and second principal components) change as the dimension
increases because of COD3 (Fig 2E). In particular, we often observe
that clusters grow in one direction, simply following the total UMI
counts in scRNA-seq data analysis (Fig 2E bottom); such unidi-
rectional growth arises because of COD3. Therefore, this implies
that COD3 affects even PCA processing.

Moreover, CODs have adverse effects on almost all downstream
data analyses. For example, UMAP and t-SNE cannot function as the
dimensions increase (Fig 2F and G). Using other 10X Chromium and
Drop-seq data (10X 39 scRNA-seq data for five human lung ade-
nocarcinoma cell lines used in a benchmarking experiment [Cell-
Bench data] [Tian et al, 2019], 10X 39 scRNA-seq data for human
primordial germ cell-like cell [hPGCLC] specification [hPGCLC induc-
tion data] [Chen et al, 2019], 10X 39 scRNA-seq data for a mixture of
human induced pluripotent stem cells [hiPSCs] and for hPGCLCs
[hiPSC/hPGCLC mixture data], and Drop-seq data for a cultured cell
line [Drop-seq data] [Torre et al, 2018] see Figs S2B–E, S4, and S5 and
see ScRNA-seq data quality check and preprocessing in the Materials
andMethods section for a detailed description of these datasets]), we
obtain similar results (Fig S6). In widely used scRNA-seq data analysis
tools, for example, Seurat (Satija et al, 2015; Hao et al, 2021) and Scanpy
(Wolf et al, 2018), HVGs and/ormajor PCs are selected for downstream
data analyses. However, we do not know a priori the best HVGs to
select, and PCA itself is affected by CODs, as we see above.

Resolution of the curse of dimensionality (RECODE)

To overcome CODs, we herein formulate a novel noise reduction
method, RECODE (resolution of the curse of dimensionality).
RECODE is tailored to the scRNA-seq data with UMIs because its
mathematical formulation relies on the theory of random sampling,
which models the copying and sequencing steps for generating
scRNA-seq data with UMIs. See RECODE in the Materials and
Methods section and Sections 3 and 4 in the Supplemental Data 1
for the detailed mathematical formulations and theorems for
RECODE. RECODE consists of four procedures (Fig 3A). Procedure I
normalizes the original data by the noise variance–stabilizing
normalization (NVSN) that transforms the original data such that
the noise variances of all features are equal to one. Procedure II
projects the normalized data into the PCA space. Procedure III
modifies the variances of principal components (eigenvalues of the
covariance matrix) based on high-dimensional statistics theories

(PC variance modification) for the major PCs (essential part) and by
setting those variances to be zero (PC variance elimination) for the
others (noise part). Procedure IV maps the variance-modified data
into the original space by the inverse transformations of I and II. The
PC variance elimination and PC variance modification contribute to
the resolution of CODs 1–2, respectively, whereas the NVSN resolves
the COD3 caused by random samplings.

We show the verification of RECODE using the scRNA-seq sim-
ulation data in Fig 1. RECODE shortens the legs of the dendrogram in
UHC compared with those in the observed data and, at the same
time, achieves more correct clustering (Fig 3B). Furthermore,
RECODE obtains better statistics (i.e., better contribution rates in
PCA and better Silhouette scores) (Fig 3C and D) and improves the
principal components independently of the total counts (Fig 3E).
These results indicate that RECODE successfully resolves CODs 1–3.
Moreover, the RECODE-preprocessed data are well consistent with
the reference data (Figs 3F and G and S7A and B). As a result,
downstream data analysis methods, even nonlinear dimension
reduction methods, work well even when using all genes (Fig S7C
and D). We note apparent overperformances by RECODE in some
outcomes, which might stem from the incompleteness of the
current scRNA-seq simulation algorithm; see below for RECODE in
real scRNA-seq data analysis.

RECODE has the distinctive characteristics of being parameter-
free, data-driven, deterministic (no random effect), and high-speed,
making it a practical method (Section 5.2 in the Supplemental Data
1). Notably, the applicability of RECODE to scRNA-seq data is pre-
dictable based on the variances after the NVSN (hereinafter NVSN
variances) (Fig 4A). We can define three classes of the applicability
of RECODE to scRNA-seq data. Class A consists of data with NVSN
variances of all genes ≥1 and those of many genes = 1; RECODE is
applicable to these data with a good noise reduction effect
(strongly applicable). Class B consists of data with NVSN variances
of all genes ≥1 and few/no genes = 1; RECODE is applicable to these
data with a limited noise reduction effect (weakly applicable). Class
C consists of the data not assigned to classes A and B; RECODE is
inapplicable in these cases. We examined the applicability of the
human cell atlas data (HCA data) generated by 10X Chromium,
Drop-seq, Quartz-seq, Smart-seq2, and Smart-seq3 (Hagemann-
Jensen et al, 2020; Mereu et al, 2020; Fig S8). We classified 10X
Chromium, Drop-seq, and Quartz-seq data into class A and Smart-
seq2 and Smart-seq3 into class B (Fig 4B). We were able to observe
the significant reduction of the overvalued variations caused by
noise for strongly applicable data (Fig 4C and D). In addition, we
note that all 10X Chromium and Drop-seq data we have examined
so far belonged to class A. In contrast, there is still overvalued
variation in nonsignificant genes in class B, indicating that such
data contain an additional noise(s) different from the random
sampling noise.

Resolution of CODs in scRNA-seq data analysis by RECODE

This section verifies the performance of RECODE using relevant
scRNA-seq data. We first applied RECODE to the human PBMC CITE-
seq data shown in the section “CODs in scRNA-seq data analysis.”
We show that RECODE resolves CODs 1–3. In the UHC (Fig 5A), we can
observe the closer distances (shorter legs) among neighbor cells
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Figure 2. Demonstration of CODs in real scRNA-seq data (human PBMC CITE-seq data).
(A) UMAP plots computed by 12 protein expressions [log2(ss.median + 1)]. The cells are colored by the cell annotation defined in Fig S3. (B) Demonstration of COD1 by
clustering with 200, 2,000, and 20,000 (HVGs) for NK cells. HVGs were selected by the FindVariableFeatures function in the Seurat package. (C) Demonstration of COD2 by
the contribution rates in PCA. (D) Demonstration of COD2 by the Silhouette score for the NK cells. (E) Demonstration of COD3 by PCA projection of the whole cells colored by
the cell types defined in (A) (top) and the NK cells colored by total UMI counts (bottom). (F, G) Nonlinear dimension reduction mappings by UMAP (F) and t-SNE (G)
colored by the cell types.
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Figure 3. RECODE algorithm and verification by scRNA-seq simulation data.
(A) Sketch of four procedures in RECODE. The black and red dots show the variances of observed data and noise, respectively, for genes. (B, C, D, E) Demonstrations of
the resolution of CODs 1–3 by RECODE. (B) Dendrogram by UHC using Euclidean distance with cell type and total count labels. (C) Contribution rate in PCA. (D) Mean
Silhouette score for cell types. (E) PCA projections with colors of the cell types and total counts. RECODE-preprocessed data show the high identification of cell types and
better scores for statistics. (F, G) Comparison of variances of genes among reference, observed, and RECODE variances after log normalization by mean versus variance
plot (F) and biaxial plots of reference/observed variances and reference/RECODE variances (G). The RECODE variances are highly correlated with the reference variances.
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Figure 4. RECODE applicability for scRNA-seq platforms.
(A) Sketch of the three classifications of RECODE applicability. (B) RECODE applicability to the HCA data generated by the library creation platforms, 10X Chromium
(version 3), Drop-seq, Quartz-seq, Smart-seq 2, and Smart-seq 3 (Hagemann-Jensen et al, 2020; Mereu et al, 2020). (C, D) Comparisons of coefficients of variation and
variances with no preprocessing (before RECODE) and RECODE-preprocessed data. The markers in (B, C, D) show the CD genes corresponding to the observed proteins in
CITE-seq (red circles), housekeeping genes (blue crosses), and the other genes (gray circles).
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Figure 5. Verification of RECODE in real scRNA-seq data.
(A, B, C, D) Demonstration of the resolution of CODs 1–3 by RECODE. (A) Dendrogram by UHC for the NK cells. (B) Contribution rate in PCA of the human PBMC CITE-seq
data. (C) Silhouette score for the NK cells. (D) PCA projections of the NK cells colored by total UMI counts. (E) Nonlinear dimension reduction mappings by UMAP (upper)
and t-SNE (bottom) for the human PBMC CITE-seq data using 12 protein expression data (see Figs 2A and S3) and all gene expression data (33,524 genes) with/without
RECODE. The colors indicate the cell types. (F) UMAP plots of the human PBMC CITE-seq data using 12 protein expressions colored by the expression values of CD3/CD3D
and CD19/CD19. The bottom panels indicate the enlarged insets of the CD19/CD19–positive B-cell cluster. (G) Violin plots of relative expression levels for CD3/CD3D (left)
and CD19/CD19 (right) in T-cell and B-cell clusters. N.P. denotes no preprocessing (without RECODE). The relative expression indicates the expression level when the
maximum log2-transformed expression value in the data is set as 1. (H) Biaxial plots for CD19/CD19 and CD3/CD3D expressions in the human PBMC CITE-seq data. The
leftmost image is the actual FACS plot (Stoeckius et al, 2017).
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and more detailed hierarchies after RECODE (resolution of COD1).
This enables us to readily classify the populations of fewer cells. In
the statistics analyses by the contribution rates of PCA and the
Silhouette scores (Figs 5B and C), we obtain better values that
enable us to discuss the statistical significance after RECODE
(resolution of COD2). In the PCA projection (Fig 5D), RECODE returns
the principal components independent of the total number of UMIs
(resolution of COD3). As a consequence of resolving CODs, RECODE
can improve the mappings of nonlinear dimension reduction
methods, such as UMAP and t-SNE (Fig 5E).

Next, we show that RECODE recovers the expression value of
each gene. In the UMAP plot colored by the expression values of the
lowly expressed genes CD3D and CD19 (Fig 5F), we observe scattered
blue dots (zero expression values) in the non-preprocessed data,
which are regarded as dropouts. In contrast, almost all the blue
dots disappear after RECODE, and the relative expression levels of
CD3D and CD19 get close to those based on the protein expressions
(Fig 5F and G). Moreover, in the biaxial plots of CD3D and CD19 (Fig
5H), the distribution of the non-preprocessed data is too sparse
and is completely disparate from that of the protein expressions
measured by FACS (Stoeckius et al, 2017) and by CITE-seq because of
the severe dropout effects. This indicates that the current scRNA-
seq data analysis without preprocessing does not capture the true
gene-to-gene relations among lowly expressed genes. In contrast,
the RECODE-preprocessed data distribution becomes closer to the
distributions of FACS and the protein expression. We also obtained
similar results with the other datasets. For example, similar findings
were obtained using the CellBench data (shorter legs and detailed
hierarchies in UHC [Fig S9A], improved PC contribution rates [Fig S9B],
improved Silhouette scores [Fig S9C]), the hPGCLC induction data
(improved PC contribution rates [Fig S9B], improved mapping in
t-SNE and UMAP [Fig S9E and F], recovery of gene expression values
[Fig S9G], recovery of gene-to-gene relationship [Fig S9H]), and the
hiPSC/hPGCLC mixture data (improved PC contribution rates [Fig
S9B], improved Silhouette scores [Fig S9C]), and the Drop-seq data
(independence of clustering from total UMI counts [Fig S9D]).

From the verification above, we conclude that RECODE resolves
CODs and thus can recover the gene expression values. Thus,
RECODE functions effectively as a noise reduction method for
scRNA-seq data.

Comparison of RECODE with imputation methods

We compare the performance of RECODE with that of representative
imputation methods using the human PBMC CITE-seq data. We use
six imputation methods that show high performance in previous
reports (Andrews & Hemberg, 2018; Hou et al, 2020) and employ
different imputation categories (Lähnemann et al, 2020)—namely,
model-based imputation (SAVAR and scImpute) (Li & Li, 2018; Huang
et al, 2018), data smoothing (DrImpute and MAGIC) (Gong et al, 2018;
van Dijk et al, 2018), and data reconstruction/matrix factorization
(ALRA and ENHANCE) (Wagner et al, 2019 Preprint; Linderman et al,
2022). We do not use machine learning–based methods because
their results are strongly dependent on the training data or
hyperparameters.

We first investigate the performance upon UMAP without any
pre-dimension reduction (e.g., PCA) (Fig 6A). ScImpute and DrImpute

failed to map cells in an appropriate manner, for example, NK
cells (colored in gray) were intermingled with other cell types.
Furthermore, we found that ENHANCE recognized a number of
scRNA-seq data as identical data (43 out of 6,341 [~0.7%]), pre-
sumably because of its aggregation algorithm, leading to the loss of
a fraction of single-cell information. The Silhouette scores with
RECODE, SAVER, MAGIC, ENHANCE, and ALRA, but not with scImpute
and DrImpute, are improved over those with no preprocessing (Fig
6B). The scores with MAGIC and ENHANCE are even higher than
those of the other methods, which might also be because of their
aggregation algorithm (see below). Next, we show the performance
on the variance correction (Fig 6C). scImpute, DrImpute, and ALRA
could not reduce the variances of nonsignificant genes (e.g.,
housekeeping genes) appropriately, whereas RECODE, SAVER,
MAGIC, and ENHANCE suitably reduced them while preserving those
of significant genes. We conclude that the four methods, scImpute,
DrImpute, ALRA, and ENHANCE, bear flaws as a single-cell noise
reduction methodology.

Next, we investigate the performance of RECODE, SAVER, and
MAGIC on the recovery of gene-to-gene relationship by examining
the CD3D and CD19 expression values preprocessed with the three
methods. By coloring the expression values on the UMAP plot (Fig
6D), we find that all the methods recover their expression to a level
comparable to that detected by CITE-seq protein expressions.
Furthermore, the relative expression levels also become significant
(Fig 6E). These two results show similar performance of RECODE,
SAVER, and MAGIC in the cluster level analysis. In the biaxial plots
for CD3D/CD19 (Fig 6F), which can be regarded as a single-cell–level
analysis, three major populations (CD3D+/CD19−: T cells; CD3D−/
CD19+: B cells; and CD3D−/CD19−: the other cell types) are found in
the FACS/CITE-seq protein expression plots. We compare these
plots with the scRNA-seq data without preprocessing and with
preprocessing by RECODE, SAVER, and MAGIC. Without preprocessing,
the plot patterns are very different from those of the FACS/CITE-seq
protein expression plots, and the frequencies of the CD3D+/CD19−

and CD3D−/CD19+ populations are lower, whereas that of the CD3D−/
CD19− population is higher than those of the FACS/CITE-seq protein
expression plots (Fig 6F). In contrast, preprocessing by RECODE,
SAVER, and MAGIC all recover the abundance ratios of the CD3D+/
CD19− and CD3D−/CD19+ populations. On the other hand, we observe
the aggregated distributions with MAGIC compared with the FACS/
CITE-seq protein expression and the sparse and discrete distribution
in low expression levels with SAVER. In contrast, like FACS/CITE-seq
protein expression, the biaxial plot of RECODE shows a continuous
distribution and the three major populations.

To explore this point further, we next applied RECODE, SAVER,
and MAGIC to the Drop-seq data of a cultured cell line, for which
RNA-FISH data of 26 genes are also available as a ground truth
(Torre et al, 2018). Biaxial plots of four pairs of genes show that in
contrast to the non-preprocessed data, the RECODE-preprocessed data
show adistribution highly similar to that of the RNA-FISHdata (Fig 7A). In
contrast, unlike the RECODE-preprocessed data, both the SAVER- and
MAGIC-preprocessed data show somewhat over-aggregated distribu-
tions (Fig 7A). To gain quantitative insight into this aspect of the analysis,
we computed relative errors from the second- to sixth-order moments
of their distributions (the second-order moment is the variance), which
revealed lower error rates by RECODE than by SAVER andMAGIC inmost
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of the moments for these genes (Fig 7B). These findings unequivocally
demonstrate that thequantitative performanceof RECODE is better than
those of SAVER and MAGIC.

To further compare the performance of RECODE, SAVER, and
MAGIC in the single-cell resolution analysis, including the detection
of rare cell populations, we designed mixed scRNA-seq data that
contain major and rare cell types using CellBench data and hiPSC/
hPGCLC mixture data. We generated pseudo-rare cell types with the

variable number of cells (100, 20, 10, 5, 3, 1 cells) (Fig 8A and B). We
applied RECODE, SAVER, and MAGIC to the mixed scRNA-seq data
and monitored gene expression values signifying rare cell types
(ZBED2 and CA9 for CellBench data and OTX2 and ZIC3 for hiPSC/
hPGCLC mixture data) (Fig 8C and D). In the cases of SAVAR and
MAGIC, the expression levels were negatively influenced by those of
themajor cell type. In addition, as reported in a previous study (Tian
et al, 2019) and shown in Figs 6F and 7, SAVER sometimes returns

Figure 6. Comparison of the
performance of RECODE and
representative imputation methods.
(A) UMAP plots of the human PBMC CITE-
seq data with a full set of RNA
expression profiles (33,254 genes)
without preprocessing and with
preprocessing by RECODE and
imputation methods. (B) The boxplots of
the Silhouette scores for all the cells in
human PBMC CITE-seq data without
preprocessing and with preprocessing
by RECODE and imputation methods.
(C) Scatter plots of the mean versus
the variance of gene expression
[log2(ss10k+1)] for the same data as in (A).
The genes corresponding to the 12
proteins are colored in red, the
housekeeping genes (Hounkpe et al, 2021)
are in blue, and the others are in gray.
(D) Protein and RNA expression
distribution, CD3/CD3D (top) and CD19/
CD19 (bottom), on UMAP plots of the
human PBMC CITE-seq data using the 12
protein expressions. The RNA expression
values were preprocessed with
RECODE, SAVER, or MAGIC. (E) Violin plots
of relative expression levels for CD3/CD3D
(left) and CD19/CD19 (right) in T-cell
and B-cell clusters without
preprocessing and with preprocessing by
RECODE, SAVER, and MAGIC. N.P.
denotes no preprocessing. The relative
expression indicates the expression level
when the maximum log2-transformed
expression value in the data is set as 1.
(F) Biaxial plots for CD19/CD19 and CD3/
CD3D expressions in the human PBMC
CITE-seq data without preprocessing
and with RECODE, SAVER, and MAGIC
preprocessing and the actual FACS plot
(Stoeckius et al, 2017). The percentages
denote the frequency of cells in each
quadlet (population). Arrowheads
indicate the sparse and discrete
expression value distributions in low
expression levels introduced by SAVER.
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Figure 7. Comparison of the performance of RECODE, SAVER, and MAGIC for recovery of the gene-to-gene relationship based on RNA-FISH data.
(A) Biaxial plots for gene expressions (BABAM1/LMNA, CCNA2/SOX10, JUN/MITF, and FGFR1/VGF) in the single-molecule FISH (Torre et al, 2018) and Drop-seq data without
preprocessing and with preprocessing by RECODE, SAVER, and MAGIC. Both axes are log-scaled. (B) Relative errors from the second- to sixth-order moments (the second-
order moment is the variance) of the distributions for the genes in (A). The distributions of RECODE are more similar to RNA-FISH data and more accurate than those of
SAVER and MAGIC.
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discrete values (arrowheads in Fig 8D). In contrast, RECODE does not
lose essential signals even with one cell. Moreover, we observe this
trend even in the median of signature genes (Fig 8E and F). Con-
sequently, only RECODE can identify a true heterogeneous gene
expression at the single-cell resolution and detect rare cell types
hidden by noise.

In addition, we compared the computational practicalities of
RECODE, SAVER, and MAGIC. The run-time of RECODE is as fast as
that of MAGIC, which is one of the fastest imputation methods (Hou
et al, 2020) and much faster than that of SAVER (Fig 9A). The high-
speed performance of RECODE is achieved by a fast algorithm
based on mathematical treatments of eigenvalues (Section 5.1 in
the Supplemental Data 1). Furthermore, the scalability of RECODE
for the number of cells was the best (RECODE:0.91, SAVER:1.12,
MAGIC:1.86¸ calculated by the linear regression of run-times for
10,000–30,000 cells), indicating that RECODE can be applied to a

greater number of cells in the most practical manner. Moreover, the
memory usage of RECODE is as low as that of MAGIC (Fig 9B).

Precise delineation of cell fate transition dynamics and
identification of rare cell populations during mouse gastrulation
by RECODE

This section explores the performance of RECODE for the delin-
eation of cell fate specification dynamics and identification of rare
cell populations on a complex dataset for mouse gastrulation from
embryonic day (E) 6.5 to E8.5 (mouse gastrula data, 10X Chromium,
version 1) (Pijuan-Sala et al, 2019). This previous study has identified
many cell types in a successful manner, but there are some mis-
annotated or unidentified/undescribed cell populations. For ex-
ample, the node, an organizer for the left–right axis determination
(Lee & Anderson, 2008), was misannotated as the notochord, which

Figure 8. Comparison of the performance of RECODE, SAVER, and MAGIC for rare cell-type detection.
(A, B) Schematic views of artificial raw unique molecular identifier matrix creation. Set 100, 20, 10, 5, 3, and 1 cell(s) of the pseudo-rare cell types (H2228 and hiPSCs) and
merge them with the other cell types (2,985 other cells in CellBench data and 1,940 hPGCLCs in hiPSC/hPGCLC mixture data). (C, D) The expression values of highly
expressed genes (ZBED2/CA9 in CellBench data (C) and OTX2/ZIC3 in hiPSC/hPGCLC mixture data (D)) for pseudo-rare and other cell types. The columns show the
expressions without preprocessing and with preprocessing by RECODE, SAVER, and MAGIC. The arrowheads indicate the artifacts introduced by SAVER. (E, F) Themedian
expression of highly expressed genes, defined by bulk RNA-seq data analysis (see Figs S7 and S8), for pseudo-rare and other cell types.
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is a distinct rod-like structure formed both anteriorly and
posteriorly to the node and plays a key patterning function, such
as in the dorsal–ventral axis patterning of the neural tube
(Balmer et al, 2016). Furthermore, anterior visceral endoderm
(AVE), an essential signal center for the anterior–posterior axis
formation (Bardot & Hadjantonakis, 2020), was also not anno-
tated/identified.

We compare the performance of RECODE with that of pre-
processing in Seurat, a widely used scRNA-seq data analysis
platform based on dimension reduction (Satija et al, 2015; Hao et al,
2021). The preprocessing in Seurat consists of the selection of HVGs
(2,000 genes) and major principal components based on the
jackstraw algorithm for the original data (see Analysis of scRNA-seq
data in the Materials and Methods section). We conduct the sub-
sequent downstream analyses under the same conditions. First,
we analyze the mouse gastrula data for E7.5 embryos, in which
complex cell fate specifications/embryonic patterning proceeds,
including node and notochordal plate formation, using Seurat and
RECODE preprocessing. On UMAP plots (Fig 10A), key lineage-marker
gene expressions of the Seurat-preprocessed data capture pro-
gressive cell fate transitions from the epiblast (EPI) to mesoderm
(Meso) and to extraembryonic mesoderm (Ex.Meso): it appears that
Pou5f1+ EPI goes on to express key mesoderm markers such as T
and Hand1 successively, leading to the formation of Pou5f1−/Tal1+

Ex.Meso. However, the Pou5f1low/Sox17+ definitive endoderm
(D.Endo) is isolated from both the EPI-Meso–Ex.Meso cluster and
the Ttr+ VE cluster. In contrast, RECODE-preprocessed results de-
lineate continuous cell fate transitions from Pou5f1+ EPI not only to
Meso and Ex.Meso but also to D.Endo through Pou5f1+/T+ cell
populations. Furthermore, D.Endo appears to be extending toward a
subpopulation of the VE cluster that expresses Sox17 at a weak level.
It has been demonstrated that during gastrulation, D.Endo arises
from the T+ mesendoderm (Bardot & Hadjantonakis, 2020), D.Endo

ingresses into the VE layer, and both D.Endo and VE contribute to
the gut endoderm (Kwon et al, 2008). During this process, D.Endo
continues to be Ttr−/Sox17+, whereas the Ttr+/Sox17− VE becomes
Ttr+/Sox17+ cells (Viotti et al, 2014). Thus, these findings indicate
that the RECODE-preprocessed data recapitulate continuous cell
fate transition dynamics during mouse gastrulation in a more
appropriate manner than the Seurat-preprocessed data. This
would be because although the Seurat-preprocessed data lose
critical information that reflects precise cell-to-cell relationships
during dimension reduction (i.e., HVG and PC selection), the
RECODE-preprocessed data recover the expression values of all
genes, including lowly expressed ones.

Next, we apply UHC to Seurat- and RECODE-preprocessed data to
determine a more precise annotation of cell types (Fig S10A–C).
Under the UHC results and key gene expressions, we first annotate
the TE, VE, and EPI lineages (Fig S10A). Then, we classify the EPI
lineage based on the UHC results and the expression of the Meso
and D.Endo markers and the genes that are expressed in the node
and/or notochordal plate (T, Mesp1, Hand1, Tal1, Sox17, Noto, Foxj1,
Pifo, Chrd, and Cer1) (Biben et al, 1998; Plouhinec et al, 2004;
Yamanaka et al, 2007; Hadjantonakis et al, 2008; Cruz et al, 2010;
Kinzel et al, 2010; Balmer et al, 2016) (Fig S10B and C). Accordingly, we
identify the node essentially as Noto+, Foxj1+, Pifo+, Chrd+, T+, Cer1−

cells and the notochordal plate essentially as T+, Cer1+ cells in
both datasets. We note that the numbers of the cells classified
into the respective subclusters differ to a certain extent, and more
importantly, the hierarchical position of the node differs between
the Seurat- and RECODE-preprocessed data (Fig S10C). Consistent
with the UHC result, the node is also isolated on the UMAP plot of
the Seurat-preprocessed data (Fig 10B). In contrast, the UMAP plot
of the RECODE-preprocessed data shows a continuous transition
from the Pou5f1+/T+ EPI cells to the node, notochordal plate, and
D.Endo. This is in good agreement with the fact that the node,

Figure 9. Practicality of RECODE.
(A, B) Run-time (A) and memory usage (B) of the RECODE, SAVER, and MAGIC methods for 200–30,000 cells. The cells were picked from the pool of the hPGCLC induction
data (see Evaluation of run-time, memory, and scalability in the Materials and Methods section for details). The numbers in (A) indicate the scalabilities of RECODE (0.91),
SAVER (1.12), and MAGIC (1.86), which were calculated by the linear regression of run-times for 10,000–30,000 cells.
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Figure 10. Precise delineation of cell fate transition dynamics and identification of rare cell populations during mouse gastrulation by RECODE.
(A) UMAP plots of cells consisting of E7.5 mouse embryos with Seurat (top) or RECODE (bottom). The colors show the expression levels of the indicated genes. (B) UMAP
plots of Seurat and RECODE colored by the clusters defined in Fig S10B and C. (C) Scatter plots of the averaged gene expression levels between the node and notochordal
plate at E7.5, defined by the unsupervised hierarchical clusteringUHC of Seurat and RECODE in Fig S10C. The DEGs of node (blue) and notochordal plate (red) were defined
as > 0.25-fold difference (flanking diagonal lines), mean log2(ss10k + 1) > 1, and false discovery ratio < 0.05. The other genes are colored in dark gray, the annotated genes
show key genes, and the numbers of corners show the numbers of DEGs for node and notochordal plate cells. (D) Enlarged UHC dendrogram of the Ttr-high VE lineage at
E6.5 in Fig S10E and heatmap of the levels of selected markers for AVE with Seurat or RECODE. (E) Scatter plots of the averaged gene expression levels between VE and AVE
clusters of Seurat (left), VE, and AVE1 clusters of RECODE (middle) and VE and AVE2 clusters of RECODE (right) at E6.5. The DEGs of VE (blue) and the DEGs of AVE, AVE1/
AVE2 (red) were defined by the same criteria as in (C). The other genes are colored in dark gray, the annotated genes show key genes, and the numbers of corners show the
numbers of DEGs for each cell type.
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notochordal plate, and D.Endo are derived differentially from the
mesendoderm, that is, the node originates from the anterior end
of the primitive streak, the notochordal plate arises from the
anterior midline, whereas D.Endo forms around flanking areas
(Balmer et al, 2016). Thus, the RECODE-based analysis successfully
captures accurate developmental trajectories, which were over-
looked in the Seurat-based analysis.

Next, we show differentially expressed genes (DEGs) between the
node and the notochordal plate using the Seurat- and RECODE-
preprocessed data (Fig 10C). We obtain a substantially larger number
of DEGs of the RECODE-preprocessed data than those of the Seurat-
preprocessed data for both the node and the notochordal plate (178
and 250 DEGs for RECODE and 60 and 96 DEGs for Seurat). Although
we detect Cer1 as a notochordal plate-specific gene in the Seurat-
and RECODE-preprocessed data, we identify Noto, Pifo, and Foxj1 as
statistically significant, node-specific DEGs, only in the RECODE-
preprocessed data (Fig 10C). Moreover, the Seurat-preprocessed
data define T and Foxa2 as DEGs specific to the node and noto-
chordal plate, respectively, whereas it has been shown that they are
expressed uniformly in the node and notochordal plate (Lolas et al,
2014; Balmer et al, 2016), indicating a false-positive call (Fig S10D).

Next, we analyze the mouse gastrula data for E6.5 embryos. We
classify TE, VE, and EPI lineages by the UHC results and key gene
expressions (Fig S10E). We further classify the VE by the expression
of AVE markers (Dkk1, Cer1, Otx2, Lhx1, Hhex, Lefty1) (Takaoka &
Hamada, 2012; Bardot & Hadjantonakis, 2020) (Fig 10D). We find that
Seurat-preprocessed data can classify the VE cells into two major
clusters (VE and AVE), including one that expresses key AVEmarkers,
but this classificationmight be uncertain because of the sparse and
variable expression values. In contrast, the RECODE-preprocessed
result can clearly classify the VE cells. Moreover, the AVE cells can
be classified into two cell types, with one expressing AVE markers at
higher levels (5 cells: AVE1) and the other expressing them spo-
radically (19 cells: AVE2). In the DEG analysis (Fig 10E), we obtain
larger numbers of DEGs both between AVE1 and VE (438 and 328
DEGs) and between AVE2 and VE (257 and 287 DEGs) with the
RECODE-preprocessed data compared with the number of DEGs
obtained between AVE and VE (80 and 90 DEGs) with the Seurat-
preprocessed data. Importantly, two genes that are known to be
specific to AVE, Gsc (Belo et al, 1997; Ding et al, 1998) and Shisa2
(Furushima et al, 2007; Cheng et al, 2019), are contained in only DEGs
of the AVE1 cells with the RECODE-preprocessed data. These
findings indicate that the AVE1 represents the genuine AVE, and the
AVE2 may be the cells located around AVE1 with a property akin to
AVE, implying that RECODE can produce further biological insights.

Discussion

We have formulated a noise reduction method, RECODE, which
resolves the COD in scRNA-seq data analysis. RECODE significantly
mitigates CODs caused by random sampling noises in creating
scRNA-seq data with UMIs. Accordingly, we have shown that
RECODE significantly reduces those noises and recovers the gene
expression values, even for lowly expressed genes, enabling us to
use all of the information of genes in the downstream data analysis

and allowing the discrimination of single cells bearing close gene
expression profiles and identification of rare cells. We have per-
formed comprehensive comparisons of RECODE with representa-
tive imputation methods, including SAVER and MAGIC, and a widely
used scRNA-seq data analysis platform (Seurat), demonstrating the
superiority of RECODE. RECODE is parameter-free, data-driven,
deterministic, and high-speed, and importantly, the applicability
of RECODE can be predicted by variance distributions after noise
variance–stabilizing normalization (NVSN).

The successful application of RECODE to scRNA-seq data with
UMIs is based on the fact that those noise variances are appro-
priately estimated from the theories of random sampling in sta-
tistics (see RECODE in the Materials and Methods section). The
procedures for generating the scRNA-seq data consist of essentially
three key steps: copying the original information (reverse
transcription of mRNAs), amplifying the copied information
(PCR amplification of cDNAs), and sequencing the amplified
information (next-generation sequencing of amplified cDNAs)
(see Section 4 in the Supplemental Data 1). The copying and se-
quencing steps are assumed to involve random sampling noise
because these steps randomly pick up mRNAs and cDNAs, re-
spectively, whereas the amplifying step involves a distinct type of
noise resulting from the PCR amplification, which can vary for each
cDNAmolecule. The introduction of UMIs in the cDNA synthesis step
before the cDNA amplification offsets this noise, allowing an ap-
proximation of noises associated with scRNA-seq as random
sampling noises. Indeed, RECODE mitigated random sampling
noises in all the scRNA-seq data generated on the 10X Chromium
and Drop-seq platforms we evaluated, irrespective of their
chemistry versions (Fig 4). We found that although Smart-seq3
involves UMIs, it is only weakly applicable to RECODE. In contrast
to the typical methods—such as scRNA-seq on the 10X Chromium
platform—that incorporate UMIs in the 39 ends of mRNAs at the
beginning of cDNA synthesis, the Smart-seq3 method provides
UMIs at the 59 ends of full-length cDNAs after the cDNA synthesis
(Hagemann-Jensen et al, 2020). This would create additional noise(s)
because the cDNA synthesis reaction often stops in the middle of
mRNAs, and full-length cDNA synthesis depends on various vari-
ables, such asmRNA length and nucleotide compositions (Nakamura
et al, 2015). We reason that these potential additional sources of
noise make Smart-seq3 only weakly applicable to RECODE.

On the other hand, scRNA-seq data based on read counts
contain mixed noises (random sampling noise and PCR amplifi-
cation noise), and the extent of noise reduction by RECODE would
not be as large as that for the scRNA-seq data with UMIs (Fig 4).
Similarly, merged data among different culture environments or
developmental time points include other noises known as batch
effects. These data are beyond the scope of the current version of
RECODE because their noises are not regarded as those consisting
of only random sampling noise. To optimize the noise reduction
effect by RECODE on such data, it is imperative to appropriately
estimate the noise variances brought about by the mixture of
random sampling, PCR amplification, batch effects, and possibly
other factors. Toward this end, we need to examine the manner and
the mechanism of noise emergence in each step of the scRNA-seq
data generation in a more careful fashion and construct a math-
ematical theory to model the process for such noise emergence.
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Although both RECODE and imputation methods directly modify
raw data values, they focus on different aspects of data and, ac-
cordingly, employ distinct principles. Typically, imputation methods
are parametric and aim to circumvent the dropout effect and data
sparsity. To recover the expression of dropped-out genes based
on their expression levels in nearest neighbors, imputation
methods require some prior data clustering (e.g., k-nearest
neighbors), which does not escape from COD and therefore
potentially leads to incorrect results. Information aggregation of
nearest neighbors does not work for rare cells with no biolog-
ically appropriate neighbors, leading to the loss of such rare
cells (Fig 8). Furthermore, because these methods are not
necessarily based on a precise understanding of the noise-
generating processes, they may improve a part of the original
data but exacerbate other parts, causing problems such as
“over-imputation” or “cyclicity” (Andrews & Hemberg, 2018;
Lähnemann et al, 2020). In contrast, RECODE is nonparametric
and focuses on removing COD based on theories in high-
dimensional statistics. Accordingly, RECODE mitigates data
sparsity and simultaneously allows a more quantitative com-
parison of cells bearing close data structures.

With respect to the categories of imputation methods (Lähnemann
et al, 2020), RECODE can be categorized as a model-based method
because its key underlying theory is the noise variance modeling
of random sampling data. At the same time, RECODE uses the PCA
(singular value decomposition) and can therefore be categorized
as a matrix factorization as well. Thus, RECODE employs multiple
theories based on the formulation of scRNA-seq data
generation.

Importantly, RECODE does not impose any assumptions on the
data types for their application; that is, RECODE is applicable to
other sequencing data created by a similar platform. For ex-
ample, with an appropriate preprocessing, the spatial gene
expression and scATAC-seq data with 10X Chromium are also
categorized as class A (strongly applicable) (Sections 5.3 and 5.4 in
the Supplemental Data 1). In addition, RECODE can be applied to
high-dimensional data with noise in biology and even in other
disciplines. We would therefore like to propose that RECODE
presents a powerful strategy for preprocessing noisy high-
dimensional data.

Materials and Methods

RECODE

We propose a noise reduction method for scRNA-seq data repre-
sented by UMI counts called RECODE (resolution of the curse of
dimensionality). Using high-dimensional statistical theories,
RECODE can effectively reduce the noise in data through the reso-
lution of the curse of dimensionality. The detailed theories are shown
in the Supplemental Data 1.

Let cij (i = 1,…,d, j = 1,…,n) be the observed UMI count of gene i in
cell j and ctrueij be its true expression value. Here, n and d are the
sample size and dimension, respectively. Because the scale of cij and

ctrueij can vary significantly because of the low detection rate in data
sampling, we consider the following scaled values (probability):

xij =
cij
tj
; xtrueij =

ctrueij

ttruej
;

where tj and ttruej are the total UMI and RNA counts in cell j, that
is, tj = �

i
cij and ttruej = �

i
ctrueij , respectively. We model the noise

eij (i = 1,…,d, j = 1,…,n) defined as the difference between the
observed and true scaled values:

eij := xij − xtrueij :

Hereafter, we treat the above values as random variables.
To correctly split the essential and noise parts in the singular

value decomposition-based transformation in RECODE, we first
address COD3 (inconsistency of principal components) caused by
the nonuniform noise (procedure I in Fig 3A). Based on the random
sampling procedures, we model the observed UMI count data cij as

cij ; Poisson tjxtrueij

� �
:

This model generally coincides with previous studies (Grun et al,
2014; Huang et al, 2018; Hafemeister & Satija, 2019). Some recent
studies have also modeled the parameter distribution in the
Poisson distribution as a gamma distribution. As a result, the
mixture model follows the negative binomial distribution. Although
the negative binomial model may represent scRNA-seq data, es-
timating two independent parameters is a serious problem with
high computational costs. In contrast, this study does not assume
the distribution of the parameter tj (allowing any distributions).
That is, this study employs a general distribution that contains
distributions such as the Poisson, gamma, and negative binomial
distributions used in previous studies.

Without modeling the parameter distribution tj, we directly
proved the relationship of the following statistics for genes (see
Theorem 4.1 in the Supplemental Data 1):

Vari
�
xij
�
= Vari

�
xtrueij

�
+ Ei

�
xij
�
tj
�
: (1)

Here, Ei and Vari are the expectation (mean) and variance for
fixed gene i. To see the behavior of the noise variance, let us set xtrueij to
be constant. Then, we obtain Vari(eij) = Ei(xij/tj) from Equation (1). The
conventional studies based on the negative binomial distribution have
considered that the mean of scaled data describes the noise variance
as Vari(eij) = aEi(xij) + bEi(xij)2 (a, b: parameters). In contrast, our ob-
servation Vari(eij) = Ei(xij/tj) indicates that the explanatory variable is
Ei(xij/tj). This explanation of the noise variance is an essential dif-
ference from the conventional studies. Moreover, we can directly
evaluate the noise variance from observed data without parameters.

Using a function fα (α ≥ 0) given as

fα xð Þ =
8<
:

xffiffiffi
α

p ; α > 0;

0; α = 0;
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we define normalized data zij as zijdf Eiðxij=tjÞðxijÞ. We consider
the noise of the normalized data as e0

ijdzij − ztruei j , where
ztrueij = f Eiðxij=tjÞðxtrueij Þ. Because the noise e0ij satisfies Variðe0ijÞ = 1 for
expressed gene i, we call the transformation xij→zij the noise
variance–stabilizing normalization (NVSN).

Next, we denoise normalized UMI count zij by transforming ei-
genvalues (procedures II and III in Fig 3A). Let Z = ðzijÞ 2R

d×n be the
matrix form of normalized data and Z2R

d×n be the matrix of row
averages. We consider the singular value decomposition of cen-
tralized data as Z − Z = UZΣZVZ , where UZ, ΣZ, and VZ are a d × d
orthogonal matrix, a d × n rectangular diagonal matrix, and ann × n
orthogonal matrix, respectively. Defining Λ := ΣZΣTZ= n − 1ð Þ, the di-
agonal components λZ,i (i = 1,…,d) of ΛZ are equal to the eigenvalues
(PC variances) of PCA. That is, for the covariance matrix
SZ = ðZ − ZÞðZ − ZÞT=ðn − 1Þ, λZ,i (i = 1,…,d) satisfies the eigenvalue
equation SZuZ,i = λZ,iuZ,i, where uZ,i is the ith column vector of UZ.
Furthermore, for the PCA transformation ZPCA = UT

Z Z − Z
� �

, the ith
eigenvalue corresponds to the variance of the ith principal
component (ith PC variance), that is, Vari zPCAij

� �
= λZ;i. Because

NVSN resolved COD3, the PCA transformation can divide the es-
sential and noise parts by the first ℓ principal components and the
others (ℓ: threshold). Accordingly, we introduce the following
modified eigenvalues

λeZ;i =
8>>><
>>>:

λZ;i −
1

dPCA − i �
dPCA

j = i + 1
λZ;j; i ≤ l essential partð Þ;

0; i > l noise partð Þ:

Here, dPCA is the dimension of PCA-projected data, that is, dPCA =
min{n −1, d}. The transformation of the essential part (PC variance
modification in Fig 3A) adopts Yata and Aoshima’s method that
modifies eigenvalues to converge to true eigenvalues (Yata &
Aoshima, 2012). The transformation of the noise part (PC vari-
ance elimination in Fig 3A) eliminates the effect of the noise part by
setting the eigenvalues to be zero. Here, we can optimize the
threshold ℓ by using the fact that all the noise variances of the
normalized data are one, as

ℓopt = min k2 1;…; df g; �
d

i = k + 1
λZ;i ≤ d� kð Þ

8<
:

9=
;:

Then, we define the denoised data ~Z = ð~zijÞ as

Ze = UZΛe1=2
Z;ℓoptΛ

�1=2
Z UT

Z Z � Z
� �

+ Z:

Here, Λe1=2
Z;ℓopt and Λ−1=2Z are diagonal matrices with diagonal entries

~λ
1=2
Z;1 ;…; ~λ

1=2
Z;d (ℓ = ℓopt) and λ−1=2Z;1 ;…; λ−1=2Z;d , respectively. We treat

ðΛ−1=2Z Þii = 0 when λZ,i = 0. The denoised data ~Z satisfies S~ZuZ;i = ~λZ;iuZ;i
for i = 1,…,d and ~Z = Z. That is, the eigenvalues are modified to ~λZ;i,
whereas the principal component structure and the center values
are preserved. Finally, we obtain the denoised scaled data ~xij and
UMI count data ~cij by applying the inverse functions as

~xij = f −1Eiðxij=tjÞ
�
~zij
�
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei
�
xij
�
tj
�q
~zij;

~cij = tj~xij:

In the computation, the noise variance Ei(xij/tj) is evaluated by

Ei
�
xij
�
tj
�
≈ αi :=

1
n�

n

j = 1

x+ij
t+j

:

Here, the star symbol + indicates the sample values. Then, we
generate the normalized value as z+ij = f αi

ðx+ij Þ.

Classification of genes

We define the following classification of genes:

gene i is significant5
def xtrueij ≠ constant for j = 1;…;n;

gene i isnon-significant 5
def xtrueij = positive constant for j = 1;…;n;

gene i is silent5
def xtrueij = 0 for j = 1;…; n:

From this definition, the significant genes capture cell-specific
features, whereas the nonsignificant genes do not identify cell
differences. The silent genes are those having no function. We
denote the index sets of significant, nonsignificant, and silent genes
as Isig, Inon-sig, and Isilent, respectively. Then, from Equation (1), we
obtain

Var zij
� �

8>><
>>:

> 1; i2 Isig;
= 1; i2 Inon-sig;
= 0; i2 Isilent:

(2)

Thus, we can classify genes from the variances of normalized
data by NVSN, which hereafter denotes NVSN variances. The
classification allows us to determine whether a gene defines a
difference among cell populations in scRNA-seq data. Moreover,
this classification is also used for the applicability of RECODE
discussed in the next section.

Applicability of RECODE

In principle, RECODE can be used for any scRNA-seq data and
reduces noises induced by random sampling. However, the output
data may still retain noises caused by other technical problems
such as amplification. To examine the effects of denoising, we can
judge the applicability of RECODE by observing the NVSN variance
distribution.

We can first show that the empirical NVSN variances of expressed
genes are lower bounded by one

s2Z+ ;i =
1

n − 1�
n

j = 1
z+ij − z

+
i Þ2 ≥ 1; i = 1;…;d;

�
(3)

RECODE for scRNA-seq data Imoto et al. https://doi.org/10.26508/lsa.202201591 vol 5 | no 12 | e202201591 17 of 23

https://doi.org/10.26508/lsa.202201591


under Equation (2), where z+i is the empirical mean of the gene i.
According to this property, we classify the scRNA-seq data as
follows:

Class A (strongly applicable): The NVSN variances s2Z+ ;i satisfy
condition (3) and

s2Z+ ;i ≈ 1 formost genes i :

Class B (weakly applicable): The NVSN variances s2Z+ ;i satisfy
condition (3) and

s2Z+ ;i � 1 formost genes i :

Class C (inapplicable): The NVSN variances s2Z+ ;i do not satisfy
condition (3).

Here, we recall that most genes are not directly related to cell
identifications. In our setting, this fact indicates that the number of
Inon-sig (nonsignificant genes) is much larger than that of Isig (sig-
nificant genes), leading to the second requirement in class A. It
should also be noted that noise variances generally increase when
there exist other noise effects in addition to random samplings,
such as amplification errors. The additional noises cause the NVSN
variances s2Z+ ;i to take large values away from one, as addressed in
class B. Based on this discussion, the data in class A match our
model, and hence, we can expect that RECODE appropriately
removes noise. On the other hand, the data in class B imply that
other noises may be mixed in with the random sampling noise, and
accordingly, RECODE may only work for the partial removal of noise.
Finally, because the data in class C do not follow our model, we
cannot expect noise removal there.

Simulation data creation

We created the simulation data in Figs 1, 3, S1, and S7 based on the
Splatter algorithm (Zappia et al, 2017). We set 1,000 cells, 20,000
genes, and 200 differential expressed genes identifying the four
groups. We used the trended cell mean λSPLij as the reference data
(ctrueij = λSPLij ), where the symbol SPL denotes the Splatter variables.
To represent the low detection rate, we created the observed count
as cij = Poisson rλSPLij

� �
, where r denotes the detection rate set as

0.1. We set the other parameters as follows: αSPL = 0.3, βSPL = 0.6,
πO,SPL = 0, μO,SPL = 4, σO,SPL = 0.5, μL,SPL = 11, σL,SPL = 0.2, ϕSPL = 0,
df SPL0 = 60, xSPL0 = 0, and kSPL = −1.

Collection of human iPSCs and PGCLCs

All the experiments on the induction of hPGCLCs from hiPSCs were
approved by the Institutional Review Board of Kyoto University and
were performed according to the guidelines of the Ministry of
Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

The culture of human iPSCs and the induction of PGCLCs were
performed as described previously (Sasaki et al, 2015; Kojima et
al, 2017, 2021). The 585B1 BTAG (585B1-868, bearing 2A-tdTomato and
2A-EGFP at BLIMP1 and TFAP2C loci) hiPSCs were maintained in
StemFit AK03N medium (Ajinomoto) on cell culture plates
coated with iMatrix-511 (Nippi). The medium was changed
every other day. For the passaging or the induction of

differentiation, the cells were treated with a one-to-one
mixture of TrypLE Select (Life Technologies) and 0.5 mM
EDTA/PBS to dissociate into single cells, and 10μM of a ROCK
inhibitor (Y-27632; Wako Pure Chemical Industries) was added
for 24 h after plating.

For the induction of hPGCLCs, hiPSCs were first plated at a
density of 5 × 104 cells/cm2 onto a fibronectin (FC010; Millipore)-
coated plate. The cells were then cultured in GK15 medium (GMEM
with 15% KSR, 0.1 mM NEAA, 2 mM L-glutamine, 1 mM sodium py-
ruvate, penicillin–streptomycin, and 0.1 mM 2-mercaptoethanol)
supplemented with 50 ng/ml activin A (R&D Systems), 3 μM
CHIR99021 (TOCRIS), and 10μM of Y-27632 (Wako Pure Chemical
Industries) for 44–48 h. Next, the cells were dissociated into single
cells with TrypLE Select and aggregated in a low cell-binding
V-bottom 96-well plate (Greiner) at 5,000 cells per well in 100 μl
of GK15 medium supplemented with 200 ng/ml BMP4 (R&D Systems),
100 ng/ml SCF (R&D Systems), 50 ng/ml EGF (R&D Systems), 1,000 U/
ml LIF (Millipore), and 10 μM of Y-27632 to be induced into hPGCLCs.

For the sample collection from iPSCs, the cells were suspended
in the same manner as described above. For the aggregates of
PGCLC induction, the aggregates were collected on the designated
days of induction day 4, washed once in PBS, and dissociated with
0.25% trypsin–EDTA for 10–15 min at 37°C with gentle pipetting
every 5min. Trypsin was neutralized with a 5× volume of 10% FBS in
DMEM. Before proceeding with the scRNA-seq data analysis, the live
BTAG double-positive single cells were sorted using a FACSAria III
system (BD Biosciences) by FSC-SSC and EGFP-tdTomato gating with
DRAQ7 (ab109202) staining. Tomake an aliquot of themixture of iPSCs
and day 4 BTAG double-positive cells, equal numbers of cells were
mixed before the scRNA-seq data analysis.

10X scRNA-seq data acquisition

ScRNA-seq libraries of 10X data were generated using the 10X
Genomics Chromium Controller (10X Genomics) and Chromium
Single Cell 39 Reagent Kits v3.1 according to the manufacturer’s
instructions. Reverse transcription, cDNA amplification, and sample
indexing were performed using an Eppendorf Mastercycler. The
final libraries were quantified using a KAPA library quantification kit
(KK4824), and the fragment size distribution of the libraries was
determined using a LabChip GX DNA high sensitivity kit (Perkin
Elmer). Pooled libraries were then sequenced using a NovaSeq
6000 Illumina Sequencer with a NovaSeq 6000 S1 Reagent Kit (100
Cycles, 20012865).

Mapping of scRNA-seq data

For human PBMC CITE-seq data, the filtered count matrix data were
downloaded from the 10X Genomics demo data site (see Data
Availability in the Materials and Methods section for details).

For the other 10X 39 scRNA-seq data, CellBench data by Tian et al
(2019), the hPGCLC induction data by Chen et al (2019), the hiPSC/
hPGCLC mixture data generated in this study, and the mouse
gastrula data by Pijuan-Sala et al (2019), raw files were processed
with CellRanger 6.0.1 using default mapping arguments. Reads were
mapped to the mouse genome (GRCm38.p6) or human genome
(GRCh38.p12), respectively.
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For the Human Cell Atlas project data by Mereu et al (2020) and
Hagemann-Jansen et al (2020), the 10X data were processed with
CellRanger 6.0.1 using default mapping arguments, and the Quartz-
seq, Smart-seq2, and Smart-seq3 data were processed with zUMI
v2.9.7 (Parekh et al, 2018) and STAR v2.7.3 (Dobin et al, 2013)
according to the original papers (Hagemann-Jensen et al, 2020;
Mereu et al, 2020). Briefly, reads were mapped onto a simple human
genome (GRCh38.p12) and onto a custom genome consisting of
human (GRCh38.p12), dog (CanFam3.1), and mouse (GRCm38.p6)
genomes with chromosome and gene names headed by “hs_,”
“mm_,” and “cf_,” respectively, to identify the organisms.

Mapping of bulk RNA-seq data

For the hPGCLC and hiPSC data generated by the 10X 39 scRNA-seq,
conversion of the read data into expression levels was performed
as described previously (Nakamura et al, 2015, 2016; Kojima et al,
2017). The reads were mapped on the human genome (GRCh38.p12).
The 39 RNA-seq reads only the 3-prime ends of transcripts so that
the expression levels were calculated as genes (Entrez genes) but
not transcripts and reads per million-mapped reads (RPM) were
calculated for the expression levels. Then the RPM expression data
matrix was transformed to log2(RPM+1) and used for the down-
stream data analysis.

For the five adenocarcinoma cell line data generated by con-
ventional full-length RNA-seq (Counterparts to CellBench, [Holik et
al, 2017]), the reads were mapped on the human genome
(GRCh38.p12), and the expression levels were calculated as frag-
ments per kilo-base million-mapped reads (FPKM). Then, the FPKM
expression datamatrix was transformed to log2(FPKM+0.1) and used
for the downstream data analysis.

ScRNA-seq data quality check and preprocessing

In the quality check of scRNA-seq data, the cells with low nUMIs
mapped on genes, low nGenes, high percentages of UMIs on mi-
tochondrial genes, and themultiplets judged by Scrublet (Wolock et
al, 2019) were filtered out. In addition, for 10X CITE-seq data of
PBMCs, the cells with low nUMIs mapped on the protein index were
filtered out. For the Human Cell Atlas data, first, the multiplets
between different species were omitted according to the ratio of
UMIs mapped on the human genome. Then, using the data mapped
onto the human genome (GRCh38.p12), the cells with low nUMIs
mapped on genes, low nGenes, and high percentage UMIs of mi-
tochondrial genes were filtered out. See Figs S2 and S8 for detailed
criteria. For preprocessing of the expression values, each UMI value
was divided by the total UMI count of the cell, multiplied by the
scale factor parameter (10k = 10,000) and then log2-transformed
after adding a pseudo expression value of 1 to avoid the incorrect
value (log20) [log2(ss10k + 1)].

Applying RECODE

RECODE is applied to the quality-checked UMI count matrices using
Python version 3.7.4 of Anaconda. The output matrices were log-
normalized (log2(ss10k + 1)) for downstream data analyses.

Applying imputation methods

The imputation methods were performed with default settings
according to the respective program manuals. SAVER (Huang et al,
2018), scImpute (Li & Li, 2018), and ENHANCE (Wagner et al, 2019
Preprint) were applied to the UMI count matrices, and the output
matrices were log-normalized (log2(ss10k + 1)). In contrast, MAGIC
(van Dijk et al, 2018), DrImpute (Gong et al, 2018), and ALRA
(Linderman et al, 2022) were applied to the log-normalized UMI
count matrices (log2(ss10k + 1)). Minus values in their output matrix
were forcibly set as 0.

Analysis of scRNA-seq data

The following analysis was performed using Microsoft-R software
version 4.0.2 with the parallelDist, amap, Rtsne, gplots, uwot, cluster,
qvalue, and Seurat packages. UHC was performed using the hclust
and parDist functions with Euclidean distances and Ward’s method
(ward.D2). t-SNE was performed using the Rtsne function with
perplexity = 30 and genes with expression (log2(ss10k + 1) > 0) in at
least one cell. UMAP was performed using the umap function with
n_neighbors = 10, min_dist = 0.5, and genes with expression
(log2(ss10k + 1) > 0) in at least one cell. The cell types of human PBMC
CITE-seq, CellBench, and the hiPSC/hPGCLC mixture datasets were
defined by using external data as described below (Figs S3–S5).
Some of the ENHANCE-treated cells became identical to each other,
and thus, those cells were removed ahead of clustering to avoid
computation errors. Note that, for analyses other than Seurat, we
performed these multi-variance analyses without any other di-
mension reduction steps, such as selecting HVGs or aggregation of
gene information by PCA. The Silhouette scoreswere calculated using
Silhouette function with Euclidean distances calculated by parDist
function. To identify DEGs, the wilcox.test and kruskal.test functions
followed by the q value function were used to calculate the P-value
and false discovery ratio, respectively.

For analyses with Seurat, importation of the raw UMI count
matrix, log2 normalization [log2(ss10k + 1)], scaling, selection of
HVGs (2,000 genes), and PCA were performed by NormalizeData,
FindVariableFeatures, ScaleData, and RunPCA functions with de-
fault settings according to the tutorial on the Seurat website
(https://satijalab.org/seurat/articles/pbmc3k_tutorial.html). Selecting
the significant PCs was done based on the results of the jackstraw
function. The following analysis (UHC, UMAP, and t-SNE) were per-
formed with the parallelDist, Rtsne, and uwot packages using the PC
scores of the significant PCs suggested by jackstraw (mouse gastrula
data E6.5; PC26, E7.5; PC31).

Analysis of Drop-seq and RNA-FISH data

The analysis of Drop-seq and RNA-FISH data (Fig 7) was performed
as follows. The cells with nUMI less than 500 or greater than 20,000
were removed following the previous study (Huang et al, 2018), but
all the expressed genes (28,537 genes) were used. For both the data
without preprocessing and that with preprocessing by RECODE,
SAVER, and MAGIC, we aligned the averages of each gene with RNA-
FISH data to fairly compare the distributions in Fig 7A. The k th order
moments of gene i in Fig 7B are defined as Mkdn−1�n

j = 1ðxij − xiÞk,
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where xij and xj are the log-scaled gene expression value of gene i
on cell j and the average value of gene i, respectively. The relative
error of the k th order moment is defined as

���MFISH
k −MDrop

k
���=��MFISH

k
��,

where MFISH
k and MDrop

k are the k th order moments computed by
RNA-FISH and Drop-seq data, respectively.

Identification of cell types in human PBMC CITE-seq, CellBench,
and the hiPSC/hPGCLC mixture dataset

For cell annotations in human PBMC CITE-seq data, raw UMI counts
of protein expression (CD3, CD4, CD8A, CD14, CD15, CD16, CD19, CD25,
CD56 CD137, CD45RA, and CD45RO) were processed by dividing each
UMI by the total UMI count of the proteins in the cell (nUMI_pro-
tein), multiplying it by the median of nUMI_protein, and then log2-
transforming it after adding a pseudo expression value of 1 to avoid
the incorrect value (log20) [log2(ss.med + 1)]. The cell clustering
and annotations were determined according to the UHC analysis
and the expression pattern of the protein expressions. The UHC and
UMAP were performed with the parameters described above.

For the annotation of the CellBench dataset, first, the signature
genes of each cell type were calculated using the corresponding
bulk RNA-seq data (Holik et al, 2017) (174 genes, log2F.C. [mean of
target cells versus mean of the others] >3 and mean of
log2(FPKM+0.1) of the target cells >4). The cell clustering of Cell-
Bench 10X data was performed according to the UHC analysis using
the log2(ss10k + 1) values of the 174 signature genes. Finally, the
correlation between the means of the clusters of 10X CellBench
data and bulk RNA-seq data were computed and the cells of
CellBench were annotated according to the results of the corre-
lation analysis.

For the annotation of the hiPSC/hPGCLC mixture data, first, the
signature genes of each cell type were calculated using the cor-
responding bulk RNA-seq data (Kojima et al, 2017) (442 genes,
log2F.C. [mean of hiPSC versus mean of hPGCLC] >3 and mean of
log2(RPM + 1) > 4). The clustering of 10X scRNA-seq data was per-
formed according to the UHC analysis using the log2(ss10k + 1)
values of the 442 signature genes. We annotated the clusters with
the expressions of SOX17, TFAP2C, PRDM1, and NANOS3 and with
SOX2 and DNMT3B as hPGCLC and hiPSC, respectively. The clusters
with both PGCLC and iPSC marker expressions should be doublets,
so they were removed ahead of the following analysis. Note that we
assumed that the effect of COD is negligible for such a small
number of genes (dimensions).

In silico dilution analysis

For the assay in Fig 8, 100, 20, 10, 5, 3, 1 hiPSCs or H2228 cells in the
hiPSC/hPGCLC mixture or the CellBench data were picked randomly
and mixed with the other remaining cells (Fig 8A and B). Then the
expression matrices were applied for RECODE and other imputation
methods in the same manner as described above.

Evaluation of run-time, memory, and scalability

We used scRNA-seq data with 36,694 cells (“uclc2” series of
GSE140021, Chen et al, 2019, see Table S1 for details) to evaluate the
run-time, memory usage, and scalability of RECODE, SAVER, and

MAGIC (Fig 9). We created datasets by randomly sampling 200, 500,
1,000, 2,000, 5,000, 10,000, 20,000, and 30,000 cells from the original
data. The run-times were measured by the time.time function on
python for RECODE and the tictoc package on R for SAVER and
MAGIC. The memory usages were measured by the maximum
memory usage during the job by the Grid Engine system (UNIVA Grid
Engine) of our computation server. The scalabilities were calculated
by the linear regression of run-times for 10,000–30,000 cells. The
brief specs of the computation node used for this assay are CPU:
dual Xeon Gold 6146 (12 cores × 2, 3.2 GHz, without hyperthreading
technology) and memory: DDR4-2666, 512 GB.

Data Availability

The accession numbers used in this study are as follows. For the
scRNA-seq data, the hiPSC/hPGCLC mixture data generated in this
study (GSE175525); human PBMC CITE-seq data (demo data from 10X
genomics: 10k PBMCs from a Healthy Donor—Gene Expression with a
Panel of TotalSeq-B Antibodies) (https://www.10xgenomics.com/
resources/datasets/10-k-pbm-cs-from-a-healthy-donor-gene-
expression-and-cell-surface-protein-3-standard-3-0-0), the Cell-
Bench data (GSE118767) (Tian et al, 2019), the hPGCLC induction
(GSE140021) (Chen et al, 2019), the Drop-seq data (GSE99330) (Torre
et al, 2018), datasets in the Human Cell Atlas project (10X 39 scRNA-
seq, Drop-seq, Quartz-seq, Smart-seq2, Smart-seq3) (GSE133549, E-
MTAB-8735) (Hagemann-Jensen et al, 2020; Mereu et al, 2020), and
the mouse gastrula data (E-MTAB-6967) (Pijuan-Sala et al, 2019).

For the external data, the bulk RNA-seq data of five adenocarcinoma
cell lines for CellBench (GSE86337) (Holik et al, 2017), the bulk RNA-seq
data of iPSCs and the purified hPGCLCs (GSE99350) (Kojima et al, 2017),
and the smFISH data count data were obtained from https://
www.dropbox.com/sh/g9c84n2torx7nuk/AABZei_vVpcfTUNL7buAp8z-a?
dl=0 (Torre et al, 2018). See Table S1 for details.

Code availability

The python and R codes of RECODE are available at https://
github.com/yusuke-imoto-lab/RECODE.

Supplementary Information

Supplementary information is available at https://doi.org/10.26508/lsa.
202201591.
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