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Mitochondrial stress-induced GFRAL signaling controls
diurnal food intake and anxiety-like behavior
Carla Igual Gil1,2 , Bethany M Coull3,7, Wenke Jonas4,5, Rachel N Lippert3,5,7, Susanne Klaus1,2,* , Mario Ost1,6,*

Growth differentiation factor 15 (GDF15) is a mitochondrial stress-
induced cytokine that modulates energy balance in an endocrine
manner. However, the importance of its brainstem-restricted re-
ceptor GDNF family receptor alpha-like (GFRAL) to mediate endo-
crine GDF15 signaling to the brain uponmitochondrial dysfunction is
still unknown. Using a mouse model with muscle-specific mito-
chondrial dysfunction, we here show that GFRAL is required for
activation of systemic energy metabolism via daytime-restricted
anorexia but not responsible for muscle wasting. We further find
that muscle mitochondrial stress response involves a GFRAL-
dependent induction of hypothalamic corticotropin-releasing hor-
mone, without elevated corticosterone levels. Finally, we identify
that GFRAL signaling governs an anxiety-like behavior in male mice
with muscle mitochondrial dysfunction, with females showing a less
robust GFRAL-dependent anxiety-like phenotype. Together, we here
provide novel evidence of a mitochondrial stress-induced
muscle–brain crosstalk via the GDF15-GFRAL axis to modulate
food intake and anxiogenic behavior.
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Introduction

Growth differentiation factor 15 (GDF15) is acknowledged as a cellular
stress-induced cytokine which can be expressed and secreted by
multiple tissues for local auto-/paracrine or endocrine signaling
(Lockhart et al, 2020; Keipert & Ost, 2021). Among the conditions in
which circulating GDF15 levels are highly elevated in humans are
mitochondrial disorders (Montero et al, 2016; Dominguez-Gonzalez et
al, 2020; Poulsen et al, 2020; Lehtonen et al, 2021), in which they strongly
correlate with disease severity (Sharma et al, 2021). Importantly, GDF15
induction has also been confirmed in numerous studies on genetically
modified mouse models of mitochondrial dysfunction, including
alterations in oxidative phosphorylation (OxPhos) and coupling

efficiency (Keipert et al, 2014; Keipert et al, 2020; Ost et al, 2020),
long chain fatty acid import (Pereyra et al, 2020), proteostasis
(Chung et al, 2017; Choi et al, 2020, 2021; Kang et al, 2021), or
mitochondrial DNA maintenance (Tyynismaa et al, 2010; Wall et al,
2015). Beyond the molecular basis of possible mitochondrial defects
and the induction of a cell-autonomous integrated stress re-
sponse (Suomalainen& Battersby, 2018), recent studies advanced our
understanding of how local mitochondrial perturbations can affect
distal tissues and promote systemic metabolic effects (Bar-Ziv et al,
2020). In mice with chronically impaired mitochondrial proteostasis,
endocrine signaling of GDF15 was shown to regulate systemic energy
expenditure (Chung et al, 2017; Choi et al, 2020; Kang et al, 2021).
Moreover, skeletal muscle mitochondrial stress via respiratory
uncoupling promotes a GDF15-dependent daytime-restricted ano-
rectic response to control whole-body energy metabolism (Ost et al,
2020). However, along these lines, little is known about the specific
downstreameffects andmodeof action of GDF15 in pathophysiological
relevant settings of mitochondrial stress, which is crucial to develop
tailored therapeutics for patients with mitochondrial disease.

The unique receptor for GDF15 that is GDNF receptor alpha-like
(GFRAL) is only expressed in the hindbrain (area postrema, AP, and
nucleus of the solitary tract, NTS) and signals through the tyrosine
kinase co-receptor RET (Emmerson et al, 2017; Hsu et al, 2017; Mullican
et al, 2017; Yang et al, 2017). Importantly, evidence from pharmaco-
logical studies using recombinant GDF15 suggests the induction of
food aversion, nausea, and emesis as a result of the activation of the
GDF15-GFRAL pathway (Borner et al, 2020a, 2020b; Sabatini et al, 2021).
With regards to downstream targets of the GDF15-GFRAL pathway, it
was shown in 2007 that GDF15 injection leads to activation of hindbrain
neurons and in hypothalamic areas involved in appetite regulation
such as the paraventricular nucleus (PVN) (Johnen et al, 2007). Re-
cently, two studies confirmed the activation of corticotropin-releasing
hormone (CRH) neurons in the PVN via pharmacological GDF15
treatment (Worth et al, 2020; Cimino et al, 2021). Nevertheless, little is
known about the downstream molecular targets and behavioral re-
sponses linked to an endogenous activation of GFRAL signaling
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pathway by mitochondrial stress. Here, using a mitochondrial
dysfunction mouse model (HSA-mUcp1-transgenic [TG] mice)
(Klaus et al, 2005; Keipert et al, 2010) with chronically elevated
muscle-derived GDF15 (Ost et al, 2020), we aimed to elucidate the
biological role and physiological relevance of the GFRAL receptor
activation under skeletal muscle mitochondrial stress in a sex-
specific manner.

Results

Genetic ablation of GFRAL in mice with muscle mitochondrial
stress abrogates the lean phenotype but not muscle wasting

To understand the role of the receptor GFRAL in the potential
metabolic and behavioral adaptation under muscle mitochondrial

stress induced by ectopic uncoupling protein 1 (UCP1) expression
(Fig 1A), we crossed TG mice with whole-body Gfral-knockout
(GfKO) mice, obtaining Gfral-ablated TG mice (TGxGfKO) (Fig
1B). In line with previous studies (Emmerson et al, 2017; Hsu et al,
2017; Mullican et al, 2017), male and female chow-fed GfKO mice
were phenotypically undistinguishable from their wild-type
(WT) littermates. Importantly, Gfral expression was con-
firmed to be confined to the hindbrain, specifically to the AP
and NTS in both WT and TG mice (Fig S1). Furthermore, GFRAL
ablation, as evidenced by non-detectable Gfral expression in
the hindbrain (Fig 1C and E), did not affect expression of the
co-receptor Ret (Fig 1D and F), which remained unchanged
among genotypes in males and females. In male TG mice, loss
of GFRAL did not affect muscle Gdf15 expression but led to
slightly increased circulating GDF15 (Fig 1G and H), whereas
in female TG mice, muscle Gdf15 expression was slightly

Figure 1. Mitochondrial stress-induced GFRAL signaling induces a lean phenotype.
(A, B) Schematic representations of research question and (B) experimental approach. (C, D, E, F) Gfral and (D, F) Ret mRNA expression in the area postrema (AP) and
nucleus of the solitary tract (NTS) (n = 6). (G, I) Quadriceps (quad) Gdf15mRNA expression (n = 6). (H, J) Circulating GDF15 plasma levels (n = 10). Data correspond to wild-
type (WT), Gfral-KO (GfKO), HSA-mUcp1-TG (TG), and HSA-mUcp1-TGxGfral-KO (TGxGfKO) mice. The left and right panels of the figure correspond to male and female mice,
respectively. Data are presented as mean + SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Statistical test: one-way ANOVA.
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increased by loss of GFRAL but circulating GDF15 was unaf-
fected (Fig 1I and J).

In line with our previous data (Keipert et al, 2011; Ost et al,
2020), the body weight (BW) of male and female TG mice was
reduced because of a substantially lower lean mass (LM), which
was mildly restored by GFRAL ablation in male and female TGxGfKO
mice (Fig 2A, B, D, and E). Importantly, mitochondrial stress-induced
skeletal muscle wasting, as evidenced by largely reduced quadriceps
weight, was not affected by GFRAL ablation (Fig 2C and F). Furthermore,
we evaluated the involvement of GFRAL in the induction of the in-
tegrated stress response, the main suggested cellular adaptive
mechanism upon mitochondrial stress. Increased muscle gene ex-
pression in TG mice of the integrated stress reponse components Atf4,
Atf5, Atf6, and Chop as well as Fgf21, a well-known endocrine mediator

involved in the mitochondrial stress response, was unaffected by the
loss of GFRAL in male mice (Fig 2G). In female mice, muscle expression
of Atf4, Atf5, and Fgf21were slightly reduced in TGxGfKO compared with
TG, although still highly increased compared with WT mice (Fig 2H).
Along these lines, phosphorylation of eukaryotic translation initiation
factor 2 α (eIF2α) was unaffected by the loss of GFRAL in bothmale and
female mice (Fig 2I and J). Overall, these results indicate that GFRAL
signaling is not involved inmuscle wasting under mitochondrial stress
in male and to a likely negligible extent in female mice.

Of note, loss of GFRAL restored the weight of other peripheral
organs such as the liver, heart, and different fat depots (Fig S2A–F),
indicating a potential role for the brainstem GFRAL activation in the
control of body composition and tissue growth under chronic
muscle mitochondrial stress.

Figure 2. Muscle wasting and mitochondrial integrated stress response are independent of GFRAL signaling.
(A, B, C, D, E, F) Body weight, (B, E) body lean mass, and (C, F) quadriceps (quad) tissue weight (n = 10). (G, H) Quadriceps (quad) Atf4, Atf5, Atf6, Chop, and Fgf21 gene
expression (n = 6). (I, J) Quadriceps (quad) relative p-eIF2αSer51/t-eIF2α protein expression blot and quantification. Data correspond to wild-type (WT), Gfral-KO (GfKO),
HSA-mUcp1-TG (TG), and HSA-mUcp1-TGxGfral-KO (TGxGfKO) mice. The left and right panels of the figure correspond to male and female mice, respectively. Data are
presented as mean + SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Statistical test: one-way ANOVA.
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Muscle–brain crosstalk via the GFRAL receptor mediates systemic
energy metabolism and diurnal shift in feeding behavior

In a previous study, we demonstrated that muscle-derived GDF15
mediates the systemic metabolic remodeling and promotes diurnal

anorexia (Ost et al, 2020), but targeted signaling from muscle to
peripheral tissues remained to be elucidated. Here, we sought to
investigate the involvement of the GDF15 receptor GFRAL in the
systemic metabolic adaptations and daytime-restricted anorexia
upon muscle mitochondrial stress. A consequence of the diurnal

Figure 3. GFRAL signaling induces metabolic flexibility and modulates diurnal food intake in response to mitochondrial stress.
(A, B, C, D) Respiratory quotient (RQ) shown hourly over 24 h and (B, D) RQ amplitude quantification (n = 10). (E, F, G, H) Quantification of total 24 h and (F, H) day versus
nighttime food intake (n = 10). (I, J, K, L, M, N) Circulating plasma ghrelin (total), (J, M) PYY, and (K, N) leptin at daytime (10 AM) (n = 9). (O, P) Hypothalamus (HTH) Pomc and
Agrp gene expression (n = 6). The left and right panels of the figure correspond to male and female mice, respectively. Data correspond to wild-type (WT), Gfral-KO (GfKO),
HSA-mUcp1-TG (TG), and HSA-mUcp1-TGxGfral-KO (TGxGfKO) mice. Data are presented as mean + SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (B, D, E, F, G, H, I, J,
K, L, M, N, O, P) Statistical test: one-way ANOVA.
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variation of energy balance in TG mice is an increased systemic
metabolic flexibility as evident by an increased amplitude of the
respiratory quotient (RQ) (Ost et al, 2020). Here, in both male and
female TG mice, increased metabolic flexibility assessed by 24-h
recording and daily amplitude of the RQ was abolished by loss of
GFRAL (Fig 3A–D). Thereby, TGxGfKO double-mutant mice pheno-
copy GDF15-ablated TG mice (Ost et al, 2020) demonstrating a
muscle–brain crosstalk via the GDF15-GFRAL axis to modulate
systemic energy metabolism upon mitochondrial stress. Further-
more, although total 24-h food intake remained unaffected (Fig 3E
and G), GFRAL signaling proved to be completely responsible for
daytime-restricted anorexia elicited by GDF15 (Fig 3F and H). In-
terestingly, in male but not in female TG mice, GFRAL signaling
controls a nighttime increase in food intake (Fig 3F), highlighting
sex-specific differences of diurnal food intake regulation under
mitochondrial stress conditions. Of note, GFRAL ablation in TG mice
led to a normalization of their energy expenditure phenotype (Fig
S3), which appeared to be lower compared with WTwhen calculated
in an absolute manner (Fig S3A–D) but higher when normalized to
BW or LM (Fig S3E–H) in both males and females because of the
reduced BW and LM in TG mice.

To further characterize molecular traits of daytime-restricted
anorexia, we analyzed plasma levels of appetite regulating hor-
mones and the gene expression pattern of the known central
appetite regulators in the hypothalamus, the anorectic proopio-
melanocortin (POMC), and the orexigenic agouti-related peptide
(AgRP) (Gao & Horvath, 2008). We found that plasma concentrations
of total ghrelin, a well-described orexigenic hormone (Inui, 2001),
were increased in male and female TG mice but abrogated in
TGxGfKO mice (Fig 3I and L). Interestingly, despite the reduced food
intake at daytime, plasma levels of central satiety hormones
peptide tyrosine–tyrosine (PYY) (Kirchner et al, 2010) and leptin
(Friedman, 2019) were unaffected or lowest in male and female TG
mice, respectively (Fig 3J, K, M, and N). In line with the restored
weights of adipose tissue depots, plasma levels of leptin were
higher in TGxGfKO versus TG mice. Finally, although hypothalamic
Pomc expression was reduced, expression of agouti-related protein
(Agrp) was increased in male and female TG mice, which was
normalized to WT levels by GFRAL ablation (Fig 3O and P). Overall,
the here observed GFRAL-dependent pattern in TG mice reflects a
state of negative energy balance with increased appetite signaling
aimed to increase food intake. Nevertheless, TG mice show a
marked daytime-restricted anorexia (Fig 3F and H) that, together
with the regulation of classical appetite/satiety modulators men-
tioned above, resembles an anorexia nervosa–like phenotype and
suggests that the GDF15-GFRAL axis works through an alternative
pathway that overrides the classic hypothalamic food intake regu-
lation system as previously suggested (Hsu et al, 2017).

GFRAL signaling induces hypothalamic CRH and anxiety-like
behavior in response to muscle mitochondrial stress

We aimed at dissecting the underlying brain-specific downstream
signaling and behavioral response upon chronic mitochondrial
stress-induced GDF15-GFRAL signaling. Recent studies demon-
strated the activation of CRH neurons in the PVN via pharma-
cological GDF15 treatment (Worth et al, 2020; Cimino et al, 2021).

Strikingly, we could show that chronic muscle mitochondrial
stress promotes a consistent GFRAL-dependent increase in hy-
pothalamic Crh expression in both male and female TG mice (Fig
4A and D). Interestingly, this was neither followed by an increase
in pituitary gland Pomc expression (Fig 4B and E) nor by increased
plasma corticosterone levels (Fig 4C and F), which remained
unchanged in TG mice indicating no further activation of the
hypothalamic–pituitary–adrenal (HPA) axis. Given the involve-
ment of CRH in the control of the stress response and anxiety-like
behavior (Reul & Holsboer, 2002), we aimed to further characterize
behavioral implications of GFRAL-dependent increased hypo-
thalamic CRH in TG mice. Performing an open field test (OFT), we
observed that although total distance traveled during the OFT was
not altered (Fig S4A and C), male TG mice showed a reduced
number of entries in the center and time in the center that was
abolished by the loss of GFRAL, whereas time in the corners
remained unaffected (Fig 4G). Female TG mice, however, did not
present with an increased anxiety-like phenotype during the OFT
(Fig 4H). To expand on the behavioral traits of TG mice, we per-
formed an elevated plus maze (EPM) test. Similar to the results of
the OFT, male TG mice showed an increased anxiety-like behavior
as evidenced by a reduced number of entries into the open arms,
a decreased time in the open arms, and a decreased distance
traveled in the open arms (Fig 4I) that was accompanied by a
decreased distance traveled in the closed arms and an increased
time freezing (Fig 4K) which was reversed in TGxGfKO mice, in-
dicating an involvement of GFRAL signaling in inducing anxiety-
like behavior in male mice. Female TG mice, however, showed a
milder phenotype with only a slight decrease in the distance
traveled in the open arms (Fig 4J) and an increased time freezing
(Fig 4L) that was only in tendency restored in TGxGfKO mice. Along
these lines, analysis of plasma corticosterone post-EPM indicated
an increase in TG male mice that seemed to be, at least partially,
GFRAL-dependent (Fig S4B), whereas it was not affected in female
TG mice (Fig S4D), indicating an increased stress resilience of
female TG mice. Altogether, these data show a weaker or negli-
gible action of GFRAL signaling in inducing anxiety-like behavior
(measured with the OFT and EPM behavioral paradigms) upon
mitochondrial stress in female mice. In summary, we here
demonstrate that musclemitochondrial stress signals to the brain
in a GFRAL-dependent manner to control systemic energy
metabolism, as evident from increased metabolic flexibility and
daytime-restricted anorexia, as well as hypothalamic signaling via
CRH induction and anxiety-like behavior, at least in male mice (Fig
4M).

Discussion

Increasing evidence supports the crucial role of mitochondria
within the organism in health, during aging and disease progres-
sion (Picard & Sandi, 2021), including the view that mitochondrial
stress signaling through “mitokines” is central to communicate
mitochondrial dysfunction from affected tissues to peripheral
target organs (Bar-Ziv et al, 2020; Klaus et al, 2021). However, crucial
circulating factors, endocrine target tissues, and specific effects at
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Figure 4. Activation of GFRAL by mitochondrial stress induces hypothalamic Crh and anxiety-like behavior.
(A, D) Hypothalamus (HTH) Crh expression (n = 8–9). (B, E) Pituitary Pomc expression (n = 6). (C, F) Plasma corticosterone levels (n = 8–9). (G, H) Entries in the center, time
spent in the center, and time spent in the corners during an open field test (n = 16–20). (I, J) Open-arm entries, time spent in the open arms, and distance traveled in the
open arms during an elevated plus maze test (n = 20). (K, L) Time spent in the closed arms, distance traveled in the closed arms, and time freezing in the closed arms during
an elevated plus maze test (n = 18–20). (M) Schematic representation of the role of GFRAL signaling under skeletal musclemitochondrial stress. The left and right panels
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molecular, metabolic, and behavioral levels are still poorly un-
derstood. Moreover, to the best of our knowledge, comprehensive
profiling of sex-specific mitochondrial stress response pathways
and endocrine signaling, particularly in female animal models,
remain scarce. In mouse models of mitochondrial dysfunction,
beneficial metabolic adaptation and extended lifespan were found
to be more pronounced in females than males (Alfadda et al, 2004;
Diaz et al, 2005). Here, we report that muscle mitochondrial stress
signals to the brain via GFRAL receptor signaling to promote hy-
pothalamic Crh induction in both male and female TG mice, which
associates with GFRAL-dependent modulation of systemic energy
metabolism, diurnal food intake, and anxiety-like behavior. How-
ever, we observed a gender bias in terms of energy balance and
anxiety, with female mice showing less pronounced variations in
energy balance and anxiety-like phenotype. This is in line with
previous reports on gender effects in the behavior of mouse lines,
showing that malemice had a higher anxiety level than their female
littermates (Võikar et al, 2001), likely because of female sex hor-
mones such as estrogens and progesterone that could affect
emotions and cognition (ter Horst et al, 2012).

Next, we show that mitochondrial stress-mediated muscle
wasting is induced independently of GFRAL signaling, confirming
our previous data on the role of GDF15 (Ost et al, 2020). Similarly, we
report here that, under mitochondrial stress conditions, loss of
GFRAL leads to a partial recovery of lean and fat mass, indicating
that GFRAL signaling might be instrumental in the development of
a lean cachectic phenotype under conditions of mitochondrial
dysfunction such as mitochondrial disease and therefore a po-
tential target for therapeutic interventions in these patients. In line
with our results, in a cancer mouse model, antibody-mediated
inhibition of the GFRAL receptor proved effective in reversing
cancer cachexia (Suriben et al, 2020). Furthermore, recent data
show that severe myalgic encephalomyelitis/chronic fatigue syn-
drome (ME/CFS), a debilitating condition characterized by skeletal
muscle fatigue and mitochondrial dysfunction (Morris & Maes,
2014), is associated with increased levels of GDF15 (Melvin et al,
2019), although the role of the GDF15-GFRAL axis in ME/CFS remains
to be elucidated. In accordance with our previous work (Ost et al,
2020), we here demonstrate an involvement of the GDF15-GFRAL
axis in the induction of metabolic flexibility, which is likely because
of the induction of daytime-restricted anorexia, similar to the
beneficial metabolic health effects of time-restricted feeding in
preclinical models and humans (Regmi & Heilbronn, 2020).

With this work we further demonstrate that chronic activation of
the GFRAL receptor in TG mice leads to an induction of hypotha-
lamic Crh, without further activation of the HPA axis. It was recently
shown that an acute elevation of endogenous or recombinant
GDF15 in mice and rats leads to an activation of the HPA axis
evidenced by highly increased corticosterone levels after treatment
(Cimino et al, 2021), although the specific role of GFRAL in eliciting
these effects remained to be elucidated. Although our data clearly
support the notion of an induction of hypothalamic CRH by GDF15-
GFRAL signaling, our mousemodel of chronic elevated GDF15 shows

that activation of the GDF15-GFRAL pathway by mitochondrial stress
does not induce a sustained increase of corticosterone levels,
highlighting the differential effects of acute versus chronic acti-
vation of the GDF15-GFRAL pathway. Moreover, to be best of our
knowledge, the impact of acute or chronic increased circulating
GDF15 levels on the well-known robust circadian oscillation of
glucocorticoids (Oster et al, 2017) remains unknown and to be
elucidated in future studies. Apart from its endocrine role in HPA
axis signaling, hypothalamic CRH has long been recognized as a
catabolic mediator, suppressing food intake in animals and
humans (Rothwell, 1990; Richard & Baraboi, 2004). CRH effects on
appetite and satiety signaling are largely mediated by CRH receptor
1 (CRHR1) activation (Lemos et al, 2012). Interestingly, CRHR1-
knockout mice have a light phase-restricted induction of food
intake (Muller et al, 2000), namely, the opposite phenotype to that
observed in TGmice. There is increasing evidence that CRH neurons
of the PVN are central players not only in appetite regulation but
also in linking stress and anxiety behavior (Daviu et al, 2019). Thus, it
is tempting to hypothesize that GFRAL-induced hypothalamic CRH
signaling might modulate both anxiety-related and ingestive be-
havior under conditions of mitochondrial stress, but this will have
to be addressed in future research, presumably with the use of
CRHR1- and CRH receptor 2 (CRHR2)-knockout mouse models.

Interestingly, a recent study in mice provided a link between
anxiety and systemic metabolic activation, showing that increased
activities in anxiogenic circuits promote a lean phenotype, obesity
resistance, and white fat browning (Xie et al, 2019). Although there
are only few reports available on anxiety-like behavior in patients
with mitochondrial disease, they often display psychiatric condi-
tions including major depression and generalized or social anxiety
syndromes independent of disease progression (Mancuso et al,
2013). Indeed, there appears to be a high prevalence of psychiatric
symptoms observed in patients with mitochondrial mutations,
which has both etiologic and therapeutic relevance (Inczedy-Farkas
et al, 2012). Thus, the importance of a targeted screen for psychiatric
symptoms in individuals with primary mitochondrial disease was
highlighted recently (Parikh et al, 2017), although it is yet unresolved
whether those symptoms are specifically related to mitochondrial
disease or to other factors that are common in chronic disease
conditions. Here, we provide first experimental evidence for a direct
link between mitochondrial dysfunction in a peripheral (non-brain)
tissue with anxiety-like behavior, potentially via hypothalamic CRH
signaling in a GFRAL-dependent manner. Hence, we uncover a novel
role of the GDF15-GFRAL axis that may potentially link anorectic and
anxiogenic behavior in response to a chronic muscle-specific mi-
tochondrial dysfunction.

Overall, although future studies are important to validate these
results in other mouse models of mitochondrial stress, our data
highlight the role of mitochondrial stress-driven endocrine
crosstalk via GFRAL signaling, which may potentially enable to
develop tailored disease-modifying therapeutics targeting energy
balance as well as psychiatric symptoms in patients with mito-
chondrial disease.

of the figure correspond to male and female mice, respectively. Data correspond to wild-type (WT), Gfral-KO (GfKO), HSA-mUcp1-TG (TG), and HSA-mUcp1-TGxGfral-KO
(TGxGfKO) mice. Data are presented as mean + SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Statistical test: one-way ANOVA.
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Although our study provides new insights into the role of the
GFRAL receptor under skeletal muscle mitochondrial stress, it
presents some limitations that should be acknowledged. On the
one hand, TG mice induce other hormones and cytokines, such as
fibroblast growth factor 21 (FGF21) (Ost et al, 2016), that could
mediate potential compensatory effects on metabolic remodeling
of adipose tissue. On the other hand, future studies are required to
unravel the sex-specific differences and diurnal variation of energy
metabolism upon mitochondrial stress as well as a potential HPA
axis induction in a circadian manner. Recent data further dem-
onstrated the importance of the tissue specificity and dose de-
pendency of mitochondrial integrated stress response (Croon et al,
2022). Hence, in line with the variability of mitochondrial disease
manifestations seen in patients (Suomalainen & Battersby, 2018),
the here-identifiedmitochondrial stress-induced GDF15-GFRAL axis
might be differently regulated in other mouse models of tissue-
specific mitochondrial stress. Notably, in this study, we employed a
whole-body Gfral-knockout mouse. Although GFRAL has been de-
scribed to be exclusively expressed in the mouse hindbrain (Hsu et
al, 2017; Luan et al, 2019), we cannot exclude expression in other
mouse cell types yet not discovered.

Finally, our data indicate a weak involvement of GFRAL signaling
in inducing anxiety-like behavior assessed by OFT and EPM in
female mice. Nevertheless, female mice do present a GFRAL-
dependent induction of hypothalamic CRH, which has been often
been linked to increased anxiety-like behaviors (Zhang et al, 2017).
Thus, it is a possibility that these tests are not adequate for
assessing female behavior of TG mice and other behavioral testing
such as home cage behavioral monitoring might have to be con-
sidered for future research.

Materials and Methods

Animals

Mice with a C57BL/6J background were used for all experiments.
Gfral heterozygous mice were purchased from Mutant Mouse Re-
gional Resource Centers (MMRRC) and back-crossed to a C57BL/6J
background. Mice were fed a standard chow diet (Sniff) with ad
libitum access. Mice were kept group-housed and random-caged
until euthanasia at 20 wk of age, when organs were collected. All
animal experiments were approved by the Ethics Committee of the
Ministry of Agriculture and Environment (permission number 2347-
16-2020).

Behavioral testing

The OFT was performed at 10 wk, and the EPM test was performed at
12 wk of age, both for a duration of 10 min. The open field apparatus
consisted of a 50 × 50 cm enclosure. The mouse was placed in the
center of the field and recorded with a camera using the software
ANY-maze 5.2, which was also used for analysis of the different
parameters. The EPM apparatus consisted of two open (30 × 5 × 0.5
cm) and two closed (30 × 5 × 15 cm) arms, crossing each other in a
middle platform (5 × 5 × 0.5 cm). To start the test, mice were placed

in one of the open arms and were recorded for using ANY-maze 5.2,
which was used as well for data analysis.

In vivo metabolic phenotyping

Body composition was measured with quantitative magnetic res-
onance (QMR, EchoMRI 2012 Body Composition Analyzer). The re-
spiratory quotient (RQ = CO2 produced/O2 consumed) was
measured by indirect calorimetry with simultaneous recording of
food intake (TSE PhenoMaster, TSE Systems).

Gene expression analysis

RNA was isolated with a phenol-chloroform–based extraction using
peqGOLD Trifast (#732-3314; VWR) followed by a DNase digest
(#EN0521; Thermo Fisher Scientific). Synthesis of cDNA was per-
formed with the LunaScript RT SuperMix Kit (#E3010L; NEB). For
quantitative real-time PCR (qPCR) analyses, 5 ng of cDNA, LUNA
Universal Probe qPCR Mastermix (#M3004E; NEB), and 1.5 μM of
primers in a total volume of 5 μl were used. Measurements were
performed on a ViiA 7 Real-Time PCR System from Applied Bio-
systems. The following primer sequences were used: Gfral: 59-
CGAAATGATGAATTATGCAGGA-39 (F), 59-TGCAGGTCTCATCTTCATGG-39
(R); Ret: 59-GATGGAGAGGCCAGACAACTGCA-39 (F), 59-CTAGAATCTA
GTAAATGCATG-39 (R); Gdf15: 59-GAGCTACGGGGTCGCTTC-39 (F), 59-
GGGACCCCAATCTCACCT-39 (R); 18S: 59-CTTAGAGGGACAAGTGGCGTTC-
39 (F), 59-CGCTGAGCCAGTCAGTGTAG-39 (R); Atf4: 59-GGAATGGCCG
GCTATGG-39 (F), 59-TCCCGGAAAAGGCATCCT-39 (R); Atf5: 59-CTACCC
CTCCATTCCACTTTCC-39 (F), 59-TTCTTGACTGGCTTCTCACTTGTG-39 (R);
Atf6: 59-CTTCCTCCAGTTGCTCCATC-39 (F), 59-CAACTCCTCAGGAACGT
GCT-39 (R); Chop: 59-AGAGTGGTCAGTGCGCAGC-39 (F), 59-CTCATTCT
CCTGCTCCTTCTCC-39 (R); Fgf21: 59-GCTGCTGGAGGACGGTTACA-39 (F),
59-CACAGGTCCCCAGGATGTTG-39 (R); 9 (R) Pomc: 59-AACCTGCTGGCT
TGCATC-39 (F), 59-GACCCATGACGTACTTCCG-39 (R); Agrp: 59-TTGGC
GGAGGTGCTAGAT-39 (F), 59-ACTCGTGCAGCCTTACACAG-39 (R); Crh: 59-
CAACCTCAGCCGGTTCTGAT-39 (F), 59-CAGCGGGACTTCTGTTGAGA-39 (R).

Plasma analyses

Whole bloodwas collected through heart puncture in heparin tubes
(#41.1503.005; Sarstedt), centrifuged at 9,000g for 10 min at 4°C, and
plasma was stored at −80°C. Plasma GDF15 was quantified using the
Mouse/Rat GDF-15 Quantikine ELISA Kit (#MGD150; Bio-Techne).
Plasma corticosterone was measured with a Corticosterone ELISA
kit (#ADI-900-097; Enzo). Plasma ghrelin, PYY, and leptin were
measured with a Meso-Scale Discovery (MSD) multiplex assay (MSD
Instruments).

Immunoblotting

Quadriceps tissue was homogenized in RIPA buffer containing
protease and phosphatase inhibitor cocktail (#A32959; Thermo
Fisher Scientific), and total protein content was measured with the
DC Protein Assay Reagent (#500-0114; Bio-Rad). The primary anti-
bodies used were phospho-eIF2α (Ser51) (#3597; Cell Signaling
Technology) and eIF2α (#3524; Cell Signaling Technology), followed
by incubation with anti-rabbit IgG (#7074; Cell Signaling Technology)
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as secondary antibody. Quantification of relative protein expres-
sion was performed with ImageJ.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 9
(GraphPad Software). All data are expressed asmeanwith SEM. Data
were tested for normality using D’Agostino and Pearson normality
test. A one-way ANOVA followed by the Tukey’smultiple comparison
test was used to determine differences between genotypes. At P <
0.05 statistical difference was assumed and denoted by *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001. In addition to individual data,
data are shown as mean + SEM.

Supplementary Information

Supplementary information is available at https://doi.org/10.26508/lsa.
202201495.
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