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Islet Gene View—a tool to facilitate islet research
Olof Asplund1,2 , Petter Storm1,2,3,*, Vikash Chandra4,* , Gad Hatem1,2, Emilia Ottosson-Laakso1,2, Dina Mansour-Aly1,2,
Ulrika Krus1,2, Hazem Ibrahim4 , Emma Ahlqvist1,2, Tiinamaija Tuomi1,2,5,6 , Erik Renström1,2, Olle Korsgren7,8,
Nils Wierup1,2, Mark Ibberson9, Michele Solimena10,11,12, Piero Marchetti13 , Claes Wollheim1,2,14, Isabella Artner1,2,
Hindrik Mulder1,2, Ola Hansson1,2,6 , Timo Otonkoski4,15 , Leif Groop1,2,6, Rashmi B Prasad1,2,6,16

Characterization of gene expression in pancreatic islets and its
alteration in type 2 diabetes (T2D) are vital in understanding islet
function and T2D pathogenesis. We leveraged RNA sequencing
and genome-wide genotyping in islets from 188 donors to create
the Islet Gene View (IGW) platform tomake this information easily
accessible to the scientific community. Expression data were
related to islet phenotypes, diabetes status, other islet-
expressed genes, islet hormone-encoding genes and for ex-
pression in insulin target tissues. The IGW web application
produces output graphs for a particular gene of interest. In IGW,
284 differentially expressed genes (DEGs) were identified in T2D
donor islets compared with controls. Forty percent of DEGs
showed cell-type enrichment and a large proportion significantly
co-expressed with islet hormone-encoding genes; glucagon (GCG,
56%), amylin (IAPP, 52%), insulin (INS, 44%), and somatostatin
(SST, 24%). Inhibition of two DEGs, UNC5D and SERPINE2, impaired
glucose-stimulated insulin secretion and impacted cell survival in
a human β-cell model. The exploratory use of IGW could help
designing more comprehensive functional follow-up studies and
serve to identify therapeutic targets in T2D.
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Introduction

Type 2 diabetes (T2D) is a chronic condition arising from the in-
ability of the body to maintain glucose homeostasis. It has broadly
been attributed to defects in insulin secretion and increasing in-
sulin resistance, the latter often arising because of obesity and

physical inactivity (Prasad & Groop, 2015). Genome-wide associa-
tion studies (GWAS) have identified 403 loci robustly associated
with T2D risk (Prasad & Groop, 2015; Wood et al, 2017; Mahajan et al,
2018). A vast majority of the loci primarily influence insulin se-
cretion (Lyssenko et al, 2008; Wood et al, 2017), thus emphasizing the
central role of the islets of Langerhans and β-cell dysfunction in
T2D pathogenesis.

Gene expression analysis provides a possibility to link between
genetics and cellular function and is crucial for the elucidation of
pathophysiological mechanisms. Information on gene expression
in different tissues has greatly served the understanding of disease
mechanisms. For example, the Genotype-Tissue Expression (GTEx)
project (GTEx Consortium, 2013) is a pioneering example on how to
share such information from deceased humans. Unfortunately,
GTEx has limited information on human pancreatic islets of
Langerhans, as RNA sequencing was performed on whole pancreas,
not islets, and only from a limited number of deceased donors.
Importantly, the pancreas needs to be removed while blood flow is
still intact to retain functionality of the pancreatic cells (Jansson
et al, 2016), and therefore more information on human pancreatic
islets can be derived from organ donors selected for transplan-
tation purposes where blood flow has been kept intact until
pancreas excision and islet isolation is possible.

One of the main objectives of the EU-funded strategic research
area, Excellence of Diabetes Research in Sweden (EXODIAB), is to
facilitate diabetes research globally, for example, by creating re-
sources and tools that can be used by the research community. One
of its central platforms, The Human Tissue Laboratory, has gen-
erated a large repository of tissue samples (human pancreatic
islets, fat, liver, and muscle) from deceased organ donors. It
comprises gene expression (bulk RNA sequencing) and genome-
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wide genetic variation data (GWAS) from human pancreatic islets,
as well as some of the target tissues for insulin. Here we describe
the development of a web-based tool, the Islet Gene View (IGW),
which will allow rapid and robust overview of data, as well as “look-
up” of genes of interest. The underlying database shows differences
in gene expression between T2D and nondiabetic donors and their
relationship with specific islet phenotypes as well as the effects of
genetic variation on gene expression, that is, eQTLs (Expression
Quantitative Trait Loci). The tool includes some well validated
examples to reinforce the usefulness and precision of the tool.

Results

IGW—a web resource for gene expression in human pancreatic
islets

We created the IGW web tool to functionally annotate all genes
expressed in human pancreatic islets and to provide a platform to
look up genes of interest. IGW is accessible at https://
mae.crc.med.lu.se/IsletGeneView/. IGW uses several com-
mon gene identifiers (e.g., gene symbol, Ensembl gene ID, and full
gene name), and provides graphs of gene expression in relation to
islet phenotypes and expression of other genes (Fig S1). An example
graph is given in Fig 1. The first graph reveals gene expression in
human pancreatic islets and other target tissues for insulin (e.g., a
12-donor tissue panel of biopsies from fat, liver, and skeletal
muscle). The second graph shows the relationship between gene
expression and purity (islet volume fraction, i.e., the proportion of
endocrine component over exocrine), followed by its expression in
relation to other genes expressed in the islets. Subsequent figures
show gene expression in relation to glycemic status and related
phenotypes such as T2D, glucose tolerance defined by HbA1c strata
(normal glucose tolerance, NGT: HbA1c <6%, impaired glucose toler-
ance, IGT: HbA1c between 6% and 6.5%, and T2D: HbA1c > 6.5%), HbA1c
as a linear variable as well as BMI, and glucose-stimulated insulin
secretion (GSIS) in islets (stimulatory index, SI). Of interest is also
coexpression with other islet cell-specific genes such as INS, GCG, and
IAPP. The final graph shows islet cell-type expression from Segerstolpe
et al (2016). In addition, separate tab allows researchers to download
data on the top 100 co-expressed genes with the gene of interest.

Multiple genes are differentially expressed between islets from
type 2 diabetic and nondiabetic donors

In IGW, differential expression analysis of 33 donors with a clinical
diagnosis of T2D and 155 diabetes-free individuals (Table S1 and Fig
S1) showed that expression of 284 of a total of 14,108 genes differed
significantly between the two groups (FDR ≤ 0.05, Fig 2 and Table
S2). Of these differentially expressed genes (DEGs), expression of
120 geneswas down-regulated, whereas that of 165 was up-regulated
in T2D donor islets (Fig 2). Expression of 24 genes showed significant
correlationwith HbA1c levels with concordant directionality (Table S3
and Fig 2).

To validate the data that underlie the IGW, we sought to replicate
our key findings by comparing our list of DEGs with previously

published data. For this, we selected a study presenting DEG data
from two microarray experiments (Solimena et al, 2018), run on
islets from (1) partially pancreatectomized patients and (2) organ
donors. Nineteen genes were replicated with directional consis-
tency with our dataset in both themicroarray sets, including UNC5D,
PPP1R1A, TMEM37, SLC2A2, ARG2, CAPN13, FFAR4, HHATL, and CHL1
(Figs 2 and 6). Expression changes in 28 genes were replicated in the
expression data obtained from organ donors and that of 20 genes in
the dataset of the partially pancreatectomized donors (Fig 3). Of the
total 67 replicated genes, 58 also associated with HbA1c levels (Table
S3). Of particular interest were the genes HHATL, CHL1, and SLC2A2,
the expression of which was concordant to findings from a previous
study including a subset of the current islets (Fadista et al, 2014). The
expression of all the above three genes correlated nominally with
stimulatory index (measure of GSIS in the islets) as well as with BMI.
The expression of HHATL correlated with expression of INS, SST, and
IAPP, CHL1with GCG and SLC2A2with IAPP (Figs S2–S4). We and others
have previously shown that a genetic variant at the CHL1 locus
(rs9841287 SNP) is associated with fasting insulin concentrations
(Manning et al, 2012; Scott et al, 2017). In addition, this locus was an
eQTL for the CHL1 and CHL1-AS1 genes (β = 0.29 and 0.27, P = 0.028
and 0.04, respectively, increasing allele = G).

Of the DEGs, GLRA1 expression was significantly associated with
the stimulatory index (Fig 1). Another gene of interest was FXYD2, the
expression of which was down-regulated in T2D donor islets and
correlated with HbA1c levels. Its expression was also down-
regulated in β-cells from T2D donors in a previous study using
single cell RNAseq (Segerstolpe et al, 2016).

Most genes expressed in islets and DEGs show variable
expression in fat, liver, and muscle

Gene expression is a means by which a genome controls cell dif-
ferentiation and consequently development of different tissues. Gene
expression and its genetic regulation can be highly tissue specific or
ubiquitous, the latter facilitatingahigherdegreeof pleiotropy. Theextent
to which islet-expressed genes found in IGW also show expression in
other tissues, especially those of relevance to T2D, is yet to be unde-
termined. To address this, we examined whether genes expressed in
islets were also expressed in fat, liver and muscle obtained from the
same individuals (defined as ≥1 cpm in >80% of samples). Indeed, we
found a large proportion of genes (11,118) to be expressed in all four
tissues at varying levels (Fig S5). In addition, each tissue also had unique
expression patterns: 1,122 genes were expressed in islets, 713 in muscle,
529 in liver, and 1,112 in adipose tissue. Of the 284 DEGs, 36 genes showed
highest expression in islets compared with the other tissues; this in-
cluded the islet hormone coding IAPP, antisense of SSTR5 coding SSTR5-
AS1, GLRA1, FXYD2, and UNC5D. 15 genes were expressed in islet and liver
includingHHATL, whereas 40otherswere expressed in at least one other
tissue (Fig S5) (Fig 4). Most of the genes seemed to be ubiquitously
expressed in all tissues tested (Figs S5 and 4).

DEGs in T2D donor islets are significantly co-expressed with islet
hormone encoding genes

Pancreatic islets comprise insulin-secreting β-cells, α-cells which
secrete glucagon, Δ-cells which secrete somatostatin, F-cells (also
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called PP cells) which secrete pancreatic polypeptide Y, and ghrelin
cells which produce ghrelin. In addition, β-cells also secrete islet
amyloid polypeptide (IAPP) (also a DEG). Therefore, genes found in

IGW whose expression correlates with insulin and glucagon ex-
pression are likely to influence insulin expression or are potential
downstream targets of INS and GCG. Altogether, 11,238 genes were

Figure 1. Example output from Islet Gene View of GLRA1.
(A) Expression of the gene in fat, islets, liver, and muscle in the same pool of 12 individuals. (B) Gene expression as a function of purity, defined as the percentage of
endocrine tissue. (C) Expression of the selected gene in relation to other genes in islets. (D, E, F, G, H) (Karpichev et al, 2008): Gene expression in relation to several
diabetes-related phenotypes, that is, T2D diagnosis (D), HbA1c stratum (E), continuous HbA1c (F), BMI (G), and stimulatory index (H). Test statistics are reported, namely:
coefficient of determination (R2), nominal P-value, and percentage rank among all genes as calculated based on sorted P-values. (I, J, K, L, M) (Gibson et al, 2018): Gene
expression in relation to the secretory genes INS (I) GCG (J), SST (K), IAPP (L), and PPY (M). Spearman’s ρ (r) and the P-value of the gene based on the empirical correlation
distribution is reported. INS, insulin; GCG, glucagon; SST, somatostatin; PPY, pancreatic polypeptide; IAPP, islet amyloid polypeptide. (N, O, P) and (O) Top 10 eQTLs and (P)
single-cell RNAseq expression data from Segerstolpe et al (2016).
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co-expressed (FDR < 0.05) with INS and 4,519 of them were em-
pirically significant (i.e., when gene–gene correlations for all genes
expressed in islets were considered). The corresponding numbers
for GCG were 9,347 and 789, for SST were 9,937 and 1,172, whereas
10,638 and 2,610 for IAPP. The number of genes showing positive and
negative coexpression with INS, GCG, IAPP, and SST and overlapping

correlations regardless of direction are shown in Fig S6A–C, re-
spectively. A list of top 10 genes showing the strongest correlation
with islet hormone encoding genes is provided in Table S4.

The expression of 124 DEGs correlated significantly with INS
expression of which 24 were significant at the empirical level. The
corresponding numbers were 160 and 42 for GCG, 147 and 65 for

Figure 2. Characterization of differentially expressed genes between islets from T2D donors compared with controls and association with HbA1c levels.
Outer track: 120 genes were down-regulated (indicated in blue), whereas 164 genes were up-regulated in islets from T2D donors (indicated in red). Inner track: genes
showing significant positive correlation with HbA1c levels (red) and negative correlation (blue).
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IAPP, 67 and 8 for SST, none for PPY, and 0 and 2 for GHRL (Table S5
and Fig 5).

Genes whose expression is altered in T2D donor islets show
cellular heterogeneity in enrichment of expression

We next compared the DEG gene-set derived from IGW with a gene
list of cell type–enriched genes from a previously published study
applying single cell RNA sequencing (scRNAseq) of islets
(Segerstolpe et al, 2016). This yielded an overlap of 20 genes
enriched in α cells, 23 in β-cells, 8 in γ, 7 in Δ, 17 in acinar, and 39 in
ductal cells (Fig 5). Of genes showing correlation with at least one
islet hormone encoding gene, the largest proportion of genes was
co-expressed with GCG (65%), followed by IAPP (57%), INS (50%), and
SST (35%) (Fig 5). Two genes were co-expressed with GHRL (PPP1R1A
and FAM105A), whereas there were no significant coexpression
between the DEGs and PPY. The expression of 36 genes showed
opposite correlation with INS and GCG (i.e., positive with INS and
negative with GCG, and vice versa). These included the (i) IAPP and
(ii) the histone acetyl transferase in the TGF β signaling pathway
coding NCOA3 genes, the expressions of both were down-regulated
in T2D donor islets, and correlated positively with GCG whereas
negatively with INS (iii), HMGA1 (variants associated with T2D), and
(iv) BCL2L1 which promotes survival of differentiating pancreatic
cells (Loo et al, 2020), both of which showed higher expression in

T2D donor islets and correlated negatively with GCG whereas
positively with INS (Tables S1 and S5).

Several DEGs had previously been shown to be enriched in
exocrine cells; of them, seven genes including MYC, FST, and
SLC38A5 in acinar cells and 17 genes, including KCNJ16 and CHST15 in
ductal cells. The expression of these genes was also negatively
correlated with purity, supporting the view of exocrine origin (Table
S6). Among these DEGs, 29 genes showed higher expression in
pancreatic stellate cells compared with endothelial cells (Table S7)
including SERPINE2, PTGDS, and PIEZO2.

A pathway analysis of the DEGs showed an array of interactions
between the various islet cell types involved in T2D pathogenesis (Fig
6) including genes enriched in endocrine and exocrine cells (Fig 6).

Functional assessment of two DEGs (UNC5D and SERPINE2) by
knockdown in human EndoC-βH1 cells

Based on findings in IGW, we set out to functionally validate se-
lected findings. Expression of UNC5D was significantly down-
regulated in islets from T2D donors and negatively correlated
with HbA1c levels (Fig 7A and B). Expression of UNC5D correlated
with that of IAPP (ρ = 0.57, p_emp = 0.047) and with GCG (ρ = 0.36, P =
2.66 × 10−07) expression (Fig S7). The down-regulation of UNC5D
expression in T2D donor islets was also reported in a previous study
(Solimena et al, 2018). Immunohistochemical analysis confirmed

Figure 3. Replication of differentially expressed genes in comparison with data from.
Solimena et al (2018)Venn diagram shows the overlap of differentially expressed genes from each of the studies. OD and PPP show DE data from organ donor islets and
partially pancreatectomized donor islets from Solimena et al, whereas OD (LUND) show DE genes from our data. Nine genes were replicated in all three data sets. 13 genes
were replicated between the OD islets from Solimena et al (presented in blue on the left) and our data, whereas 15 genes were replicated between PPP islets and our data
(presented in green on the right). The arrows indicate the direction of effect: red arrows pointing down show down-regulation in T2D islets, whereas green arrows
pointing up are up-regulated.
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that UNC5D was expressed in islet cells, and its expression was
reduced in β-cells from T2D donors (Figs 7C and S7). Moreover,
scRNAseq from human pancreatic islets from our extended dataset
showed that UNC5D is predominantly expressed in β- and Δ-cells
(Figs 7D and S7).

Expression of SERPINE2 was strongly up-regulated in T2D donor
islets, and its expression was strongly positively correlated with
HbA1c level (Figs 7E and F and S8). SERPINE2 expression was
nominally correlated with that of INS (ρ = 0.17, P = 0.02) and IAPP (ρ =
−0.17, P = 0.019) (Fig S8). Immunostaining of SERPINE2 in adult

Figure 4. Expression of the differentially expressed genes (DEGs) in fat (F), islet (I), liver (L), and muscle (M).
T1 shows expression of DEGs in fat, T2 in islets, T3 in liver, and T4 in muscle. Expression was defined as ≥ 1 count per million (CPM). DEGs expressed in islets and not in
other tissues are shown in Segment A; islet and liver in Segment B; islet andmuscle in Segment C; fat and islet in Segment D; fat, islet, and liver in segment E; islet, liver, and
muscle in segment F; fat islet and muscle in segment G; and all four tissues in segment H. Most of the DE genes were expressed in all four tissues; coded as blue < 1, 0 =
white, red ≥ 1.
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human pancreatic sections of normoglycemic donors showed very
faint whereas strong islet-associated SERPINE2 immunoreactivity
was observed in pancreatic sections of T2D donors (Fig 7G). Fur-
thermore, scRNAseq data on a subset of islets from the same
donors (Martinez-Lopez et al, unpublished) revealed that SERPINE2

was highly expressed in stellate cells and showed altered ex-
pression mainly in α cells from T2D donors compared with controls
(cZ = 3.85) (Fig 7H).

We next assessed the functional role of UNC5D and SERPINE2
using siRNA in the well-characterized human β-cell line model

Figure 5. Differentially expressed genes, cell type enrichment, and correlation with secretory genes.
Differentially expressed genes which are enriched in specific islet cell types are separated into specific segments. Outer tracks show expression in scRNAseq
(Segerstolpe et al, 2016). Outermost track show expression in α cells (C1), followed by β cells (C2), γ cells (C3), Δ cells (C4), acinar cells (C5), and ductal cells (C6). Mean of
RPKM (log2) values are plotted, with values code as: blue < 1 < red. Inner tracks show correlation with secretory genes starting with GCG on the outside (G), followed by INS
(I), IAPP (A), and SST (S), coded as −0.5 ≥ blue, 0 = white, 0.5 ≤ red.
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EndoC-βH1 human β-cell line (Ravassard et al, 2011). By using our
previously reported reverse transfection protocol which gives >90%
transfection efficiency in this cell line, we achieved a 93% ± 6%
(SERPINE2) and 83% ± 4% (UNC5D) mRNA knockdown (KD) upon

siRNA transfection (Fig 8A and B) (Chandra et al, 2014). KD of either
SERPINE2 orUNC5D had no significant effect on total insulin content
(Fig 8C). However, KD of SERPINE2 (P = 0.001) and UNC5D (P = 0.03)
significantly reduced GSIS (Fig 8D) but lacked an effect on basal

Figure 6. Differentially expressed genes grouped by cell type enrichment as reported by Segerstolpe et al (2016).
Differentially expressed genes which are enriched in specific islet cell types are separated into specific segments. Outer tracks show expression in scRNAseq
(Segerstolpe et al, 2016). Outermost track show expression in α cells (C1), followed by β cells(C2), γ cells (C3), Δ cells (C4), acinar cells (C5), and ductal cells (C6). Mean of
RPKM (log2) values are plotted, with values coded as: blue < 1 < red. Inner tracks show correlation with secretory genes starting with GCG on the outside (G), followed by INS
(I), IAPP (A), and SST (S), coded as −0.5 ≥ blue, 0 = white, 0.5 ≤ red. The links show networks as inferred by GeNets.
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insulin secretion. Moreover, the stimulatory index to glucose (20G/
1G) was also significantly reduced in both, by 50% ± 14% (P = 0.001) in
SERPINE2 KD cells and by 64% ± 014% (P = 0.0003) in UNC5D KD
human β-cells (Fig 8E). Furthermore, we also determined insulin
secretion evoked by 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), a
phosphodiesterase inhibitor (Siegel et al, 1980). Interestingly, IBMX-

induced insulin secretion was significantly decreased by 35 ± 6.7%
(P = 0.0001) in SERPINE2 KD β-cells, whereas we did not observe
changes in UNC5D KD β-cells (Fig 8F). Finally, we studied the impact
of KD of SERPINE2 or UNC5D on β-cell survival when exposed to
cytokines (IL-1β, TNF-α, and IFN-γ) which are implicated in in-
flammation in T2D (Alexandraki et al, 2006). We observed a

Figure 7. SERPINE2 and UNC5D expression in islets.
(A, B) UNC5D expression (A) was down-regulated in T2D donor islets and (B) correlated negatively with HbA1c levels. (C) Immunohistochemical staining of adult
pancreas sections from normoglycemic and type 2 diabetic donors showed UNC5D (green) and insulin (red). Scale bar indicate 50 μm, pictures were taken with a 20×
objective. Nuclei are shown in blue (DAPI). (D) In scRNA data from the islets, UNC5D showed expression in Δ and β cells only. (E, F) SERPINE2 expression was up-regulated in
T2D donor islets and (F) positively correlated with that of HbA1c levels. (G) Immunohistochemical staining of adult pancreas sections from normoglycemic and type 2
diabetic donors showed SERPINE2 (green) and insulin (red). SERPINE2 expression was much higher in immunohistochemistry of the sections from T2D donors Scale bar
indicate 50 μm, pictures were taken with a 20× objective. Nuclei are shown in blue (DAPI). (H) In ScRNA data, SERPINE2 showed ubiquitous expression, with enrichment in
pancreatic stellate cells. Expression in α cells from T2D donors was significantly higher, whereas that in β cells was lower (although not statistically significant).
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Figure 8. SERPINE2 and UNC5D knockdown (KD) leads to impaired insulin secretion and induced apoptosis in human pancreatic EndoC-bH1 cells.
(A, B) Effect of siRNA mediated KD of SERPINE2 and UNC5DmRNA. (C) Intracellular insulin content. (D) Glucose-stimulated insulin secretion. (E) Stimulation index (ratio
of high glucose 20G to low glucose 1G). (F) Insulin secretion stimulated by IBMX. (G) Effect of KD of SERPINE2 and UNC5D on cytokines induced apoptosis measured with
IncuCyte Caspase 3/7 green reagent. Data are shown as Mean with SD (n = 3–5). *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA, followed by Tukey’s test; #a, b, two-tailed
unpaired t test).
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significantly higher rate of cell death in both SERPINE2 (P = 0.02) and
in UNC5D (P = 0.02) KD β-cells assessed by activated caspase-3/7
levels after exposure to the cytokines cocktail (Fig 8G).

Expression quantitative traits (eQTLs)

IGW also provides information on the effect of genetic variation on
gene expression in human pancreatic islets. We performed eQTL
analysis using GWAS data imputed with the 1,000 Genomes Phase I
reference panel and RNA data. The effect of SNPs proximal to a
given gene on its expression was computed by cis-eQTL analysis
using Matrix eQTL. For this analysis, only cis-eQTLs located within
2 Mb of the target genes were considered. Of all 13,169 expressed
genes with eQTL data, 3,243 (24.6%) possessed at least one genome-
wide significant eQTL (FDR ≤ 0.05 after adjustment for all tested
variants) (Fig S9A and B). In total, there were 335,343 significant
eQTLs (Fig S10).

eQTLs analysis of the DEGs harboured 1948 SNPs associated with
expression of 66 genes (Table S8). Of particular interest was the
prostaglandin H2 D-isomerase coding PTGDS gene the expression
of which was up-regulated in islets from T2D donors; it significantly
correlated with INS, GCG and IAPP expression and associated with
HbA1c levels (Figs 2, 4, 5, 6, and S9). PTGDS showed a genome-wide
significant eQTL signal from two linked loci which have not pre-
viously associated with T2D risk (rs28592848 and rs28375538) (Table
S8 and Figs S9 and S10). Both rs28592848 and rs28375538 showed
suggestive signals for association with indices of insulin secretion
measures during IVGTT (acute insulin response, P = 8.65 × 10−4 and
peak insulin response, P = 7.40 × 10−4) (Wood et al, 2017).

eQTLs at the IL22RA1, PTGES, CST2, LINC01099, IL1R2, CKAP2, ROR2,
and DHFR loci exhibited suggestive signals for insulin secretion in
the MAGIC data analysis (Table S9) (Prokopenko et al, 2014).

Association between T2D genetic risk loci and gene expression in
human pancreatic islets

Previous GWAS studies have reported 404 unique variants asso-
ciated with T2D risk (Mahajan et al, 2018). These 404 T2D risk variants
nominally influenced the expression of 249 target genes (eGenes).
Of the 249 eGenes, 33% were associated with INS expression
(empirical P ≤ 0.05), 23% were associated with IAPP expression,
10% were associated with GCG expression, and 7% were associated
with SST expression. In total, 43% of the eGenes were associated
with the expression of one or more genes encoding the islet
hormones. Of them, 45 (of the 249 genes) (18%) were found to be
associated with T2D (FDR ≤ 0.05) (Table S10).

Discussion

We have harnessed the potential of transcriptome sequencing and
combined genome-wide genotyping in human pancreatic islets to
create IGW, a unique research tool that allows the effective inte-
gration of genetic information and islet function. To this end, we
used islets from 188 donors and combined in vivo and in vitro
functional studies and obtained novel insights into molecular

mechanisms underlying dysregulation of glucose metabolism and
impaired islet function in T2D. We explored how gene expression
was altered in islets from T2D donors and characterized the DEGs,
for example, by studying their expression pattern in other tissues
(fat, liver and muscle) from the same donors, and their coex-
pression with islet hormones. We also examined genetic regulation
of gene expression and their link to islet function. SERPINE2 (up-
regulated in T2D) and UNC5D (down-regulated in T2D) genes were
selected for functional analysis to explore their potential role in T2D
pathogenesis. Finally, we present Islet Gene View, a web resource to
visualize information on genes of interest in this comprehensive
catalogue of gene expression in islets.

IGW is complementary to other related databases such as the
Islet eQTL explorer (Varshney et al, 2017), and TIGER (http://
tiger.bsc.es/), which connect genetic variation to expression and
chromatin state, and GTEx (GTEx Consortium, 2013) which com-
prehensively characterizes the human transcriptome across many
tissues, including whole pancreas. GTEx, however, does not provide
data on the islet transcriptome, which clearly is very different from
that of the total pancreas which includes the exocrine part of the
pancreas. Several studies have focused on human pancreatic islets
to obtain insights into general molecular mechanisms of diabetes
(Fadista et al, 2014; van de Bunt et al, 2015; Varshney et al, 2017;
Viñuela et al, 2019),. Our study provides another perspective by (a)
exploring and characterizing DEGs and (b) by providing a web re-
source for visualization of gene expression which can be linked to
glycemic status, expression of islet hormones and other relevant
phenotypes. The platform is easily adaptable to include new data
as it becomes available in-house and from other sources.

IGW identified 284 genes whose expression was altered in islets
from T2D donors some of which were shown previously (Solimena
et al, 2018). The variability in the transcriptomes across the data
sets could partially be explained by the differences in protocols for
obtaining and processing the islets, and by the method of tran-
scriptome profiling. However, it could also be attributed to other
potential sources of variation, not least, differences in proportion of
endocrine component (“purity”) as well as study power and pop-
ulation differences. In addition, the now well recognized variability
in T2D phenotypes (Ahlqvist et al, 2018) may also contribute sample
variability in the different studies.

Among the replicated genes were CHL1, SLC2A2, and HHATL,
which were also reported in our previous studies based on a subset
of the current islet dataset (Fadista et al, 2014). CHL1 has also
previously been shown to be associated with T2D (Belongie et al,
2017). Our data suggest that high expression of the neural adhesion
molecule L1 encoding CHL1 gene in islets could have beneficial
effects on β-cell function. In support of this, CHL1 expression was
down-regulated in islets from T2D donors and correlated with
insulin content (Taneera et al, 2015). The gene SLC2A2 encoding the
low affinity/high capacity GLUT2 glucose transporter protein, has
previously been shown to play a key role in islet function (Thorens,
2015) and common variants in the SLC2A2 gene are associated with
T2D, insulin secretion and glycemic response to metformin therapy
in recently diagnosed T2D patients (Rathmann et al, 2019). In IGW,
the expression of these three genes correlated with insulin se-
cretion in islets and with islet hormone expression. Of relevance to
insulin secretion was also the gene coding for the glycine receptor
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subunit α 1 protein (GLRA1), the expression of which was down-
regulated in T2D islets, and significantly correlated with stimulatory
index. GLRA1 has been suggested to facilitate insulin secretion
through a glycine-insulin autocrine feedback loop (Yan-Do et al,
2016). Moreover, GLRA1 and HHATL showed higher expression in
β-cells. Taken together, the data imply that these genes could serve
as potential therapeutic targets in T2D.

The DEGs in IGW showed heterogeneity in expression between
different islet cell populations, both endocrine and exocrine. These
included genes enriched in (i) β-cells (and associated with insulin
secretion e.g., GLRA1 and HHATL), (ii) other endocrine cell types
(α-cells, e.g., PPP1R1A; γ-cells, e.g., INPP5F; Δ-cells, e.g., OPRD1 and
FFAR4; ε-cells, e.g., PTGER4) (iii) exocrine cells (acinar cells, e.g.,MYC;
ductal cells, e.g., CDKN1A) (iv) pancreatic stellate cells–SERPINE2.
Furthermore, coexpression studiesmight help to identify clusters of
genes sharing common mechanisms for regulation. Through
pathway analysis using a protein–protein interaction database as
reference, we could show interaction between genes enriched both
endocrine and exocrine cells. These phenomena could be inter-
preted as interactions of endocrine-exocrine components regu-
lating islet function.

Genes identified by IGW showing tissue-specific expression
could play a critical role in function of the specific tissues. Iden-
tification of such genes has provided molecular insights into tissue
function and disease pathogenesis. To this end, we discovered
DEGs that showed islet-specificity and islet-enrichment in ex-
pression compared to fat, liver and muscle from the same indi-
vidual; some of these were β-cell enriched (GLRA1, SSTR5-AS1, IAPP,
CAPN13, GLP1R, DACH2, and LINC01099), whereas others were
α-cell–enriched (CRH, SYNDIG1, CALY, KCNC1, and others). A vast
majority of the DEGs showed expression in all the tissues tested
implying their pleiotropic nature (associated with multiple phe-
notypes associated) (Chavali et al, 2010; Viñuela et al, 2019). Tissue
specificity and enrichment information are vital when evaluating
novel therapeutic targets.

We focused more in depth on two interesting differentially
expressed candidate genes in T2D islets, UNC5D and SERPINE2.
Loss-of-function and gain-of-function are two possible approaches
to understand the biology of a new target, as the change in the
expression could be a cause or consequence of T2D progression.
We chose here a loss-of-function approach with a valid human β
cell line model EndoC-βH1. UNC5D is the newest member of
uncoordinated-5 (UNC5) receptor family which acts as receptor for
axon guidance factors, Netrins. Netrin factors are well described to
be important for β-cell development and survival (Cirulli & Yebra,
2007; Rajasekharan & Kennedy, 2009). However, the functional role
of UNC5D in adult human β-cells remains largely unknown. UNC5D
is predominantly expressed in β and Δ-cells of human islets and
importantly, is one of the top down-regulated genes in T2D donor
islets (present dataset and scRNAseq data). Notably, none of the
other genes of the UNC5 family receptors showed any differential
expression pattern, whereas Netrin (NTN1) showed only a mar-
ginally reduced expression in the T2D donor islets (P = 0.01). Fur-
thermore, we observed that UNC5D gene expression also showed
strong positive correlation with two known T2D genes ROBO2 and
SLC30A8 (Figs S11 and S12). It was interesting to see the strong
association of UNC5D with the T2D target gene, ROBO2, which is

known to play a role in β-cell survival under different stress
conditions through Slit-Robo signaling (Yang et al, 2013). UNC5D
expression is unique to human islets with no expression in the
mouse islets (Yang et al, 2011) (Fig S12). Likewise, mouse islets show
a unique expression of Unc5a, unlike in human islets, suggestive of
species-specific activity of these receptors (Fig S12). Our observa-
tions warrant an in-depth study to gain more insight into the effect
of UNC5D on insulin secretion and β-cell survival, possibly through
a Netrin-UNC5; Slit-Robo signaling loop.

SERPINE2 (Serpin Peptidase Inhibitor, Clade E, Member 2), also
known as Protease Nexin-1 (PN1) is another interesting DEG whose
expression was strongly up-regulated in the T2D donor islets. To
understand the biology of SERPINE2 in human β-cells, we used RNA
interference–mediated loss-of-function studies. Depletion of
SERPINE2 mRNA resulted in a markedly decreased insulin secretion
in response to glucose and IBMX and increased sensitivity to in-
flammatory cytokines. SERPINE2 is an extracellular matrix remodeler
glycoprotein that acts as an inhibitor for trypsin, thrombin, and
urokinase plasminogen activator like serine proteases (Bouton et al,
2012). Notably scRNAseq data showed SERPINE2 to be predominantly
expressed in α and stellate cells with increased expressed in T2D
islets. Thus, the paracrine effect of the secreted SERPINE2 could
potentially affect β-cell function and survival through its actions on
the extracellular milieu. However, more detailed experiments in-
cluding gain-of-function studies will be required to verify this.

GWAS have reported 403 genetic loci associated with T2D risk
although the mechanisms remain largely unknown. To gain insight
into mechanistic effects of SNPs, we explored whether they in-
fluence expression of unique genes (eQTLs). To this end, we
identified multiple gene loci influencing gene expression in islets;
the expression of these genes was altered in islets from T2D donors
and correlated with insulin secretion. PTGDS was one such gene; it
encodes an enzyme converting prostaglandin H2 to prostaglandin
D2 (PGD2). High PGD2 levels have been shown to enhance insulin
sensitivity (Fujitani et al, 2010), and KD of PTGDS results in an
opposite effect resulting in insulin resistance, but also nephropathy
and atherosclerosis. Whereas adipose tissue could play a role here,
insulin resistance has in many studies been shown to play a key
role in pathogenesis of nephropathy. Interestingly, nephropathy
was primarily seen in the insulin-resistant subgroup of SIRD in the
new classification of T2D (Ahlqvist et al, 2018). Although we found
little support for the correlation between diabetes and PTGDS in
islet cells in previous studies, the current results suggest that
expression of the gene in islets is correlated both with diabetes
status, BMI and INS expression, indicating that PTGDS function and
prostaglandin levels may be connected to insulin secretion as well
as peripheral insulin resistance.

Most of the results reported here can be found in the IGV. This is
a web application that we have developed to visualize gene ex-
pression in simple histograms. In addition, information on purity
allows for a partial separation of expression patterns in endocrine
and exocrine tissue, as strong positive correlation of expression of a
gene on purity is indicative of a high proportion of exocrine tissue.
Relationship to glycemic status, BMI, and related phenotypes is
provided as simple-to-read graphs for a specific gene.

A strength of IGW is the large sample size of islets from organ
donors with maintained blood circulation, which is larger (+99
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donors) than previous publications from our centre (Fadista et al,
2014; Taneera et al, 2015). Following a previous report on a smaller
subset (Fadista et al, 2014), we have made several refinements to
the analytical pipeline including batch correction using ComBat. We
have applied refined methodology for calculating P-values for
correlations, which are now independent of batch effects. This
reduces the influence of nonspecific inter-gene correlations
resulting from the normalization procedure for gene expression. All
gene–gene correlations have been pre-calculated to estimate the
null distribution of the correlation values. This is computationally
intensive, but only has to be done once. One limitation is that the
graphs and data are descriptive and cannot distinguish correlation
from causation. However, we selected two genes for functional
validation, demonstrating that the data can be used to further
explore functionally relevant genes expressed in islets. A second
caveat is the potential cell composition differences between NGT
and T2D donor islets. Expression differences between T2D and NGT
donors therefore can be reflective these differences in cell com-
position. We hope that these data, complemented with the scRNA
lookups, can provide a more comprehensive picture of cell type–
specific expression.

Taken together, IGV is a tool to facilitate research on human
pancreatic islets and will be made accessible to the entire scientific
community. The exploratory use of IGW could help designing more
comprehensive functional follow-up studies and serve to identify
therapeutic targets in T2D.

Materials and Methods

Sample acquisition

Human pancreatic islets (n = 188), fat (n = 12), liver (n = 12), and
muscle (n = 12) from a mixed dataset of diabetic and nondiabetic
donors were obtained through the EXODIAB network from the
Nordic Network for Clinical Islet Transplantation (http://
www.nordicislets.org). All procedures were approved by the
ethics committee at Lund University. The isolation of total RNA
including miRNA was carried out using the miRNeasy (QIAGEN) or
the AllPrep DNA/RNA (QIAGEN) mini kits as described previously
(Fadista et al, 2014). The quality of isolated RNA was controlled
using a 2100 Bioanalyzer (Agilent Technologies) or a 2200 Tapes-
tation (Agilent Technologies) and quantity was measured using
NanoDrop 1000 (NanoDrop Technologies) or a Qubit 2.0 Fluorom-
eter (Life Technologies). Clinical characteristics of the donors are
shown in Table S1.

Islet phenotypes

Purity of islets was assessed by dithizione staining, and estimates of
the contribution of exocrine and endocrine tissue was assessed as
previously described (Friberg et al, 2011).

Phenotypic information
Donor characteristics are presented in Table S1. Diagnosis of Type 2
diabetes (T2D) was either based on a clinical diagnosis of T2D

(N = 33) or on an HbA1c above 6.5% (NGSP units; equal to 48 mmol/
mol in IFCC) (N = 25). IGT was defined as HbA1c between 6% and 6.5%
(N = 30).

Information on gender and BMI was obtained from donor rec-
ords. Stimulatory index (SI) was used as a measure of GSIS. For this
purpose, islets were subjected to dynamic perfusion of glucose,
which was raised from 1.67 to 16.7 mmol/l for 1 h; insulin was
measured at both high and low glucose. The fold change in insulin
levels between the two conditions was used as a measurement of
glucose-stimulated insulin secretion.

Sample preparation for RNA sequencing

1 μg of total RNA of high quality (RIN > 8) was used for sequencing
with a TruSeq RNA sample preparation kit (Illumina). We here in-
cluded 99 islet samples in addition to the 89 islet samples and
processed them uniformly following the same protocol as de-
scribed previously (Fadista et al, 2014). Briefly, the size selection was
made by Agencourt AMPure XP beads (Beckman Coulter) aiming at a
fragment size over 300 bp. The resulting libraries were quality
controlled on a 2100 Bioanalyzer and a 2200 Tapestation (Agilent
Technologies) before combining six samples into one flow cell for
sequencing on a HiSeq 2000 sequencer (Illumina).

IGV

RNAseq data analysis
The raw data were base-called and de-multiplexed using CASAVA
1.8.2 (Illumina) before alignment to hg38 with STAR version 2.4.1. To
count the number of reads aligned to specific transcripts, feature-
Counts (v 1.4.4) (Liao et al, 2014) was used, with GENCODE version 22
as gene, transcript and exonmodels. The average number of counts
mapped to genes was 63.3 million reads (±35.5 million) with a
median of median of 54.8M reads.

Raw data were normalized using trimmed mean of M-values
(TMM) implemented in edgeR and transformed into log2 counts per
million (log2 CPM), using voom (Law et al, 2014). Samples with less
than 10 million reads in total were excluded from further analysis.
In addition, only genes with more than 0 FPKM in 95% of samples
and an average expression of more than 1 FPKM were retained,
leaving 14,108 genes for analysis in the 188 samples.

A potential association between gene expression and pheno-
types was analyzed by linear modeling. Voom was used to calculate
variance weights, linear modeling was performed with lmFit, and P-
values were calculated using the eBayes function in limma (Ritchie
et al, 2015). P-values adjusted for multiple testing were calculated
across all genes using Benjamini–Hochberg correction (Benjamini
& Hochberg, 1995).

As expression of 50% of the genes in the dataset was correlated
with purity (mostly due to admixture of exocrine tissue), we in-
cluded purity as a covariate in the linear models for all association
analyses, together with sex and age. Six individuals did not have T2D
based upon a clinical diagnosis but based upon HbA1c above 6.5%
and were excluded from the differential expression analysis of T2D
versus controls.

An empirical and conservative approach was used to calculate P-
values for gene–gene correlations. 1 million gene/gene pairs were
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randomly selected from all genes after filtering for expression and
the Spearman correlations for the pairs were calculated. This pro-
vided a background distribution of gene expression correlation. To
calculate P-values from this background distribution for a given
correlation, the proportion of background gene pairs with the same
or more extreme correlation values was used. This provides a more
robustmethod for detecting gene–genepairs with high coexpression.

To investigate the biological relevance of the RNASeq and eQTL
data, we investigated the relationship between previously known
risk variants and gene expression in IGW. For a list of 404 variants
previously associated with either T2D risk (Mahajan et al, 2018) or
with β-cell function, we identified all variants nominally significant as
eQTLs in the islets. The list of genes affected by eQTLs was tested for
enrichment of geneswhose expression was correlated with secretory
genes using bootstrapping. This was carried out by repeatedly
selecting random sets of genes of the same size (10,000 iterations).
The mean empirical P-value for each run was then calculated and
was used as a null distribution to calculate the probability of the
observed mean P-value in the observed set of genes.

Pathway analysis: For the 284 genes which were differentially
expressed between islets from T2D compared with normoglycemic
donors, pathway analysis was performed using the InWeb (Lage
et al, 2007) protein–protein interaction network implemented in
GeNets (Li et al, 2018). GeNets visualization of network data were
accessed at https://www.broadinstitute.org/publications/broad302496
and Intomics (https://inbio-discover.intomics.com/map.html#search).

eQTL analysis
Genome-wide genotying and imputation Genotyping was per-
formed using an Illumina OmniExpress microarray and QC was
performed as previously described (Fadista et al, 2014; Viñuela et al,
2019). The resulting genotype data were phased using the SHAPEIT
version 2 software, which allows for efficient phasing using an it-
erative expectation maximization (EM) algorithm and imputed with
IMPUTE2, using the 1,000 genomes phase 1 integrated variant set as
described previously.

eQTL analysis eQTL analysis was performed using gene expression
data normalized for batch effects with ComBat, which allows for
batch adjustment based on a negative binomial regression model,
and the directly genotyped, as well as the imputed, genotype data.
Only cis-eQTLs within 2 MB of the target gene were considered. The
R package Matrix eQTL was used to analyze the association between
gene expression and genetic variants.

Islet Gene View web application A website to access the resulting
plots was developed using the Shiny web framework, software
which allows for the creation of data science web applications
using R code. A table of available genes can be searched and used
to select a gene to investigate, which shows the corresponding set
of plots for that particular gene. These plots were generated using
an R script.

Immunohistochemistry

Human pancreatic islets were processed for paraffin (6-μm sec-
tions) and cryo-embedding (10-μm sections), respectively.

Immunostaining was performed as described previously (Matsuoka
et al, 2003) with the following antibodies: guinea pig α-insulin
(1:2,000; Millipore/1:800; DAKO), mouse α-glucagon (1:2,000; Sigma-
Aldrich), mouse SERPINE2 (1:2,000 [LSBio Cat. no. LS-C173926]), and
goat UNC5D (1:500 [Novus Bio, Cat. no. AF1429]). Nuclear counter-
staining was performed using 4,6-diamidino-2-phenylindole (DAPI,
1:6,000; Invitrogen).

Functional studies

EndoC-βH1 cells
Human β-cell line EndoC-βH1 was obtained from Univercell Bio-
solution S.A.S., France (1). The cells were cultured on Matrigel (1%)
and fibronectin (2 μg/ml) (Sigma-Aldrich)-coated plates in low-
glucose (1 g/l) DMEM (Invitrogen) at 37°C and 5% CO2 as previously
described (Ravassard et al, 2011).

siRNA transfection
EndoC-βH1 cells were transfected using Lipofectamin RNAiMAX (Life
Technologies) and 30 nM ON-TARGETplus siRNA SMARTpool for
human SERPINE2 (L-012737-00-0005; Horizon) or UNC5D gene (L-
015286—00-0005; Horizon) or 20 nM ON-TARGETplus Non-targeting
pool (siNT or Scramble) (D-001810-10-05; Horizon) as described
(Chandra et al, 2014). Cells were harvested 96 h post-transfection
for further studies.

Quantitative RT-qPCR
Total RNA was extracted from EndoC-βH1 cells using Macherey–
Nagel RNA isolation kit. cDNA was prepared using the Maxima first
stand cDNA synthesis kit as per manufacturers recommendations
(Thermo Fisher Scientific). Briefly, 5× Hot FIREPol EvaGreen qPCR
mix plus for quantitative PCR (Solis Biodyne) was used for the
reactions with a Corbett Rotor-Gene 6000 (QIAGEN). The reactions
were pipetted with a liquid handling system (Corbett CAS-1200;
QIAGEN). All reactions were performed in duplicates on at least
three biological replicates. Cyclophilin-A was used as an en-
dogenous control. Primer sequences are available upon request.

Insulin secretion and content
EndoC-βH1 cells were transfected with siRNA on Matrigel and
fibronectin-coated 24-well plates at 2 × 105 cells per well. After 96 h
of siRNA transfection cells were incubated in 1 mM glucose con-
taining EndoC-βH1 culture medium for overnight and next 60 min in
βKREBS (Univercell Biosolution S.A.S.) without glucose. Cells were
sequentially stimulated with 500 μl βKREBS containing 1 mM glu-
cose, 20 glucose, and then finally 20 mM glucose + 0.5 mM IBMX
(#-Isobutyl-1-methylxanthine; #I5879; Sigma-Aldrich) each for 30
min at 37°C in a CO2 incubator. After every incubation, the top 250 μl
supernatant was carefully collected; at the end of the experiment
cells were washed and lysed with TETG (Tris pH 8, Trito X-100,
glycerol, NaCl, and EGTA) solution prepared as per Univercell
Biosolution EndoC-βH1 manual guide for the measurement of total
content. Secreted insulin after each stimulation was added to the
final content to determine the % of secretion of the total content.
For themeasurement of total insulin content 96 h post-transfection
cells were washed twice with PBS and lysed with TETG and stored
in −80°C until insulin ELISA measurement. Simultaneously DNA
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content was also determined to normalized the total insulin
content. Secreted and intracellular insulin were measured using a
commercial human insulin ELISA kit from Mercodia as per the
manufacturer’s instruction.

Caspase-3/7 apoptosis assays
EndoC-βH1 cells, 2 × 105 cells per well of 24-well plate (#3526; Costar)
were treated with siRNA against SERPINE2 or UNC5D or Non-
targeted control as described previously in siRNA methods
section. After 96 h siRNA treatment, cells were washed twice with
PBS and stimulated with cytokine cocktail consisting of IL-1β
(5 ng/ml; R&D Systems), and IFN-γ (50 ng/ml; R&D Systems) and
TNF-α (10 ng/ml; R&D Systems) in the presence of IncuCyte
Caspase-3/7 green reagent (IncuCyte, #4440, 1:2,000; Essen
Bioscience) for next 24 h. Every 3 h, images were taken with an
IncuCyte-S3 Live-Cell Imaging system (Essen Bioscience) using
488-nm laser. Images were analyzed with IncuCyte-S3 software
and apoptosis has been quantified as the ratio of green fluo-
rescent Caspase-3/7 green active object count to phase area
confluency.

Lookups

Indices of insulin secretion
We extracted SNPs which associated with gene expression (eQTLs)
of the 284 DEGs. We performed a lookup of these SNPs in the Meta-
Analyses of Glucose and Insulin-related traits Consortium (MAGIC)
database, that is, searched for association of the eQTLs with indices
of insulin secretion (corrected insulin response—CIR and dispo-
sition index [DI]) (Prokopenko et al, 2014).

Data Availability

Genotype, technical and biological covariates, and sequence data
have been deposited at the European Genome-phenome Archive
(EGA; https://ega-archive.org/) under the following accession numbers:
EGAS00001004042 [https://ega-archive.org/studies/EGAS00001004042]s;
EGAS00001004044 [https://ega-archive.org/studies/EGAS00001004044],
EGAS00001004056 [https://ega-archive.org/studies/EGAS00001004056].

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202201376.
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