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chromMAGMA: regulatory element-centric interrogation
of risk variants
Robbin Nameki1,2,* , Anamay Shetty1,2,3,* , Eileen Dareng4, Jonathan Tyrer4,5 , Xianzhi Lin1,2,
The Ovarian Cancer Association Consortium, Paul Pharoah4,5, Rosario I Corona1,2, Siddhartha Kar8,9,‡,
Kate Lawrenson1,2,6,7,‡

Candidate causal risk variants from genome-wide association
studies reside almost exclusively in noncoding regions of the
genome and innovative approaches are necessary to understand
their biological function. Multi-marker analysis of genomic an-
notation (MAGMA) is a widely used program that nominates
candidate risk genes by mapping single-nucleotide polymor-
phism summary statistics from genome-wide association studies
to gene bodies. We augmented MAGMA to create chromatin-
MAGMA (chromMAGMA), a method to nominate candidate risk
genes based on the presence of risk variants within noncoding
regulatory elements (REs). We applied chromMAGMA to a genetic
susceptibility dataset for epithelial ovarian cancer (EOC), a rare
gynecologic malignancy characterized by high mortality. This
identified 155 unique candidate EOC risk genes across five EOC
histotypes; 83% (105/127) of high-grade serous ovarian cancer
risk genes had not previously been implicated in this EOC histo-
type. Risk genes nominated by chromMAGMA converged on mRNA
splicing and transcriptional dysregulation pathways. chromMAGMA
is a pipeline that nominates candidate risk genes through a gene
regulation-focused approach and helps interpret the biological
mechanism of noncoding risk variants for complex diseases.
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Introduction

Genome-wide association studies (GWASs) have identified thou-
sands of germline single-nucleotide polymorphisms (SNPs) asso-
ciated with myriad diseases and phenotypes (1). Risk SNPs rarely
exert their impact by altering the amino acid sequence of a protein-
coding gene; it is now clear that a large proportion of risk SNPs

modify the activity of noncoding regulatory elements such as
transcriptional enhancers (2, 3, 4, 5). Because regulatory elements
often interact with target promoters over large genomic distances,
identifying the gene targets of risk SNPs remains a major challenge
in post-GWAS functional studies.

One commonly used tool to study genes and pathways asso-
ciated with risk is the multi-marker analysis of genomic annotation,
or MAGMA (6) software, which uses multiple regression to group
individual-level or summary SNP association from GWASs to the level of
geneswhile accounting for linkage disequilibrium (LD) between variants.
Instead of testing millions of variants individually, MAGMA reduces the
multiple testing burden by performing gene-level analyses and has
emerged as a powerful approach for the discovery of candidate genes
and pathways associated with risk of complex traits (7, 8, 9). MAGMA
captures SNPs positionally mapped to gene bodies; however, many
studies have now shown that noncoding tissue-specific REs (such as
transcriptional enhancers marked by H3K27ac) are enriched for risk
SNPs, and risk REs often interact with genes hundreds of kilobases away
(2, 3, 4, 5). We therefore created a bioinformatic tool termed “chromatin-
MAGMA,” or chromMAGMA, a pipeline that augments MAGMA to infer the
target gene of noncoding risk variants based on user-inputted disease-
relevant REs and RE-to-genemaps. chromMAGMA nominates candidate
risk genes informed by SNPs enriched in up or downstream noncoding
regulatory elements rather than gene bodies.

Here we tested chromMAGMA in epithelial ovarian cancer (EOC),
a deadly disease with ~22,240 new cases and 14,070 annual deaths in
the United States (10). EOC can be stratified into five main histologic
subtypes (histotypes): high-grade serous (HGSOC), low-grade serous
(LGSOC), endometrioid (EnOC), clear cell (CCOC), andmucinous ovarian
cancer (MOC) (10, 11). Each histotype is characterized by distinct
molecular drivers, clinicopathologic features, and distinct germline
genetic risk variants (12, 13). Of the 39 known unique EOC susceptibility
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loci (P-value < 5 × 10−8) identified through GWASs, nine are associated
with risk of HGSOC, five with risk of LGSOC, four with risk of MOC, and
one with risk of EnOC. 20 loci are associated with all invasive disease,
or a combination of one or more histotypes (13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24). These genome-wide significant risk loci represent a
fraction of all narrow-sense heritability in EOC and it is predicted that
additional SNPs also contribute to disease susceptibility (25, 26).
Innovative approaches are needed to deconvolute additional true
risk loci falling below genome-wide significance from false positives
because of limited power, particularly for the rarer histotypes.

We applied chromMAGMA to EOC, inputting histotype-specific
GWAS summary statistics, REs identified by H3K27ac chromatin
immunoprecipitation-sequencing (ChIP-Seq) ofMüllerian tissues, and
RE-to-gene maps from the GeneHancer database (27). ChromMAGMA
highlighted mRNA splicing and transcriptional dysregulation in EOC
risk. In addition, active transcription factors (TFs) marked by super-
enhancers (large stretches of active chromatin) were particularly
enriched for EOC risk associations based on chromMAGMA analyses
and are likely to represent the nexus of noncoding EOC risk and
transcriptional dysregulation. Overall chromMAGMA offers a flexible,
gene regulation-focused approach to nominate noncoding regulatory
elements and target genes involved in risk of polygenic traits.

Results

chromMAGMA maps risk-associated, active regulatory elements
to target genes

To survey risk SNPs in regulatory elements, rather than gene bodies,
we built the chromMAGMA pipeline by modifying the pre-

processing and processing steps of MAGMA. We tested the per-
formance of chromMAGMA using GWAS summary statistics and
epigenome data for EOC (Table S1), as follows: first, the genome is
trimmed to only include regions annotated as high-confidence
active REs from the GeneHancer database (28). This reduces the
genome from three billion base pairs (bp) to ~400million bp (Fig 1A).
Because GeneHancer includes data from 46 tissue types, for an
EOC-specific analysis, we then restricted the universe of Gene-
Hancer REs to those regions marked by H3K27ac in normal and
malignant Müllerian tissues and cell lines (27, 28, 29). This created a
universe of ~200 million base pairs containing only regions of active
chromatin identified in ovarian cancer-relevant tissues, and the
likely target gene(s) for each RE. GWAS SNP identifiers (reference
SNP cluster identifiers, rsIDs) from six histotype-specific GWAS
summary statistics (CCOC, EnOC, HGSOC, LGSOC, MOC, and NMOC—a
dataset consisting of all samples except for MOC) (Coetzee S, Dareng
EO, Peng P, Rosenow W, Tyrer JP (2021) Integrative multi-omics ana-
lyses to identify the genetic and functional mechanisms underlying
ovarian cancer risk regions. (Submitted for Publication) (Fig 1B)
were then positionally mapped to the aforementioned RE dataset
by applying the MAGMA annotation command (see the Materials
and Methods section). The SNP rsID-to-RE annotation was then
processed for gene-level analysis using MAGMA (see the Materials
and Methods section) alongside EOC GWAS SNP summary statistics
(P-values) and 1000 Genome European panel reference LD data
(30). As multiple REs can regulate one gene (31), each gene was
assigned the P-value of the most significant RE. We noted a positive
correlation between the gene’s P-value and the number of REs
associated with each gene (Uncorrected Spearman’s ρ = 0.56, Fig S1)
and this correlation was reduced after adjusting for multiple
regulatory elements assigned to a gene (Corrected Spearman’s

Figure 1. Applying chromMAGMA to epithelial ovarian cancer (EOC) risk.
(A) Overview of the chromMAGMA approach. The GeneHancer database of regulatory elements (and linked genes) was limited to REs detected in Müllerian tissues. An
EOC single-nucleotide polymorphism rsID-to-RE-to-gene annotation list was created and used for gene-level analysis using the MAGMA model, along with EOC genome-
wide association study summary statistic P-values and reference linkage disequilibrium correlations from the European ancestry subset of the 1000 Genomes reference
panel. Because multiple REs can be associated with one gene, the RE with the most significant P-value represents each gene. (B) Study population of EOC genome-wide
association study dataset from Coetzee et al (2021) (Coetzee S, Dareng EO, Peng P, Rosenow W, Tyrer JP (2021) Integrative multi-omics analyses to identify the genetic and
functional mechanisms underlying ovarian cancer risk regions. (Submitted for Publication) CCOC, clear cell ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC,
high-grade serous ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian cancers.

Risk variants in regulatory elements Nameki et al. https://doi.org/10.26508/lsa.202201446 vol 5 | no 10 | e202201446 2 of 14

https://doi.org/10.26508/lsa.202201446


ρ = −0.04, Fig S1). However, there was a high correlation in the
ranked P-values before and after adjustment (Spearman’s ρ = 0.77)
that was even higher in risk genes that passed the significant
threshold (Spearman’s ρ = 0.98). Considering the aforementioned
results in combination with the fact that chromMAGMA accounts for
the number of SNPs mapped to each RE, this adjustment was
excluded from the pipeline to achieve a balance between type II
and type I errors.

We stratified REs into promoters (defined as 1,000-bp upstream
and 100 bp downstream of a transcription start site) or candidate
enhancers (all other regions of active chromatin), as both are
marked by H3K27ac (see the Materials and Methods section). Of
the 9,682 risk-associated REs identified for each histotype (range:
9,624–9,713), 38% of the REs (3,703/9,682; range: 3,669–3,731) were
active promoters and 62% (5,979/9,682; range: 5,966–6,002) were
enhancers. The enhancer-to-promoter distance varied widely,
with an average distance of 187,647 bp (range: 2 bp–5 Mbp; SD ±
230,272 bp) between enhancer start and transcription start sites
(Fig S2).

We ran conventional MAGMA alongside chromMAGMA to com-
pare risk genes implicated by the twomethods (Table S2). In MAGMA
(and in chromMAGMA, given that the latter leverages the MAGMA
statistical pipeline), the P-value is calculated in a two-step process:
first the SNP matrix is projected into a smaller set of principal
components to remove the effects of highly correlated SNPs;
second these principal components are used in a linear regression
whose outputs (feature-wise enrichment for significant SNPs) are
tested for statistical significance using an F-test (6). Comparing the
distributions of the population of P-values between MAGMA
and chromMAGMA by bootstrapping revealed that chromMAGMA
P-values are significantly lower than MAGMA across EOC histotypes
(CCOC P-value = 9.6 × 10−5; EnOC P-value = 8.4 × 10−6; HGSOC P-value =
1.06 × 10−5; LGSOC P-value = 1.13 × 10−5; MOC P-value = 5.14 × 10−5;
NMOC P-value = 8.00 × 10−6). This is consistent with previous evi-
dence that REs, but not protein-coding exons, are enriched for risk-
associated SNPs (3). After Bonferroni correction to account for the
total number of genes tested in each histotype-specific analysis,
we identified 68 unique significant genes in MAGMA and 155
unique significant genes in chromMAGMA, with 56 genes identified
by both methods (MAGMA Bonferroni-corrected P-value < 2.70 × 10−6;
chromMAGMABonferroni corrected P-value < 2.87 × 10−6). The number
of genes identified by histotype ranged from 0 (EnOC) to 53 (all non-
mucinous cancers, NMOC) significant genes in MAGMA and 0
(EnOC) to 131 (NMOC) significant genes using chromMAGMA (Fig
2A). Disparity in the number of significant genes by histotype is
likely due to power, as HGSOC and NMOC represents a majority of
the overall sample size in the EOC GWAS. To survey the functional
role of chromMAGMA nominated risk genes, we leveraged a
publicly available CRISPR-Cas9 knock-out screen that includes
seven CCOC cell lines, four EnOC cell lines, 15 HGSOC cell lines, and
five MOC cell line models (32). Dependency data were available for
149 out of 155 chromMAGMA nominated risk genes as dependency
data for six genes were not available. This revealed 37 (out of 149)
genes that are strong dependencies in 1 or more histological
subtypes of EOC (Figs 2B and C and S3). Whereas most (29 out of 37)
of these genes were considered essential in all histological
subtypes of EOC represented, HNF1B, SH3PXD2A, MEAF6, and SKAP1

were dependencies specific to CCOC, EnOC, HGSOC, and MOC, re-
spectively (Fig 2C and Table S3).

Gene-dense GWAS loci at genome-wide significance account for
many of the risk genes identified by MAGMA and this is also the case
for chromMAGMA (33). For example, genes on chromosome 17 are
particularly overrepresented in MAGMA and chromMAGMA in EOC
(26/68 and 52/155 unique genes, respectively) likely because of the
presence of two genome-wide significant loci in this chromosome
and the high degree of LD due to an inversion at 17q31 (13). We
divided the genome into distinct bins based on LD to identify in-
stances where chromMAGMA nominates candidate risk REs within
distinct LD bins to the local risk association, scenarios where the
same candidate gene could not readily be identified through
MAGMA. Using this approach, 29 unique genes were identified as
candidate risk genes only in chromMAGMA (Table S4). Using
chromMAGMA NMOC as an example, a significant promoter (P-value
4.3 × 10−8) at a known breast and ovarian cancer genome-wide
significant risk locus at chromosome 9q31 is assigned to SMC2,
whereas in MAGMA, SMC2 is not significant (P-value 1.9 × 10−3) (21)
(Fig 2D). Other candidates not previously implicated in EOC risk such
as PRSS23 (P-value 2.6 × 10−6) was nominated by chromMAGMA, a
serine protease regulated by HGSOC biomarker PAX8 (34), were also
identified (Fig 2E). The same RE assigned to PRSS23 interacts across
an LD boundary with the promoter of EED. EED is a component of the
polycomb repressor complex involved in the pathogenesis of nu-
merous cancer types (35). In MAGMA, PRSS23 and EED are not
significant risk genes (P = 0.44).

We next compared chromMAGMA risk genes with candidate
susceptibility genes nominated by alternative approaches. This
analysis was limited to HGSOC as it is the most common and well-
studied EOC subtype. Chromosome conformation capture assays
have identified candidate susceptibility genes previously undis-
covered based on proximity to the nearest gene promoter. So far
three GWAS significant loci at 11q31, 8q24, and 19p13 originally
mapped by proximity to HOXD3, PVT1, and BABAM1 was found, via
chromosome conformation capture assays to interact with HOXD9,
MYC, and ABHD8, respectively (14, 15, 36). chromMAGMA nominated
all three as candidate susceptibility genes in HGSOC (HOXD9, P-
value 1.52 × 10−12; MYC, P-value 6.39 × 10−11 and ABHD8, P-value 3.9 ×
10−16). As chromMAGMA also identifies risk variants that may impact
short-range enhancer–promoter interactions, promoters, and
intronic enhancers, we reasoned that it should also be able to
capture susceptibility genes nominated based on closest proximity
to index SNP at risk loci. Indeed, 10 out of 12 (83%) genes previously
identified as candidate risk genes based on proximity to a lead
variant overlapped with chromMAGMA nominated genes (P-value <
5 × 10−8) (Fig 2F). Cis-expression quantitative trait loci (eQTL) and
transcriptome-wide association studies (TWASs) leverage associ-
ations between risk SNP genotype data and gene expression to
identify candidate genes associated with disease risk. To date, 26
candidate genes have been identified as HGSOC candidate risk
genes using these methods (15, 37, 38); 16 out of 26 genes (62%)
previously identified by HGSOC eQTL or TWAS analyses were also
nominated by chromMAGMA (Fig 2F). chromMAGMA identified 105
additional genes previously not implicated in HGSOC risk. 22/105 of
these genes (21%) had long-range interactions (>500 kb) with the
risk RE, highlighting how chromMAGMA can identify candidate
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Figure 2. ChromMAGMA identifies risk genes for epithelial ovarian cancer (EOC) through risk single-nucleotide polymorphisms coinciding with regulatory elements.
(A) Candidate risk genes identified by conventional MAGMA and chromMAGMA across EOC histotypes (MAGMA Bonferroni corrected P-value < 2.70 × 10−6; chromMAGMA
Bonferroni corrected P-value < 2.87 × 10−6). (B) Set analysis displaying 37 genes with strong dependency scores in one or more histological subtype of EOC. (C) Heat map
displaying the dependency score of 37 chromMAGMA nominated genes with strong dependency scores. (D) Locus view displaying the NMOC chromMAGMA RE-to-gene
association for SMC2. LD boundaries and genome-wide association study single-nucleotide polymorphism associations (−log10[P-value]) are shown. (E) Locus view
displaying the NMOC chromMAGMA RE-to-gene association for PRSS23 and EED. (F) UpSet plot of chromMAGMA genome-wide significant genes in HGSOC and alternate
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genes transcriptionally impacted by noncoding risk SNPs that are
hundreds of kilobases away. For example, the longest promoter-
risk RE interaction identified in this analysis was between the GMPS
gene (P-value 5 × 10−10) and an associated RE ~1 megabase away in
linear genomic distance. Overall, chromMAGMA nominates candi-
date risk genes that are consistent with alternate methods but also
implicates additional genes in HGSOC susceptibility through risk
SNPs with their upstream active regulatory elements.

chromMAGMA implicates splicing and gene regulation in EOC risk

To identify pathways regulated by risk-associated regulatory ele-
ments, we conducted gene set enrichment analysis to ask whether
any gene sets from the Gene Ontology database were enriched in
ranked gene-level associations (based on descending order of
−log10[P-value]) from MAGMA and chromMAGMA. This approach
allows for the investigation of sets of genes without the need to
assign arbitrary P-value cutoffs. Because one RE can be assigned to
multiple genes in the chromMAGMA gene-level association, gene
ranks were weighted using anmRNA expression dataset comprising
disease-relevant primary tissue samples (27) to generate a ranked
list in which highly expressed genes are ranked higher than rel-
atively lower expressed genes associated with the same RE (see the
Materials and Methods section). Pathway enrichment analysis with
the chromMAGMA-derived gene list identified 140 common path-
ways across all histotypes, of which seven were related to mRNA
splicing and processing (considering only pathways with positive
normalized enrichment scores and adjusted P-value < 0.05) (Fig 3A
and Table S5). Spliceosome factors CHERP and EFTUD2 were the top
2 (out of 349) most significant genes related to mRNA splicing in the
weighted chromMAGMA gene list. In addition, 20 of the common
pathways were terms related to transcription or chromatin, in-
cluding RNA polymerase II activity and transcription factor activities
(Fig 3A). DNA-binding transcription factors SIN3B and NFE2L1 were
the top 2 most significant genes (out of 1,746) in the weighted
chromMAGMA gene list and the transcription mediator complex
coactivator MED26 ranked third. Histotype-specific pathways were
also observed for CCOC (195 pathways), EnOC (58 pathways), HGSOC
(17 pathways), LGSOC (30 pathways), and MOC (70 pathways) (Fig 3B).
In contrast, pathway gene set enrichment with conventional
MAGMA had no enriched pathways that passed the P < 0.05 (after
adjustment for multiple comparisons) threshold across all
histotypes.

Super-enhancer–associated transcription factors are associated
with EOC risk

TFs bind in a sequence-specific manner at promoters and en-
hancers to regulate gene expression, and both expression of TFs
and TF binding sites are often involved in risk (12). Cancer cells are
often dependent on TFs whose expression is propelled by large

clusters of enhancers termed super-enhancers or stretch en-
hancers (39). Of 1,671 known human TFs, 257, 220, 202, and 247 TFs are
associated with super-enhancers in CCOC, EnOC, HGSOC, and MOC,
respectively (Table S6). Using chromMAGMA we identified super-
enhancer–associated TFs as enriched for association with risk at
P-value < 0.05; FDR (q-value) < 0.25 for all histotypes except LGSOC,
as LGSOC tissue H3K27ac ChIP-seq data were not available (Fig 4A)
(27, 40, 41). By contrast, super-enhancer–associated TFs were only
significantly enriched forHGSOC risk (P-value < 0.05; FDRq-value < 0.25)
when using gene-level statistics derived from conventional MAGMA.
Leading-edge analysis was performed to identify the super-
enhancer–associated TFs overrepresented in the top ranks of
chromMAGMA gene-level associations. TFs previously implicated in
EOC development including 6/14 candidate master regulators for
HGSOC based on a recent pan-cancer gene expression analysis
were implicated in EOC risk (Table S7). Three of these factors (PAX8,
SOX17, and MECOM) are functionally validated master regulators of
HGSOC development (Fig 4B) (42). HNF1B, a CCOC biomarker and a
key regulator of CCOC tumorigenesis (43, 44), was also on the
leading edge of the clear cell ovarian cancer analysis (Fig 4B).

Gene set enrichment analysis of TF cistromes

In addition to TFs being the target of risk SNPs, noncoding SNPsmay
also impact disease risk by modifying TF binding within enhancers
to impact gene expression (46, 47, 48). Therefore, we asked whether
target genes of specific TFs are disproportionally impacted by EOC
risk SNPs in chromMAGMA. For this analysis we asked if TF-specific
gene sets in the Molecular Signatures database (MsigDB) are
enriched in the ranked gene list from chromMAGMA (49, 50) (Table
S8). TF targets are defined as genes with motifs located within 4 kb
around their transcription start sites by MsigDB.

We first explored the PAX8 target gene sets in HGSOC, where we
have previously identified an enrichment of PAX8 target gene sets
in this histotype (51). PAX8 is represented by two gene sets in
MsigDB: PAX8_B contains 106 genes and PAX8_01 contains 39 genes,
with 23 genes in common across the two sets. When ranked by the
normalized enrichment score, PAX8_B ranked 24/573 (P-value =
0.032, FDR q-value = 0.098) and PAX8_01 ranked 42/573 (P-value =
0.13, FDR q-value = 0.34) in MAGMA. With chromMAGMA, the PAX8
target gene sets ranked higher, with PAX8_B ranked 1/573 (P-value <
1.0 × 10−3, FDR q-value = 0.115), and PAX8_01 ranked 12/573 (P-value =
0.040, FDR q-value = 0.18). We also explored chromMAGMA per-
formed for NMOC, and this analysis identified targets of EVI1, also
known as MDS1 and EVI1 Complex Locus (MECOM) as a significant
gene set not identified inMAGMA (MsigDB-EVI1_05 P-value = 1.0 × 10−3,
FDR q-value = 0.17; MsigDB-EVI1_04; P-value = .041, FDR q-value = 0.15;
MsigDB-EVI1_03; P-value = 4.6 × 10-2, FDR q-value = 0.229). MECOM is a
known master regulator TF in HGSOC that is functionally involved in
disease pathogenesis (52, 53). Leading-edge analysis was performed
for MsigDB-PAX8_B and MsigDB-EVI1_05 to identify the candidate

approaches to nominate candidate risk genes. Proximity, lead variants labeled as genome-wide significant (P < 5 × 10−8) assigned to genes based on nearest
transcription start site; eQTL, cis-expression quantitative trait loci; TWAS, transcriptome-wide association studies; CCOC, clear cell ovarian cancer; EnOC, endometrioid
ovarian cancer; HGSOC, high-grade serous ovarian cancer; LGSOC, low-grade serous ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian
cancers.
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susceptibility genes potentially regulated by PAX8 and MECOM.
This analysis identified 29 and 49 candidate susceptibility genes
regulated by PAX8 and MECOM, respectively. HOXB5, HOXB7,
HOXB8, and NEUROD6 genes were common target genes between
the two factors. HOXB5, HOXB7, and HOXB8 are homeobox

superfamily TFs highly expressed in HGSOC and associated with
poor survival (54).

We then used chromMAGMA to discover additional TFs not
previously implicated in EOC risk with histotype specificity in
consideration. Because one transcription factor can be represented

Figure 3. chromMAGMA identifies histotype-specific as well as common pathways involved in epithelial ovarian cancer risk.
(A) Dot plot representing transcription, splicing, and chromatin related pathways that were enriched in risk genes nominated in all histotypes by chromMAGMA. (B) Bar
plots representing the top 10 histotype-specific chromMAGMA pathways based on normalized enrichment score. NES, normalized enrichment score; CCOC, clear cell
ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer; LGSOC, low-grade serous ovarian cancer; MOC, mucinous ovarian cancer.
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bymultiple gene sets, the gene set with themost significant P-value
was chosen to represent each transcription factor and, furthermore,
NMOC was excluded from this analysis as this histotype dataset is a
combination of all other subgroups except for MOC. Considering
P-value <0.05 and FDR cutoff of < 0.25, we identified 113 transcription
factors implicated in EOC risk. Of these 113 transcription factors, 13
were specific to CCOC, 4 to EnOC, 5 to HGSOC, 7 to LGSOC, 9 to MOC,
and seven common across all five histotypes (Figs 5A and S4). SOX9
was identified as a CCOC-specific TF in which its downstream reg-
ulatory targets are enriched for risk SNPs. A recent single-cell RNA
sequencing study of the human endometrium (hypothesized tissue-
of-origin for CCOC) grouped SOX9-positive epithelial cells of the
endometrium as a regenerating and proliferative subset (55).

Finally, we set to identify TFs that are likely to be directly reg-
ulated by risk SNPs and where risk SNPs alsomodify TF downstream
binding, hereinafter termed as “nexus TFs.” Nexus TFs were defined
as TFs that were (1) on the leading edge of the super-enhancer–
associated TF gene set enrichment analysis and (2) TF target gene
sets from MsigDB that were significantly enriched in chromMAGMA
for each respective histotype (Fig 5B and Table S9). 16 TFs such as
PAX8 were identified for HGSOC and EnOC, along with novel TFs
implicated in EOC such as SP1, a TF implicated in a variety of bi-
ological processes across multiple cancer types (56). CRISPR-Cas9
knock-out screen from DepMap revealed that although there is
heterogeneity across cell lines and histotypes, EOC lines are largely
dependent on RREB1, ATF4, MAX, PAX8, MZF1, and SRF (average
essentiality scores ≤ −0.4; average score for pan-essential genes =
−1) and SP1, MECOM, and CEBPB (average essentiality scores ≤ −0.3)
(Fig 5C and Table 1) (32). By comparison, negative control TFs that
were (1) not on the leading edge of the super-enhancer–associated
TF gene set enrichment analysis and (2) bottom 16 of the TF target

gene sets from MsigDB were less likely to be essential in EOC cell
lines (Fig 5C). In total 9/16 nexus TFs showed at least modest
dependency (average essentiality scores ≤ −0.3) in at least one
histotype, compared with 2/16 negative control TFs. These results
imply that TFs on the nexus of risk through genetic variation both in
upstream REs and downstream binding sites can be identified in
chromMAGMA and are often essential genes in EOC.

Discussion

Most common risk polymorphisms associated with complex traits in
GWAS are located in the noncoding portion of the genome (57).
These noncoding risk polymorphisms likely modify the activity of
noncoding regulatory elements to impact the expression of a target
gene (or genes) that play a role in disease susceptibility (3).
Identifying the risk RE and target gene remain two main challenges
in post-GWAS functional work because REs outside of promoters
are tissue specific and can interact with transcription start sites
over large linear genomic distances (58). Here we built chromatin-
MAGMA, or “chromMAGMA,” to prioritize candidate risk REs and
target genes based on the landscape of gene regulation in a specific
tissue type. chromMAGMA first maps SNPs to user-defined tissue-
specific regulatory element landscapes. REs are linked to likely
target genes using the GeneHancer database, or any other resource.
The collection of annotated active REs can then be interrogated at
the gene level, or gene set level. Here we focused on epithelial
datasets representing the tumor type of interest, plus likely pre-
cursor cell types; however, analogous datasets for other cell types
could also be interrogated, where available.

Figure 4. Super-enhancers upstream of
transcription factors are associated with
histotype-specific epithelial ovarian cancer risk.
(A) Gene set enrichment plot of super-
enhancer–associated TFs from each epithelial
ovarian cancer histotype from Corona et al (2020)
(45) in conventional MAGMA and chromMAGMA.
(B)Gene −log10(P-value) versus gene rank based
on −log10(P-value) with known genes implicated
in CCOC and HGSOC from the leading-edge list of
the super-enhancer–associated TF gene set
enrichment analysis highlighted. CCOC, clear cell
ovarian cancer; EnOC, endometrioid ovarian
cancer; HGSOC, high-grade serous ovarian
cancer; LGSOC, low-grade serous ovarian cancer;
MOC, mucinous ovarian cancer; NMOC, all non-
mucinous ovarian cancers.
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We tested the performance of chromMAGMA using the largest
EOC GWAS dataset to date, consisting of 26,151 EOC cases and
105,724 controls (Coetzee S, Dareng EO, Peng P, Rosenow W, Tyrer JP
(2021) Integrative multi-omics analyses to identify the genetic and
functional mechanisms underlying ovarian cancer risk regions.
(Submitted for Publication) combined with disease-relevant Mül-
lerian active REs and RE-to-gene contact maps from the Gene-
Hancer database. We contrasted the RE-centric chromMAGMA to
genes nominated by conventional MAGMA. Overall, chrom-
MAGMA assigned lower P-values to genes compared to MAGMA, in

line with evidence that SNPs are enriched in active REs, validating
the overall premise of this approach (2, 3, 4, 5). Orthogonal evidence
to validate the chromMAGMA approach came from concordant re-
sults between chromMAGMA and alternative functional approaches
to nominate candidate EOC susceptibility genes, including proximity,
chromosome conformation capture assays, and quantitative trait
locus-based analyses. Of particular note is that chromMAGMA
identified previously validated candidate genes in scenarios where
large genomic distances or multiple genes lie between the can-
didate causal risk SNPs and the risk gene. This highlights how the

Figure 5. Transcription factor networks in epithelial ovarian cancer risk.
(A) Genome-wide significant Molecular Signatures Database transcription factor target (MsigDB “TFT_legacy”) gene sets (P-value < 0.05 and FDR cutoff of <0.25) across
EOC histotypes. (B) Schematic depiction of the definition of a “Nexus TF.” Top ranks = leading edge of the gene set enrichment analysis. (C) Heat map displaying the
essentiality score of Nexus TFs in epithelial ovarian cancer lines (data from Depmap.org). Columns clustered using unsupervised hierarchical clustering (method = K-
means). CCOC, clear cell ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer; LGSOC, low-grade serous ovarian cancer; MOC,
mucinous ovarian cancer; NMOC, all non-mucinous ovarian cancers.

Risk variants in regulatory elements Nameki et al. https://doi.org/10.26508/lsa.202201446 vol 5 | no 10 | e202201446 8 of 14

http://Depmap.org
https://doi.org/10.26508/lsa.202201446


chromMAGMA approach represents an efficient route to candidate
gene nomination that incorporates the benefits of popular existing
methods, while avoiding some of the limitations associated with
those techniques. For example, chromMAGMA circumvents the
distance bias of both eQTL analyses (which are often only powered
to identify local cis interactions) or analyses that leverage
chromatin interactome data (which conversely cannot resolve
short-range interactions, which poses a particular challenge in
gene-dense regions).

In addition to validating known risk genes, chromMAGMA pro-
vided insights into EOC risk that have not been achieved using
previous methods. Pathway analysis of the chromMAGMA ranked
gene list revealed enrichments of mRNA processing and splicing
pathways across all histotypes, indicating that noncoding risk SNPs
falling on REs regulate genes within these pathways. Whereas
splicing events have been recently associated with EOC risk (59),
components of splicing machinery have not been implicated in EOC
risk previously. Transcriptional regulation pathways were also
enriched in risk genes highly ranked by chromMAGMA, particularly
super-enhancer–associated transcription factors (such as PAX8 in
HGSOC and HNF1B in CCOC). A study incorporating long-range,
noncoding chromatin interactions from Hi-C with MAGMA (H-
MAGMA) in nine neuropsychiatric disorders also found common
pathways in transcriptional regulation/RNA splicing (60). These
results suggest that risk variants impacting such pathways may be

common occurrences across complex traits. As TFs can be both
targets and mediators of risk SNPs, we identified a set of “Nexus
TFs,” that is, transcription factors with oncogenic transcriptional
properties that are enriched for risk variation both in its upstream
cis regulatory element and in its downstream target binding sites.
Gene dependency data prioritized nine transcription factors, which
included master regulators of HGSOC–PAX8 and MECOM. PAX8 and
MECOM are known to co-occupy most of the chromatin marked by
H3K27ac active regions in HGSOC and may be contributing to the
differential regulation of HGSOC-relevant risk gene (42).

Whereas our study used H3K27ac chromatin immunoprecipita-
tion data, a widely available mark of active chromatin, other
technologies and epigenetic marks—such as other histone post-
translational modifications, transcription factor binding sites, open
chromatin regions, and methylation profiles—are all compatible
with chromMAGMA. In this study, we used GeneHancer active
regulatory-element-to-gene contact map data (28). GeneHancer is
the most comprehensive catalogue of gene-regulatory element
associations currently available and comprised RE-to-gene maps
represented by 46 tissue types. One limitation to this approach is
that Müllerian tissues are not well represented in the GeneHancer
database and could be missing interactions unique to gynecologic
tissues. Alternative data types, such as in silico maps of RE–
promoter interactions inferred from ATAC-seq data (61) or genome-
wide data from epigenome and genome editing screens could be

Table 1. Average essentiality scores for Nexus TFs across epithelial ovarian cancer cell lines.

CCOC EnOC HGSOC MOC

TF Mean essentiality
score SD Mean essentiality

score SD Mean essentiality
score SD Mean essentiality

score SD

EGR1 −0.12 0.21 −0.03 0.19 −0.15 0.11 −0.11 0.10

RREB1 −0.47a 0.20 −0.19 0.16 −0.43a 0.16 −0.52a 0.22

SP1 −0.34b 0.22 −0.37b 0.23 −0.29 0.20 −0.50a 0.08

ATF4 −0.76a 0.18 −0.73a 0.06 −0.78a 0.20 −0.91a 0.26

HIF1A 0.34 0.36 0.15 0.10 0.14 0.10 0.06 0.30

MECOM −0.34b 0.61 0.10 0.04 −0.23 0.38 0.10 0.12

MEIS1 −0.01 0.06 −0.04 0.16 −0.11 0.16 −0.04 0.15

VDR −0.05 0.13 −0.09 0.14 −0.06 0.12 −0.13 0.07

IRF2 −0.04 0.09 0.04 0.04 0.10 0.18 0.02 0.21

MAX −0.58a 0.16 −0.47a 0.10 −0.52a 0.15 −0.62a 0.12

PAX8 −0.98a 0.66 −0.36 0.40 −0.71a 0.58 −0.25 0.44

CEBPB −0.40b 0.25 −0.18 0.05 −0.30b 0.13 −0.28 0.32

IRF1 −0.16 0.10 −0.17 0.13 −0.09 0.07 −0.20 0.13

MZF1 −0.56a 0.28 −0.48a 0.17 −0.51a 0.11 −0.58a 0.23

RFX1 −0.15 0.11 −0.25 0.14 −0.26 0.11 −0.24 0.18

SRF −0.76a 0.17 −0.52a 0.16 −0.67a 0.14 −0.48a 0.29

AR −0.12 0.14 −0.11 0.05 −0.01 0.13 −0.06 0.08
aMean essentiality score ≤ −0.4.
bMean essentiality score ≤ −0.3.
Mean essentiality score represents the average essentiality score for all cell lines associated with each epithelial ovarian cancer histotype. CCOC, clear cell
ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer; LGSOC, low-grade serous ovarian cancer; MOC, mucinous
ovarian cancer; NMOC, all non-mucinous ovarian cancers; SD, standard deviation.
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incorporated to create tissue-specific maps of gene-RE assign-
ments. Another limitation of chromMAGMA is the necessary step of
assigning a representative RE to a single gene for the generation of
gene-level statistics. In this study, genes were mapped 1:1 to the RE
with the most significant P-value. This step simplifies the biological
complexity of multiple REs influencing a gene in an additive (62, 63),
or sometimes hierarchal manner (64, 65), but for some genes, may
miss a critical aspect of transcriptional regulation relevant to risk.
Integration of chromMAGMA with data from perturbation (66),
massively parallel reporter (67) assays and eRNA signatures (68)
may be a superior way to prioritize REs associated with each gene.
Overall, chromMAGMA is a flexible approach that can be readily
adapted to prioritize candidate risk genes and regulatory elements
for a wide array of phenotypes.

Materials and Methods

MAGMA

MAGMA uses the P-values of SNPs and local linkage disequilibrium
to assign SNPs to gene locations, and then aggregates SNPs within
the same gene body using a hypergeometric distribution (6). These
genes are then ranked by ranking the −log10(P-value). The greater
the −log10(P-value), the greater the number and/or significance of
GWAS SNPs lying within the interval of the gene. MAGMA requires
two external data sources: a list of GWAS SNPs with associated P-
values from that of GWAS, number of participants, and a list of
annotations linking gene names to intervals in the genome.

GWAS data came from the Ovarian Cancer Association Consor-
tium (OCAC) study of 26,151 cases and 105,274 controls participants
(Coetzee S, Dareng EO, Peng P, RosenowW, Tyrer JP (2021) Integrative
multi-omics analyses to identify the genetic and functional
mechanisms underlying ovarian cancer risk regions. (Submitted for
Publication). The GWAS data contained SNP P-values for five his-
totypes of ovarian cancer: high-grade serous, low-grade serous,
clear cell, endometrioid, mucinous, and a composite category of all
non-mucinous histotypes. Gene locations are from the NCBI build
37. Significant genes were identified by filtering genes whose P-
values were less than the Bonferroni-corrected value of 2.70 × 10−6.

chromMAGMA

A list of all REs (hg19) and corresponding gene targets was obtained
from GeneHancer (v4.7) a publicly available database of RE-to-gene
maps (28). GeneHancer captures a broad universe of RE activity
which we wished to reduce to those specific to ovarian cancer and
precursor cell states. We used a dataset of H3K27ac peaks derived
from clear cell (number of non-unique peaks = 119,549 peaks),
endometrioid (125,743 peaks), high-grade serous (122,734 peaks),
mucinous (131,655 peaks) ovarian tumor tissues, and samples from
endometriosis epithelial (44,083 peaks), and normal fallopian tube
secretory epithelial cell lines (43,734 peaks) (29, 45). This was
converted to hg19 using UCSC liftOver, duplicates were removed
and the remainder were merged into 80,271 distinct intervals using
bedtools v2.25.0 (69). We then selected REs from GeneHancers

which overlapped with our H3K27ac intervals by at least one base
pair.

We used the REs as the interval input into MAGMA to replace the
gene intervals used by MAGMA. This generated a list of REs and their
statistics. This list was then linked to the genes, where each gene
was assigned the greatest −log10(P-value) from its REs. REs were de-
fined as promoters based on the txdb.hsapiens.ucsc.hg19.knowngene
database, and all non-promoters were labeled as candidate tran-
scriptionally active enhancers. Significant genes were identified by
filtering geneswhose P-valueswere less than the Bonferroni corrected
value of 2.87 × 10−6.

Identifying proximal genes to GWAS genome-wide significant loci

All lead variants labeled as genome-wide significant (P < 5 × 10−8) in
ovarian cancer by Jones et al (2017) (13) were assigned to a gene
based on nearest transcription start site.

Generation of the gene list

Gene identifiers in chromMAGMA and MAGMA were curated by
restricting to those identifiable as “ensembl_gene_id,” “exter-
nal_gene_name,” “external_synonym,” “hgnc_symbol,” “entrez_-
gene_id,” and “uniprot_gn_symbol” and filtered for genes labeled
as “protein_coding” from the BioMart portal (70). For MAGMA, the
maximal −log10(P-value) was then assigned to a gene, and simply
ranked with −log10(P-value) in descending order. For chromMAGMA,
ties in the −log10(P-value) were broken using the average expres-
sion of variance stabilization normalized primary CCOC, EnOC,
HGSOC, MOC, and fallopian tube secretory epithelium (average
Müllerian mRNA expression) as described from Corona et al. (2020)
(45). The ties were broken using this formula:

Weighted P-value = − log 10 P-valueð Þ
× Average Müllerian mRNA Expression:

The same list was used for subsequent gene set enrichment
analysis.

Pathway gene set enrichment analysis

Pathway enrichment analysis was conducted using the Cluster-
Profiler package in R. We removed the HLA genes defined by the HLA
Informatics Group (71, 72, 73) from the ranked list before carrying out
gene set enrichment analysis. This is because the strong, long-
distance linkage disequilibrium between SNPs in this region led to a
clustering of multiple gene-level associations in this region making
it difficult to differentiate between these genes in terms of ranks.
This clustering in turn may yield potentially spurious enrichment
signals for pathways that contain several HLA genes. We ran this
analysis using the following script:

gseGO(geneList= <GENE-LIST>,
ont = "ALL",
keyType = "ENTREZID",
nPerm = 10,000,
minGSSize = 3,
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maxGSSize = 800,
pvalueCutoff = 0.05,
verbose = TRUE,
OrgDb = org.Hs.eg.db,
pAdjustMethod = "BH")

Pathways with gene set sizes less than 25 (as recommended by
the BROAD institute) were removed from further analysis as the
normalization to variation in gene set size becomes inaccurate for
small gene sets.

Super-enhancer–associated TF gene set enrichment analysis

This analysis was conducted using the default GSEA preranked
setting within the Broad GSEA (v3.0) program. The super-enhancer–
associated TF gene set was generated by taking known TFs from the
Human Transcription Factor database (74), which was then filtered to
only include TFs that were proximal, overlapping, or nearest to a super-
enhancer as defined by ROSE2 (41) for CCOC, EnOC, HGSOC, MOC, and
NMOC (45). Enrichment plots were generated with the R package fgsea.

MsigDB TF cistrome gene set enrichment analysis

This analysis was conducted using the default GSEA-preranked
setting within the Broad GSEA program (v3.0).

Experimental methods

Fallopian tube secretory epithelium RNA-seq
RNA sequencing data from primary fallopian tube secretory epi-
thelial cells were generated as described in Corona et al (2020) (45).
They are available in the GEO database under the accession code
GSE182510.

Data Availability Statement

RNA-seq data can be found under accession number GSE182510.

Code availability

A step-by-step tutorial of chromMAGMA is available in a Github
repository: https://github.com/lawrenson-lab/chromMAGMA-public.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202201446.
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67 Muerdter F, Boryń ŁM, Arnold CD (2015) STARR-seq: Principles and
applications. Genomics 106: 145–150. doi:10.1016/j.ygeno.2015.06.001

68 Arnold PR, Wells AD, Li XC (2019) Diversity and emerging roles of
enhancer RNA in regulation of gene expression and cell fate. Front Cell
Dev Biol 7: 377. doi:10.3389/fcell.2019.00377

69 Quinlan AR, Hall IM (2010) BEDTools: A flexible suite of utilities for
comparing genomic features. Bioinformatics 26: 841–842. doi:10.1093/
bioinformatics/btq033

70 Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O,
Awedh MH, Baldock R, Barbiera G, et al (2015) The BioMart community
portal: An innovative alternative to large, centralized data repositories.
Nucleic Acids Res 43: W589–W598. doi:10.1093/nar/gkv350

71 Nunes E, Heslop H, Fernandez-Vina M, Taves C, Wagenknecht DR,
Eisenbrey AB, Fischer G, Poulton K, Wacker K, Hurley CK, et al (2011)
Definitions of histocompatibility typing terms. Blood 118: e180–e183.
doi:10.1182/blood-2011-05-353490

72 Hollenbach JA, Mack SJ, Gourraud PA, Single RM, Maiers M, Middleton D,
Thomson G, Marsh SGE, Varney MD (2011) Immunogenomics Data
Analysis Working GroupA community standard for immunogenomic data
reporting and analysis: Proposal for a STrengthening the REporting of
immunogenomic studies statement. Tissue Antigens 78: 333–344.
doi:10.1111/j.1399-0039.2011.01777.x

73 Tiercy JM, Marsh SGE, Schreuder GMT, Albert E, Fischer G, Wassmuth R,
European Federation for Immunogenetics subcommittee for reporting
HLA ambiguities (2002) Guidelines for nomenclature usage in HLA
reports: Ambiguities and conversion to serotypes. Eur J Immunogenet 29:
273–274. doi:10.1046/j.1365-2370.2002.00336.x

74 Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J,
Hughes TR, Weirauch MT (2018) The human transcription factors. Cell 172:
650–665. doi:10.1016/j.cell.2018.01.029

License: This article is available under a Creative
Commons License (Attribution 4.0 International, as
described at https://creativecommons.org/
licenses/by/4.0/).

Risk variants in regulatory elements Nameki et al. https://doi.org/10.26508/lsa.202201446 vol 5 | no 10 | e202201446 14 of 14

https://doi.org/10.1038/s41588-019-0395-x
https://doi.org/10.1038/s41593-020-0603-0
https://doi.org/10.1126/science.aav1898
https://doi.org/10.1126/science.aav1898
https://doi.org/10.1038/ng.3605
https://doi.org/10.1038/ng.3605
https://doi.org/10.1016/j.immuni.2021.04.005
https://doi.org/10.1016/j.immuni.2021.04.005
https://doi.org/10.1038/ng.3606
https://doi.org/10.1038/s41467-018-03279-9
https://doi.org/10.1038/s41588-019-0538-0
https://doi.org/10.1016/j.ygeno.2015.06.001
https://doi.org/10.3389/fcell.2019.00377
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/nar/gkv350
https://doi.org/10.1182/blood-2011-05-353490
https://doi.org/10.1111/j.1399-0039.2011.01777.x
https://doi.org/10.1046/j.1365-2370.2002.00336.x
https://doi.org/10.1016/j.cell.2018.01.029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26508/lsa.202201446

	chromMAGMA: regulatory element-centric interrogation of risk variants
	Introduction
	Results
	chromMAGMA maps risk-associated, active regulatory elements to target genes
	chromMAGMA implicates splicing and gene regulation in EOC risk
	Super-enhancer–associated transcription factors are associated with EOC risk
	Gene set enrichment analysis of TF cistromes

	Discussion
	Materials and Methods
	MAGMA
	chromMAGMA
	Identifying proximal genes to GWAS genome-wide significant loci
	Generation of the gene list
	Pathway gene set enrichment analysis
	Super-enhancer–associated TF gene set enrichment analysis
	MsigDB TF cistrome gene set enrichment analysis
	Experimental methods
	Fallopian tube secretory epithelium RNA-seq


	Data Availability Statement
	Code availability

	Supplementary Information
	Acknowledgements
	Author Contributions
	Conflict of Interest Statement
	1Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, Morales J, Mountjoy E, Sollis E,  (201 ...


