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Telescoping bimodal latent Dirichlet allocation to identify
expression QTLs across tissues
Ariel DH Gewirtz1 , F William Townes2, Barbara E Engelhardt2,3

Expression quantitative trait loci (eQTLs), or single-nucleotide
polymorphisms that affect average gene expression levels,
provide important insights into context-specific gene regulation.
Classic eQTL analyses use one-to-one association tests, which
test gene–variant pairs individually and ignore correlations in-
duced by gene regulatory networks and linkage disequilibrium.
Probabilistic topic models, such as latent Dirichlet allocation,
estimate latent topics for a collection of count observations. Prior
multimodal frameworks that bridge genotype and expression
data assume matched sample numbers between modalities.
However, many data sets have a nested structure where one
individual has several associated gene expression samples and a
single germline genotype vector. Here, we build a telescoping
bimodal latent Dirichlet allocation (TBLDA) framework to learn
shared topics across gene expression and genotype data that
allows multiple RNA sequencing samples to correspond to a
single individual’s genotype. By using raw count data, our model
avoids possible adulteration via normalization procedures. An-
cestral structure is captured in a genotype-specific latent space,
effectively removing it from shared components. Using GTEx v8
expression data across 10 tissues and genotype data, we show
that the estimated topics capture meaningful and robust bio-
logical signal in both modalities and identify associations within
and across tissue types. We identify 4,645 cis-eQTLs and 995
trans-eQTLs by conducting eQTL mapping between the most
informative features in each topic. Our TBLDA model is able to
identify associations using raw sequencing count data when the
samples in two separate data modalities are matched one-to-
many, as is often the case in biological data. Our code is freely
available at https://github.com/gewirtz/TBLDA.
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Introduction

Genomic differences, such as single-nucleotide polymorphisms
(SNPs), among individuals are important drivers of gene expression

variability. Much previous work has focused on discovering ex-
pression quantitative trait loci (eQTLs), which capture associations
between the number of copies of a minor allele present at a given
genomic locus and the expression level of a single gene (GTEx
Consortium, 2017; GTEx Consortium, 2020). However, a one-to-one
mapping of genes to SNPs is too simplistic given the reality of
biological interactions and the availability of many observations
per individual. Pleiotropy, gene regulatory networks with biological
redundancy and feedback loops, and linkage disequilibrium (LD)
blocks of highly correlated SNPs all contribute to a complex and
dynamic biological regulatory system.

From a statistical perspective, performing genome-wide one-to-
one association tests yields an astronomical multiple-testing
burden for trans-eQTLs, where the agnostic approach examines
every interchromosomal gene and SNP combination. Statistical
power is further reduced because trans-eQTLs, or eQTLs where the
regulatory SNP is on a different chromosome than the gene that it
regulates, often have smaller effect sizes than cis-eQTLs or eQTLs
where the regulatory SNP is local to the gene that it regulates
(Petretto et al, 2006). Onemethod to reduce the effective number of
tests is to cluster correlated SNPs and genes and compare the
averaged cluster signals versus testing for every possible marginal
association.

Probabilistic topic models, such as latent Dirichlet allocation
(LDA), are unsupervised machine learning methods that were
initially introduced in natural language processing (Blei et al, 2003)
and in statistical genetics as models of ancestry (Pritchard et al,
2000). LDA finds latent topics via soft clustering of feature counts
over many samples while simultaneously estimating each sample’s
topic membership proportions. More recently, these types of
models have been applied to gene expression data with gene
counts as features. The topics estimated by thesemodels represent
interpretable underlying biology such as cell type or developmental
stage and have been used in QTL mapping as the quantitative traits
themselves (Hore et al, 2016; Dey et al, 2017).

We hypothesized that multimodal topic modeling could identify
clusters of covarying genes and SNPs. Existing methods have used
Dirichlet process mixture models to integrate two data modalities
(Savage et al, 2010), but nonparametric Bayesian models tend to be
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too computationally intense for larger data sets such as modern
genotype arrays, which capture millions of SNPs. Argelaguet et al
(2018) designed a factor model framework (MOFA) to jointly model
multiple data modalities, allowing various data likelihoods via link
functions. However, relevant methods assume that the modalities
are measured on the same samples such that there is a single
observation from each individual in each modality (Savage et al,
2010; Virtanen et al, 2012; Zhao et al, 2016; Argelaguet et al, 2018; Li &
Gaynanova, 2018; Ash et al, 2021). Many earlier methods also require
gene expression data to be normalized, potentially adulterating
true signals or spuriously adding false ones (Robinson et al, 2010;
Love et al, 2014; Hore et al, 2016; Hicks et al, 2018).

In this work, we create a probabilistic model to find shared
structure between gene expression and genotype data. Our model
uses raw sequencing read counts and is designed for a nested data
structure where although samples are paired, modalities may have
different numbers of samples from each subject. This is often the
case when we have many samples of gene expression from a
particular donor—as in the GTEx data with multiple tissue samples
per donor and also for single-cell RNA sequencing samples with
multiple cells per subject—but a single germline genotype vector.
We apply our unsupervised model to GTEx v8 data and use known
sample tissue labels and cell type enrichment scores post hoc to
interpret the biological context of the estimated components (GTEx
Consortium, 2020). To demonstrate the model’s ability to find
shared variation between data modalities, we conduct eQTL
mapping using the most informative features in each topic to find
both known and novel—and tissue-specific and general—cis- and
trans-eQTLs.

Results

We applied our telescoping bimodal LDA (TBLDA) model to gene
expression data for the 10 tissues with the highest number of
samples from the v8 GTEx data release and to the genotypes from
all individuals who contributed to at least one of the samples (Table
1). We took advantage of the known GTEx covariates to interpret
biological variation captured in the model factors and ensure
relevant signal was found.

First, we checked that ancestral structure, using reported an-
cestry as a proxy, was not associated with the estimated shared
factors. As expected, ancestral structure was largely controlled for
because it is captured in the genotype-specific portion of the
model (median absolute value factor-ancestry point biserial
correlation coefficient < 0.01). This contrasts with the genotype-
specific factors, each of which had a point biserial correlation
coefficient of at least 0.41 (ranging to 0.99) with at least one re-
ported race.

Next, we looked for signal from one of the top sources of known
variation in the data set, tissue of origin, by identifying factors active
in specific tissues. We found 15,439 tissue-factor associations via
the inner product of each factor and a tissue indicator vector,
considering inner products greater than 40 to be tissue-associated
(Fig S1 and Table 1). Tissue sample size was strongly correlated with
the number of tissue-associated factors (Kendall’s rank correlation
τ = 0.64, P < 0.01), which suggests that certain tissues may have
underpowered downstream analyses. Overall runs, whole blood,
and skeletal muscle had the most associated factors (2,599 and
2,649, respectively), whereas the tibial nerve had the fewest (905).
The skin (sun-exposed), skin (not sun-exposed), lung, subcutane-
ous adipose, and thyroid had the weakest associations (median
inner products between 60.7 and 69.7); whole blood, tibial nerve,
and esophagus mucosa had the strongest (median inner products
between 88.6 and 109.6). Accordingly, whole blood and skeletal
muscle samples allocate most of their topic membership into
tissue-specific factors (Fig 1).

To explore the robustness of these tissue-associated factors, we
compiled sets of the top-ranked features that frequently appeared
across factors associated with a common tissue (see the Extended
Methods section). Taken together, the two skin tissues had the
largest group with 6,515 genes, whereas whole blood had the largest
number of unique genes considering the other sets (1,983). All
tissue-associated robust gene sets were enriched for functionally
relevant biological process Gene Ontology (GO) sets (Benjamini
Hochberg [BH] FDR < 0.1, Table S1). Furthermore, all relevant robust
tissue gene sets (except for tibial artery) contained most of the
tissue-specific transcription factors (TFs) present in the overall
analysis (whole blood 10/12, thyroid 6/8, esophagus 7/8, skins 12/
14, lung 3/4, nerve 3/3, skeletal muscle 12/12, tibial artery 0/2,

Table 1. Overall summary statistics and available data for each of the 10 tissues included in the analysis.

Tissue Sample size Num. tissue-associated factors Cell type enrichment scores

Subcutaneous adipose 581 1,536 Adipocytes

Tibial artery 584 1,504

Esophagus mucosa 497 1,254 Keratinocytes, epithelial cells

Lung 515 1,095 Epithelial cells

Skeletal muscle 706 2,649 Myocytes

Tibial nerve 532 905

Skin (not sun-exposed) 517 1,225 Keratinocytes, epithelial cells

Skin (sun-exposed) 605 1,390 Keratinocytes, epithelial cells

Thyroid 574 1,282 Epithelial cells

Whole blood 670 2,599 Neutrophils
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subcutaneous adipose 2/2; see the Extended Methods section),
whereas only one gene set included another tissue’s TF (subcu-
taneous adipose contained one TF fromwhole blood) (Sonawane et
al, 2017). We note that the tissue-specific TFs were also determined
using GTEx data, and our analysis leads to results consistent with
these prior results on these same GTEx data. This demonstrates that
our model consistently found topics that captured important
tissue-specific biological variation including functional pathways
and tissue-specific regulatory activity.

Next, we used a compilation of 63 SNP classes describing general
annotations shared across tissues from the LDSC (Bulik-Sullivan et
al, 2015) data repository to explore functional regulatory enrich-
ments among tissue-associated SNPs. The union of all robust

tissue-associated SNPs was enriched for 20 SNP classes (Fisher’s
exact test, BH FDR < 0.1) including TFBS ENCODE (BH FDR < 0.016),
SuperEnhancer Hnisz (BH FDR ≤ 3.4 × 10−3) and active enhancer-
associated H3K27ac Hnisz (BH FDR ≤ 9.8 × 10−5), and H3K4me1 Trynka
(BH FDR ≤ 2.6 × 10−5). In particular, several single tissue-associated
SNP sets are associated with DGF ENCODE, DHS_Trynka.extend.500,
H3K4me1 Trynka, H3K27ac Hnisz, and Enhancer Hoffman (eight, six,
five, five, and three tissues, respectively, of the 10 total; BH FDR < 0.1;
Fig 2 and Table S2). These SNP set enrichments from our model
show that TBLDA identifies functional connections between ge-
notype and gene transcription; these enrichments are intriguing
because trans-eQTLs are known to be associated with enhancer
activity (GTEx Consortium, 2017).

We then investigated whether the SNP sets are clustered to-
gether in particular genomic regions. The union of all tissue-
associated SNPs was not enriched in any chromosomal regions
using a bin size of 250,000 bp and a sliding window of 100,000 bp,
but there were 143 tissue-specific genomic bin enrichments
(Fisher’s exact test, FDR < 0.1; Fig 2 and Table S3). Notably, 48 regions
on chromosome four were enriched for the robust SNP set asso-
ciated with subcutaneous adipose (BH FDR < 0.05). This highlights
the ability of TBLDA to identify jointly functional genomic regions
even when the SNP data have been LD-pruned.

Although the GTEx data provide the ground truth of each
sample’s origin tissue, this is not the case across all data sets. Thus,
we next evaluated whether our model could recover robust
components across relevant runs in an unsupervised manner. To
do this, we ran our model 484 times, once for each pair of chro-
mosomes in the GTEx v8 data, and identified shared components
across these runs (see the Extended Methods section). Across all
runs, we recovered 197 clusters of robust genotype factors and 1,799
groups of robust gene expression factors. Loadings that were well-
correlated with each other across runs tended to cluster by tissue;
81 of the robust genotype clusters and 468 of the robust gene
expression clusters included factors that were associated with the
same tissue (Fig 3). Only 14 and 75 of the robust genotype and
expression clusters, respectively, did not include tissue-associated
factors. The presence of these tissue-associated robust genotype
components demonstrates that TBLDA identifies interactions be-
tween the data modalities versus separate structure within each
modality.

Because of the nature of bulk RNA-seq expression data, the GTEx
samples average expression over heterogeneous tissue samples
containing various cell types. We computed the Kendall correlation
between cell type enrichment scores and factor values to deter-
mine whether factors capture sample cell type composition (Fig S2).
We use estimated enrichment scores for bulk cell deconvolution
across five cell types (adipocytes, keratinocytes, epithelial cells,
myocytes, and neutrophils) in 8 tissues for a total of 11 tissue and
cell type pairs (Table 1) (GTEx Consortium, 2020). Enrichment scores
for 8/11 pairs of tissue and cell types were well captured by at least
one factor (maximum abs (Kendall τ) > 0.5). This suggests that the
TBLDA components often represent cell type–specific processes
within tissue samples.

To test whether traditional eQTLs ascertained using univariate
tests are captured by TBLDA, we ran a linear model for association
between the top 10%most informative SNPs and genes on common

Figure 1. The estimated TBLDA topics capture tissue-specific signal.
Each row depicts the expected sample-topic proportion for one sample for the
model fit using genes on chromosome 19 and single-nucleotide polymorphisms
on chromosome 22; samples are sorted by tissue. Tissue-associated topics are
colored in a tissue-wise family color scheme. The remaining topics are drawn
using a random gray scale.
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Figure 2. Robust tissue-associated single-nucleotide polymorphism (SNP) sets are enriched for DNA markers and localized throughout the genome.
Left: enrichment via Fisher’s exact test of eight of the 63 LDSC SNP classes across all robust tissue-associated SNP sets. Right: each tissue’s associated SNP set was
tested for genomic localization via Fisher’s exact test. The blue and green dotted lines are drawn at P-value thresholds of 0.1 and 0.05, respectively. The colors mark the
division between ordered chromosomes, with chromosome one on the far left.

Figure 3. The TBLDA model estimates robust factors across independent runs.
Cluster maps of the pairwise Pearson correlations between loadings from all runs that used features from chromosome two. The color bars associated with the axes
label the topic’s strongest tissue association, if any. Left: correlations calculated using the residuals after regressing coded MAF out from the expectation of the genotype
loadings. Right: correlations between the expected value of gene expression loadings.
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Figure 4. Characterization of cis- and trans-expression quantitative trait loci (eQTLs) between top-ranked features in each factor.
Top: for each of the 484 model runs, the ordered true MatrixEQTL association −log10(P-values) (y-axis) are plotted against ordered −log10(P-values) from tests using the
same features but permuted expression and covariate data (x-axis). Clear cis-eQTL enrichment is present across all intrachromosomal runs. Points at which the ordered
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factors for each tissue separately using MatrixEQTL (Shabalin, 2012)
on held-out data (further referred to as the multivariate testing
approach; Fig 4). Of 10,855,277 total tests, we found 4,645 cis-eQTLs
at BH FDR < 0.1 across all 10 tissues including 2,149 unique eVariants
and 1,868 unique eGenes (Table S4). Most of these cis-eQTLs (3,923)
affect protein-coding genes, with a minority (722) acting on long
intergenic noncoding RNA (lincRNA) genes (Fig 4). Thyroid had the
most cis-eQTLs, 692, followed by whole blood with 657.

We also discovered 995 trans-eQTLs at BH FDR < 0.1, which in-
clude 901 unique trans-eGenes and 979 unique trans-eVariants
(Table S4). In contrast to both the data, which consist of 86%
protein-coding genes, and the cis-eQTLs, trans-eQTLs have an
approximately equal number of lincRNA- and protein-coding
eGenes (517 and 478, respectively; Fig 4). Although these num-
bers may seem surprising, lincRNAs localize to the nucleus and are
chromatin-associated, often acting in trans through chromatin
modifiers (Holdt et al, 2013; Hacisuleyman et al, 2014; Cao et al, 2021).
However, trans-eQTLs found using bulk RNA-seq can appear be-
cause of sample cell type proportions (Võsa et al, 2021). Because

lincRNAs show more cell type–specific expression than protein-
coding transcripts, this could contribute to the imbalanced num-
bers of noncoding and coding trans eGenes (Liu et al, 2016; Grassi
et al, 2021). The skin (not sun-exposed) had the highest number of
trans-eQTLs (124), followed by the lung with 105. Not surprisingly
(GTEx Consortium, 2017), the cis-eQTL enrichment is much stronger
and more consistent than the trans-eQTL enrichment (Fig 4). These
eQTL mapping results highlight the associations between SNPs and
genes loaded onto a common factor and suggest that traditional
eQTL candidates may be identified using the TBLDA factors.

Next, we restricted our analysis within each tissue to the re-
spective tissue’s associated factors. We found 746 cis-eQTLs (618
unique eGenes and 662 unique eVariants) and 939 trans-eQTLs (853
unique trans-eGenes and 933 unique trans-eVariants) at BH FDR <
0.1 (Table S5). Whole blood had the most cis-eQTLs and the most
trans-eQTLs. Similarly, to the full analysis above, the trans-eQTLs
have an approximately equal split of lincRNA and protein-coding
eGenes, whereas the cis-eGenes are mostly protein-coding (Fig S3).
Of the discoveries, 877 (93.4%) of the trans-eQTLs and 324 (43.4%) of

true −log10(P-value) is greater than the maximum permuted −log10(P-value) are colored in red to highlight deviation. Bottom: histograms depicting the numbers of
trans- (top) and cis- (bottom) eQTLs mapped per-tissue and split by gene type.

Figure 5. Exploring the 34 trans-eGenes associated with a single locus in thyroid.
Top: heatmap of quantile-normalized expression values for the trans eGenes associated with rs4297160 along with PTCSC2. Bottom: visualization of four of the trans-
expression quantitative trait loci.
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the cis-eQTLs were novel, meaning not below the significance
threshold in the unrestricted multivariate test using all common
factors. The fact that 933 (93.8%) of the trans-eQTLs found by the full
multivariate test were not found in the tissue-associated factors
indicates that most of the trans associations found by the model
are not in specific tissue-factor pairs.

Thus, to increase power to find trans-eQTLs shared across tis-
sues, we next limited association tests to features in general factors
that were not linked to any tissue. This approach yielded 964 trans-
eQTLs (863 unique trans-eGenes and 945 unique transeVariants)
and 2,901 cis-eQTLs (1,210 unique eGenes and 1,355 unique eVar-
iants; Fig S3 and Table S6). Here, the tibial nerve had themost trans-
eQTLs (113), whereas the thyroid produced the most cis-eQTLs (415).
The reduction in test numbers allowed 387 new trans-eQTLs and 327
cis-eQTLs to move below the significance threshold relative to the
unrestricted multivariate test.

Inferred covariates such as PEER factors are known to capture
and thus inadvertently control for broad regulatory effects that may
have a true genetic basis, potentially removing broad trans-eQTL
signals (Rakitsch & Stegle, 2016; GTEx Consortium, 2017). To test
whether factors in our model find these kinds of regulatory hot-
spots, we ran the same eQTLmapping as before except excluding all
PEER factors from the covariate matrix. This resulted in fewer total
cis- and trans-eQTLs (2,456 and 882, respectively, at BH FDR < 0.1;
Table S7). However, the proportion of unique eVariants to trans-
eQTLs versus including PEER factors was lower (0.91 versus 0.98),
suggesting that, to some extent, PEER factors do remove trans-
acting pleiotropic signals that are captured by our model. In line
with their supposed mechanisms of action, 69.1% (1,698) of these
cis-eQTLs overlapped with our prior analysis controlling for PEER
factors, whereas only 2.3% (20) of these trans-eQTLs were also
found when controlling for PEER factors in the association analysis.

Next, we explored the overlap of our eQTLs and the GTEx con-
sortium cis- and trans-eQTL list, produced by the consortium
through an exhaustive tissue-specific testing approach (GTEx
Consortium, 2020). A majority (4,645, 98.3%) of the multivariate
TBLDA cis-eQTLs were in the GTEx cis-eQTL list. Of the multivariate
trans-eQTLs, just one overlapped with the 2,629 genome-wide GTEx
trans-eQTLs in the top 10 tissues. However, 26/438 (5.9%) of the
GTEx trans-eQTLs in the relevant tissue, skin (sun-exposed), in-
cluded that common eGene (ALDH3B2). Although we fail to capture
this extended signal because we use an LD-pruned SNP set, our
model still groups the gene together with its genomic hotspot.
Furthermore, although the eVariant is not shared, 37/439 (8.4%) of
the GTEx skeletal muscle transeQTLs include RP11-65J3.3, which we
identify as a trans-eGene in that tissue. Taken together, these
results suggest that our approach finds overlapping cis-eQTL sig-
nals but expands our ability to identify broad-acting trans-eQTLs in
these bulk data.

One interesting example from the model fit using all GTEx
samples is the trans eVariant rs4297160, which is associated with
both MAPRE3 (P-value P ≤ 6.6 × 10−11) and ARFGEF3 (P-value P ≤ 2.2 ×
10−16) in the thyroid and sits in the 9q22 locus (Fig 5). Specifically,
rs4297160 is located within the lincRNA gene PTCSC2, which has
been linked to a predisposition for papillary thyroid cancer (He et
al, 2015). The 9q22 locus houses the thyroid-specific TF FOXE1, which
shares a bidirectional promoter with PTCSC2 (Wang et al, 2017).

Furthermore, the 9q22 locus was previously found associated in
trans with ARFGEF3 in the thyroid (GTEx Consortium, 2017). Notably,
PEER factors were shown to capture and therefore control for broad
regulatory signals from that locus (GTEx Consortium, 2017); in line
with this, in association tests from the model trained on all GTEx
data and run without PEER factors as covariates, rs4297160 was a
trans-eVariant for 34 different genes in thyroid, including HECW1
(regulates the degradation of thyroid transcription factor 1 [Liu et al,
2019]), COLGALT2 (down-regulated in patients with thyroid orbit-
opathy [Khong et al, 2015]), and FMO5 (expressed in endocrine cells
that produce hormones that regulate metabolism [Xu, 2017]; Fig 5).
These 34 trans-eGenes are enriched in the HIF-1 signaling KEGG
pathway and two SP1 TF motifs, lending support for transcriptional
co-regulation (g:Profiler [Raudvere et al, 2019] adjusted P-value <
1.1 × 10−2 for all).

We evaluated the increase in statistical power compared with
the univariate approach because of our reduced multiple testing
burden. The cis-eQTL P-values with BH FDR < 0.1 from our method
have a different distribution from the GTEx cis-eQTLs found via
exhaustive search (Kolmogorov–Smirnov test statistic 0.11, P-value
P ≤ 1.0 × 10−16). Our cis-eQTLs found via TBLDA are a subset of all true
associations, and they tend to have more moderate associations
than the set of GTEx cis-eQTLs (Fig S4). We expect this because
TBLDA factors identify associated groups eQTLs, each of which may
only have a small univariate effect size. Moreover, because we are
computing P-values on a small held-out sample, we cannot achieve
the statistical significance for the same association test as that test
applied to a larger sample.

Discussion

In this paper, we present a probabilistic telescoping bimodal latent
Dirichlet allocation (TBLDA) model that uncovers shared latent
factors between bulk RNA-seq expression and genotype data when
there is no one-to-one mapping among the samples for each data
modality. The model takes raw counts as input, which avoids any
potential data skewing because of normalization. We fit the model
in an unsupervised manner using gene expression data from 10
tissues in the GTEx v8 release and matched donor genotypes. We
intentionally exclude hard-coding tissue labels into the TBLDA
because different tissues have a range of overlapping cell types,
meaning that samples from certain tissues will share varying
proportions of underlying processes and eQTLs. In addition, in
large data sets, some samples may be mislabeled. Using known
GTEx covariates, we established that the recovered topics re-
flected meaningful biology such as sample cell type proportion
(Fig S2). Robust gene sets in tissue-associated factors were
enriched for functionally relevant pathways (Table S1). Causal
eVariants identified by our method are known to be enriched in a
variety of genomic regulatory regions (Albert & Kruglyak, 2015);
top-ranked robust tissue-associated SNP sets in our model were
likewise enriched, demonstrating motifs of known eVariants
(Table S2).

Running linear association tests on top-ranked features from
each factor using MatrixEQTL (Shabalin, 2012) on a held-out test set,
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we found 4,645 cis-eQTLs and 995 trans-eQTLs at BH FDR 0.1. By
restricting association tests to the top features per factor in our
model, we decrease the multiple testing burden and increase
power for mapping trans-eQTLs on a small held-out test set. This is
demonstrated by the fact that 994 of our trans-eQTLs were not
identified in the exhaustive genome-wide GTEx analysis. A critical
caveat of our approach is that, with a finite number of topics, we do
not expect the model to capture all true eQTLs; however, we show
that it does reproducibly identify novel and functionally relevant
eQTLs. Taken together, these results demonstrate that our method
successfully learns biologically meaningful shared topics across
gene expression and genotype data. TBLDA is a natural framework
to investigate cell type-specific eQTLs using single-cell RNA se-
quencing data, and we are currently exploring this promising future
direction.

There are several potential points of contention in our model.
First, although the model’s probabilistic nature provides important
measures of uncertainty for noisy genomic data, because of our
inference procedure, the posterior should be interpreted with
caution because variational inference is known to underestimate
the posterior variance (Giordano & Broderick, 2015 Preprint).
Second, because we do not include a private subspace for gene
expression, true latent components that reflect expression-specific
variation such as batch effects will be forced to contribute to the
modality-shared factors. We believe this is important to retain
signal for broad regulatory effects that especially affect trans-eQTL
discovery. Nevertheless, if the model is used in a context such as
single-cell RNA sequencing, where there are known and strong
expression-specific covariates such as batch effects, this design
choice should be reconsidered. Furthermore, a natural question
that arises for all parametric latent factor models is how to de-
termine the number of topics. We stress that there is no “correct”
topic number and the user will want tomake a reasonable trade-off
between computational speed for inference and the granularity of
signal captured. In practice, we recommend anywhere from 20 to
150 factors depending on the size of the data set. Given these
qualities, natural extensions to the model include adding latent or
semi-supervised expression-specific topics and extending it to a
nonparametric framework.

Materials and Methods

Given a genotype matrix and an RNA sequencing expression matrix,
our goal is to find latent factors that capture groups of SNPs and
genes that covary across samples. We have two input matrices: a
RNA-seq count matrix X 2 RG×L for G genes across L samples and a
genotype matrix Y 2 RS×N in minor allele dosage format (0,1,2) for S
SNPs across N individuals. We henceforth refer to genes and SNPs as
features. Each individual i 2 1,..., N contributes at least one sample,
and every sample ℓ 2 1,..., L comes from exactly one known individual;
this is the telescoping property of the data.

We define K latent topics where (i) each sample ℓ has topic
membership proportion ϕℓ 2 SK and (ii) each individual i has topic
membership proportion θi 2 SK, where SK denotes the K-dimen-
sional simplex where all values are positive and sum to 1 (Figs 6 and

S5). Topics are modeled as distributions over features, where,
similar to LDA, gene expression topics ψk 2 SG with k = 1,..., K are
located on the simplex (Blei et al, 2003). The expression portion of
the model that describes gene probabilities πℓ is:

ψk ; Dirichlet ξð Þ (1)

ϕl ; Dirichlet σð Þ (2)

πl = Ψϕl (3)

xl ;Multinomial Cl ;πlð Þ (4)

where Cℓ is the observed total read count in sample ℓ and the matrix
Ψ comprises the concatenated column vectors ψk with k = 1,..., K.

The sample to individual mapping is encoded in ωi 2 {0,1}L, an
indicator vector for individual i, where ωiℓ = 1 if sample ℓ originates
from individual i. The “telescoping” portion of the model projects
the shared factors in Φ (the matrix formed by concatenating all ϕℓ,
ℓ = 1,..., L) between the sample and individual spaces:

θi =
1

�L

l = 1ωil

Φωi (5)

In contrast to the expression topics ψk, genotype topics are
modeled independently over SNPs and consist of independent λjk
as in the structure model (Pritchard et al, 2000):

λjk ~ Beta
�
ζj; γj

�
(6)

We include a modality-specific (private) subspace for genotype
to control for ancestral structure in mixed-population samples, which
consists of nonnegative factor and loadings matrices β and τ (see the
Extended Methods section) given Q ancestry factors. The weight of the
private versus shared genotype subspaces is determined by 0 ≤ α ≤ 1
and learned during inference. The model does not include a gene
expression-specific latent space to avoid losing any broad regulatory
signal that is genotype-dependent (Rakitsch & Stegle, 2016), as is often
the case with transeQTLs (GTEx Consortium, 2017). This final portion of
the model, which covers minor allele probabilities ρij, is as follows:

α ~ Uniformðδ; μÞ (7)

ρij = α�
Q

q = 1
βjqτqi + ð1 −αÞ

0
@�

K

k = 1
λjkθki

1
A (8)

yij ~ Binomial
�
2;ρij

�
(9)

We use stochastic variational inference to compute posterior
estimates for Φ, Λ, Ψ, and α (see the Extended Methods section for
details).

In this multimodal version of LDA, the same latent factors are
shared across data modalities, allowing features of each modality
to be directly linked together. Critically, because our framework
directly models count data, we avoid spurious or distorted signals
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through data normalization (Robinson et al, 2010; Love et al, 2014;
Hicks et al, 2018), and because of the nonnegative factors, the
components capture parts-based patterns instead of global pat-
terns (Lee & Seung, 1999; Townes & Engelhardt, 2021 Preprint). The
multinomial distribution allows us to separate out variation be-
cause of library-size effects from the underlying compositional
variation, which is more biologically relevant.

Features that have higher weights within a topic (ψk, λjk) have a
larger relative contribution. However, the proportion of total counts
for each gene varies widely. Genes with higher counts may dom-
inate certain topics merely because of their high expression levels,
overshadowing lower expressed genes that are actually more in-
formative for that topic compared with others. Consequently, in-
stead of using the raw expected loadings, we determine the
importance of each feature across topics by ranking the average 2-
Wasserstein distance between the posterior variational distribu-
tions. This allows us to control for both average feature counts and
varying uncertainty in model estimation by using the full infor-
mation provided in the posterior estimates. In particular, the 2-
Wasserstein value, also known as the “Earth-movers distance,” is
specifically designed as a distance metric between two empirical
densities, unlike KL divergence, which is not a symmetric measure
and often performs poorly when the two densities are defined on
unequal basis measures. SNP minor allele frequency (MAF) is much
less variable than gene total counts. To control for allele counts, we
rank SNPs after regressing out the coded MAF in each loading (see
the Extended Methods section for details).

Extended methods

Feature selection
After Jo et al (2016) Preprint, we used plink 1.9 (Purcell et al, 2007) to
trim the GTEx v8 whole-genome sequencing SNP sets such that no
two SNPs within a 200-Kb window have a Pearson correlation ≥0.2.
SNPs with imputed genotypes were removed, yielding 202,111
remaining SNPs across 831 individuals. All gencode v26 autosomal
lincRNA and protein-coding genes from the 5,781 samples with
genotypes were considered. We retained the 19,534 autosomal
genes with a median RNASeQC v1.1.9 (Graubert et al, 2021) read

count of at least five in at least one tissue. SNPs and genes were
split into 22 groups by chromosome.

Ancestry structure
We ran terastructure (Gopalan et al, 2016) on the 202,111 LD-trimmed
SNPs with the following options: -rfreq = 40,222 and -K = 5. The
resulting allele frequencies (beta.txt) and admixture proportions
(theta.txt) output matrices were assigned to β and τ (Equation (8))
to produce the genotype-specific portion of the model.

TBLDA model runs
We used Pyro v1.4.0 Bingham et al’s (2019) stochastic variational
inference framework to fit the model, using pyro.poutine.scale
(scale = 1.0 × 10−6) for numerical stability, an Adam optimizer, and a
learning rate of 0.05. ξ and σ were set to symmetric one vectors, ζ j =
γj = 1, δ to 0.05, and μ to 0.85. Themodel was fit separately for feature
sets from each chromosome combination, for a total of 22 × 22 = 484
runs. Let x be the average ELBO over the latest 1,000 epochs and y
be the average ELBO over the 1,000 epochs before those. Runs were
terminated when y − x

y ≤ 1 × 10−4. The model run for chromosome 12
with 9,819 SNPs across 831 individuals and 1,124 genes across 5,781
samples required 3G and converged in 17 h using four CPUs. Code to
run TBLDA is available at https://github.com/gewirtz/TBLDA.

Insights on setting hyperparameters
(i) σ: This is the hyperparameter for the sample-topic proportion

ϕℓ. This vector should be kept symmetrical, and we recommend
running the model with an uninformative prior where σ = 1. If
the user wants to fit a model where samples comprise many
topics, they should running the model with a more concen-
trated prior, setting σ > 1. Conversely, if the user wants each
sample to be drawn from only a few topics, they can set a
sparser prior where σ < 1.

(ii) ζ ,γ: These are the hyperparameters for the SNP loadings λjk.
Although we set them equal to one for an uninformative prior,
users could also set them to be less than one for a sparsity-
inducing prior. In that case, a common choice would be setting
the hyperparameters to 1/K, where K is the number of topics.
We recommend trying an uninformative prior first to let the

Figure 6. Model visualization.
Explicit representation of the model described in
Materials and Methods section Equations (1)–(9) with
dimensions drawn out. Each portion of the model is
color-coded according to modality. Gray represents
the known mapping between samples and individuals.
The ancestry portion is striped because it is learned
before fitting the shared model portion.
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data lead, and if topic collapse is observed, next try the
sparsity-inducing prior.

(iii) ξ : This is the hyperparameter for the gene loadings ϕk. We
follow the same guidance as for ζ and γ, except that ξ is the
parameter vector for the Dirichlet, which generalizes the beta.

(iv) μ,δ: These are the hyperparameters for α, which controls the
mixture proportion for the genotype-specific versus shared
space. The model will naturally put more weight on the sep-
arate genotype portion, and we want to restrict this so that
TBLDA learnsmore shared structure. Thus, we want to restrain α
from getting too close to zero or one. In practice, we recom-
mend setting μ ≥ 0.1 and δ ≤ 0.8.

Running TBLDA on samples with additional technical
covariates As a general practice for downstream model analysis,
we recommend that users identify factors associated with all
covariates (e.g., following the described methodology for tissue and
cell type enrichment score associations). For example, when given
technical covariates such as batch, users may remove all batch-
associated factors from downstream analysis.

Feature ranking
After regressing out allele frequency, we take the top 10% of SNPs
from each loading with the highest absolute value residuals. The
10% of genes from each loading with the highest 2-Wassterstein
distances are considered the top gene features. Because the
feature numbers vary by chromosome, runs have differing numbers
of top features associated with their factors.

Functional enrichment data
The tissue-specific TF list originated from Table S3 in Sonawane et
al (2017). To conduct GSEA, we used all biological process terms
from GO v6.2 that had at least three genes in common with our
analysis feature set. We used LDSC’s baselineLD v2.1 (Bulik-Sullivan
et al, 2015) genome annotations to compute SNP set enrichments.
We did not consider MAF bin classes.

Tissue-associated genes
For each tissue, the set of robust tissue-associated genes consists
of the genes that are top-ranked in at least one tissue-associated
factor across all TBLDA runs.

Tissue-associated SNPs
For each tissue, we calculated the 75th percentile of the distribution
of total tissue-associated factors across all runs that each top-
ranked SNP is associated with. SNPs that are top-ranked in at least
the 75th percentile of each tissue’s associated factors across all
runs comprise the set of robust tissue-associated SNPs.

eQTL pipeline
We held out two randomly selected samples from all individuals
who contributed four or more samples to use for the eQTL pipeline
and used all remaining samples to fit TBLDA. We used MatrixEQTL
v2.3 (Shabalin, 2012) with modelLINEAR to run the eQTL testing.
Expression for all genes that passed a 0.8 mappability filter was
quantile-normalized as input. Sex, PCR, platform, the top five
genotype principal components, and the top 60 PEER factors per

tissue were included as covariates. FDR was computed using the
Benjamini–Hochberg procedure over each run for protein-
coding and lincRNA genes separately. We note that the 0.1
FDR we use is more lenient than the 0.05 FDR threshold used in
the v6p GTEx paper (GTEx Consortium, 2020), although the v8
GTEx trans-eQTLs we compare to were also identified using a 0.1
FDR threshold.

Robust components
We computed the correlation of each factor loading with all other
loadings from runs on the same chromosome. Any factor with more
than two loading Kendall τ > 0.15 for SNPs and three Pearson r2 > 0.95
for genes was flagged—along with the highly correlated factors—as a
robust component. For each robust component, we averaged the
constituent loadings to produce a representative factor loading. All
components whose representative loadings exceeded r2 > 0.95 were
further collapsed into a single robust component.

Data access

All raw sequencing and genotype data from GTEx v8 used in
this study can be found in dbGaP under accession number
phs000424.v8.p2.

Supplementary Information

Supplementary information is available at https://doi.org/10.26508/lsa.
202101297.
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