
















Figure 5. The membrane-binding region is essential for Irgb6 accumulation on Toxoplasma gondii parasitophorous vacuole membrane.
(A) Western blot image to detect stably expressed Irgb6 protein after retroviral transfection and puromycin selection. The mutation positions are indicated in the top
panel. (B) T. gondii survival rate in the indicated Irgb6 reconstitution in Irgb6-KO MEFs with IFN-γ stimulation relative to those without IFN-γ treatment by luciferase
analysis at 24 h post infection. All graphs show the mean ± SEM in three independent experiments. All images are representative of three independent experiments. N.D.,
not detected; **P < 0.01. T. gondii survival and Irgb6_Flag recruitment comparison between genotypes applied one-way ANOVA (Tukey’s multiple comparisons test).
White arrows to indicate recruitment of effector on T. gondii PV. Scale bars on microscope images represent 10 μm. (C) Confocal microscope images to show the
localization of Irgb6-Flag (red) to T. gondii PV (green), and DAPI (blue) at 4 h post infection in IFN-γ–treated Irgb6-KO MEFs reconstituted with indicated Irgb6.
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In these two alternative forms, the depths or sizes of the pocket
openings differ significantly (Fig S6B and C). Thus, the conformation
of the N-terminal helix could alter the shape and depth of hy-
drophobic pocket of Irgb6. From these observations, we assume
that the GTPase activation by homodimerization of Irgb6 could
change the helical domain to open the hydrophobic pocket to
accommodate the acyl chain. Further structural studies are re-
quired to prove this hypothesis.

To clarify the specificity of PI5P to Irgb6, we additionally ex-
amined the glide docking of phospholipids to the Irga6 (PDB ID:
1TQ2) and Irgb10 (PDB ID: 7C3K). Surprisingly, both Irga6 and Irgb10
have potential to bind to phospholipids (Fig S4G–K). In particular,
Glide scores of Irgb10 represented the lowest binding free energy
among three IRGs, suggesting its high preference to the phos-
pholipids. Nevertheless, the specificity for PI5P is unique in Irgb6. A
preference to PS was observed in Irgb10, whereas Irga6 prefers PS
or PE to PI5P. Therefore, the distributions of IRGs on PVM could be
controlled by the preferences of phospholipids.

In the present study, we solved the atomic structure of Irgb6
monomer and elucidated the structural details of PVM-binding inter-
face of Irgb6. Considering that Gbp1 regulates the localization or activity
of Irgb6 on the PVM, biochemical and structural analyses of Gbp1-Irgb6
interaction are required to solve the molecular mechanisms of PVM
disruption and pathogen clearance (Khaminets et al, 2010). Also, the
rhoptry protein 18 (ROP18), a serine threonine kinase secreted by T.
gondii, phosphorylates threonine residues in switch I of Irgb6 to disarm
the innate clearance by host cells (Fentress et al, 2010; Steinfeldt et al,
2010). By elucidating the structural mechanisms of how ROP18 inac-
tivates Irgb6, therefore, the whole picture of host cell-autonomous
immunity and microbial counter-defense system will be unveiled.

Materials and Methods

Protein expression

The full-length Mus musculus Irgb6 gene (Tptg 2, Gene ID: 100039796)
was PCR-amplified with specific primers (59-GAAGTTCTGTTCCAGGGGCC-
CATGGCTTGGGCCTCCAGC-39 and 59-CGATGCGGCCGCTCGAGTTAT-
CAAGCTTCCCAGTACTCGG-39; the original sequence of pGEX-6P-1
are underlined) from the pWT_Irgb6_full (Lee et al, 2020) and then
subcloned into the directly downstream of PreScission protease site
of pGEX-6P-1 (Cytiva) by Gibson Assembly system (New England Biolabs
Inc.) to create pRN108. The pRN108 was transformed into Escherichia
coli strain BL21(DE3). The transformant were grown in LB medium with
50 mg/l ampicillin at 25°C to an OD600 nm of 0.4, and GST-tagged
Irgb6 was expressed overnight with final 0.1 mM isopropyl β-D-1-
thiogalactopyranoside. The cells were harvested and stored at −80°C.

Protein purification

Irgb6 was purified at 4°C. The frozen BL21(DE3) cells were suspended
in solution-I (50 mM HEPES-KOH, pH 7.5, 150 mM NaCl, 2 mM
dithiothreitol, 0.7 μM leupeptin, 2 μM pepstatin A, 1 mM phenyl-
methylsulfonyl fluoride, and 2 mM benzamidine) and sonicated on
ice. The cell lysate was centrifuged (80,000g, 30 min) and GST-Irgb6
in the soluble fraction was purified by affinity chromatography
using a Glutathione Sepharose 4B column (Cytiva) equilibrated
with solution-I. The GST domain of the protein was cleaved by over-
night incubationwith GST-taggedHRV 3C protease (homemade) on the
resin. The free Irgb6 which contains two extra N-terminal residues,
Gly–Pro, was eluted with solution-I and was concentrated to with an
Amicon Ultra 10-kD MWCO concentrator (Merck Millipore). The protein
was further subjected to SEC on a HiLoad 16/600 Superdex 75 column
pg column (Cytiva) equilibrated in solution-II (50 mM HEPES-KOH, pH
7.5, 150 mM NaCl, 5 mM MgCl2, and 2 mM dithiothreitol). Peak fraction
containing Irgb6 at ~47 kD elution position was concentrated using the
concentrator for crystallization. Protein concentration was estimated
by assuming an A280 nm of 0.916 for a 1 mg/ml solution.

Crystallization

Nucleotide-free Irgb6 crystals diffracting to 1.9 Å resolution were obtained
from sitting drops with a 12 mg/ml protein solution and a reservoir so-
lution consisting of 0.1 M MIB buffer, pH 6.0 (Molecular Dimensions), 25%
Polyethylene Glycol 1500 (Molecular Dimensions) at 20°C. GTP-binding
Irgb6 crystals diffracting to 1.5 Å resolution were obtained from sitting
dropswith a 9mg/ml protein solution containing 2mMGTP (Roche) anda
reservoir solution consisting of 0.1 M Sodium Citrate buffer, pH 5.4 (Wako),
and 18% (wt/vol) polyethylene glycol 3350 (Sigma-Aldrich) at 20°C.

Data collection and structure determination

Single crystalsweremounted in LithoLoops (ProteinWave)with themother
liquor containing 10% (vol/vol) or 20% (vol/vol) glycerol as a cryoprotectant
and were frozen directly in liquid nitrogen before X-ray experiments.
Diffraction data collection was performed on the BL32XU beamline at
SPring-8using theautomaticdata collectionsystemZOO(Hirataet al, 2019).
The diffraction data were processed and scaled using the automatic data
processing pipeline KAMO (Yamashita et al, 2018). The structure was de-
termined using PHENIX software suite (Liebschner et al, 2019). Initial phase
was solved by molecular replacement using PDB ID: 1TQD, 1TQ2, and 1TPZ
with phenix.phaser. The initial model was automatically constructed with
phenix.AutoBuild. The model was manually built with Coot (Emsley &
Cowtan, 2004) and refinedwithphenix.refineandRefmac (Vagin et al, 2004)
in CCP4 software suite (Winn et al, 2011). The statistics of the data
collection and the structure refinement are summarized in Table S1.
UCSF Chimera (Pettersen et al, 2004) was used to create images,

(D) Recruitment percentages of Irgb6_Flag. (E) Confocal microscope images to show the localization of Irga6 (red) to T. gondii PV (anti-GRA2; green), and DAPI (blue) at
4 h post infection in IFN-γ–treated Irgb6-KO MEFs reconstituted with indicated Irgb6. (F) Recruitment percentages of Irga6. (G) Confocal microscope images to show the
localization of Irgb10 (red) to T. gondii PV (anti-GRA2; green), and DAPI (blue) at 4 h post infection in IFN-γ–treated Irgb6-KO MEFs reconstituted with indicated Irgb6.
(H) Recruitment percentages of Irgb10. All graphs show the mean ± SEM in three independent experiments. All images are representative of three independent
experiments. Recruitment percentages of indicated effectors calculated by counting almost 100 T. gondii PV in one experiment were shown as results of three independent
experiments. N.D., not detected; **P < 0.01. T. gondii survival and Irgb6_Flag recruitment comparison between genotypes applied one-way ANOVA (Tukey’s multiple
comparisons test). White arrows to indicate recruitment of effector on T. gondii PV. Scale bars on microscope images represent 10 μm.
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compare structures, and calculate RMSDs. RMSDs were calculated
using MatchMaker in UFSC Chimera that were based on the structure-
based multiple sequence alignment. RMSDs of whole structures were
calculated by aligning all Cα atom pairs from two proteins. RMSDs of
each N-, G-, or C-domains were also calculated by aligning Cα atom
pairs in N-, G-, or C-domains from two proteins.

Analysis of nucleotide component

Irgb6 and GTP were prepared 40mM in 50mMHEPES-KOH, pH 7.5, 1 mM
MgCl2, 1 mM EGTA-KOH, pH 7.0, and 150 mM NaCl. A 25 μl Irgb6 sample
were mixed to equal volume of GTP sample and incubated at 36°C for
30 min. A 1 ml of 8 M urea was added to the mixture and heated at 95°C
for 1 min, followed by ultrafiltration using Amicon Ultra-0.5 10-kD MWCO
concentrator (Merck Millipore). A 900 μl of the solution that passed
through the ultrafiltration membrane was analyzed by anion exchange
chromatography using a Mono Q 5/50 Gl column (Cytiva) equilibrated
with 50mMHEPES-KOH, pH 7.0. Components of the reactionmixture, GTP
and GDP, were completely separated by elution with 0–0.2 M NaCl
gradient in 50 mM HEPES-KOH, pH 7.0. Fresh GTP (Nacalai Tesque) and
GDP (WAKO) were used to confirm the elution position. A control ex-
periment was performed using the reaction buffer.

In silico docking simulation

Molecular docking was performed using Schrödinger suite. The 2D
structures of the four phospholipid ligands, PI5P, PS, PE, and PC
were obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/)
(Fig S4). Acyl chains were truncated up to their corresponding polar

head groups. Ligands were also prepared with the polar heads and
glycerol backbones, as well as with 4 and 16 carbon acyl chains. The
free ligands were converted to three-dimensional structures and
their geometries were optimized with the correct chirality using
Ligprep. LigPrep was also used to produce different conformations
for each ligand structure. Before docking, the Irgb6 protein was
prepared using the protein preparation wizard. Subsequently, a grid
box was centered on acids Trp3, Lys275, and Arg371. Three similar
grid centers and two positions of Trp3 and Arg371 were indepen-
dently considered (Fig S5). The prepared ligands were docked with
the preprocessed Irgb6 protein grids using Glide standard precision
(SP) docking mode with flexible ligand sampling.

Cells and parasites

MEFs that lack Irgb6 are described previously (Lee et al, 2020). Irgb6-
deficient MEFs were maintained in DMEM (Nacalai Tesque) supple-
mented with 10% heat-inactivated FBS (Gibco, Life Technologies), 100 U/
ml penicillin (Nacalai Tesque), and 100 μg/ml streptomycin (Nacalai
Tesque). The complete medium comprised 10% heat-inactivated FBS in
RPMI 1640 medium (Nacalai Tesque). T. gondii were parental PruΔHX,
luciferase-expressing PruΔHX. They were maintained in Vero cells by
passaging every 3 d in RPMI 1640 supplemented with 2% heat-
inactivated FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin.

Reagents

Antibodies against FLAG M2 (F3165), and β-actin (A1978) were ob-
tained from Sigma-Aldrich. Anti-Irga6 (10D7) and -Irgb10 rabbit

Figure 6. Structural model of parasitophorous vacuole membrane recognition during the GTP binding.
(A) Structure of Irgb6 in the GTP-bound state. (A, B) Schematic model of conformational change of Irgb6 during GTP binding, shown with the same colors in the panel (A).
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polyclonal antibodies were kind gifts of Dr. Jonathan C Howard.
Anti-GRA7 rabbit polyclonal or anti-GRA2 mouse monoclonal an-
tibodies to staining T. gondii PV were kind gifts from Drs. John
Boothroyd or Dominque Soldati-Favre, respectively. Anti-KDEL (1D5)
was obtained from MBL.

Cloning and recombinant expression

The region of interest of the cDNA corresponding to the wild-type, in-
dicated point mutants or deletion mutants of Irgb6 (GenBank accession
no. NM_001145164) were synthesized from the mRNA of the spleen of
C57BL6 mice using primers Irgb6_F 5ʹ-gaattcaccATGGCTTGGGCCTC
CAGCTTTGATGCATTCT-3ʹ and Irgb6_R 5ʹ-gcggccgcTCActcga
gAGCTTCCCAGTACTCGGGGGGCTCAGATAT-3 .́ Irgb6_a6(all), G277D/G285T/
G286F, and W3A mutants were generated using primers a6(all)_F 5ʹ-
TCTTCCTAGAAGCCATGAAGGCTgacctagtgaatatcatcccttctctgacctttATG
ATCAGTGATATCTTAGAGAAT-3ʹ and a6(all)_R 5ʹ-ATTCTCTAAGA
TATCACTGATCATaaaggtcagagaagggatgatattcactaggtcAGCCTTCATG
GCTTCTAGGAAGA-3ʹ; G277D/G285T/G286F _F 5ʹ-GTCTTCCTAGA
AGCCATGAAGGCTGacGCATTAGCCACCATTCCACTTaactttATGATCAGT
GATATCTTAGAGAATCT-3ʹ and G277D/G285T/G286F _R 5ʹ-AG
ATTCTCTAAGATATCACTGATCATaaagttAAGTGGAATGGTGGCTAATGCgt
CAGCCTTCATGGCTTCTAGGAAGAC-3ʹ; W3A _F 5ʹ-gaattcaccATGGC
TgcGGCCTCCAGCTTTGATGCATTCTTTAAGAATTT-3ʹ products were
ligated into the EcoRI/XhoI site of the retroviral pMRX-Flag expres-
sion vector for retroviral infection. The sequences of all constructs
were confirmed by DNA sequencing.

Western blotting

MEFs were stimulated with IFN-γ (10 ng/ml) overnight. The cells
were washed with PBS and then lysed with 1× TNE buffer (20 mM
Tris–HCl, 150 mM NaCl, 1 mM EDTA, and 1% NP-40) or Onyx buffer
(20 mM Tris–HCl, 135 mM NaCl, 1% Triton-X, and 10% glycerol) for
immunoprecipitation, which contained a protease inhibitor cocktail
(Nacalai Tesque) and sonicated for 30 s. The supernatant was
collected, incubated with the relevant antibodies overnight, and
then pulled gown with Protein G Sepharose (GE) for immunopre-
cipitation. Samples and/or total protein was loaded and separated
in 10% or 15% SDS–PAGE gels. After the appropriate length was
reached, the proteins in the gel were transferred to a polyvinyl
difluoride membrane. The membranes were blocked with 5% dry
skim milk (BD Difco Skim milk) in PBS/Tween 20 (0.2%) at room
temperature. The membranes were probed overnight at 4°C with
the indicated primary antibodies. After washing with PBS/Tween,
the membranes were probed with HRP-conjugated secondary
antibodies for 1 h at room temperature and then visualized by
Luminata Forte Western HRP substrate (Millipore).

Measurement of T. gondii numbers by a luciferase assay

The number of luciferase-expressing T. gondii was indirectly
counted by the luciferase units (Yamamoto et al, 2012). Cells were
untreated or treated with IFN-γ (10 ng/ml) for 24 h. After the
stimulation, the cells were infected with luciferase-expressing
PruΔHX T. gondii (MOI of 0.5) for 24 h. The infected cells were
collected and lysed with 100 μl of 1× passive lysis buffer (Promega).

The samples were sonicated for 30 s before centrifugation and 5 μl
of the supernatants were collected for luciferase expression
reading by the dual-luciferase reporter assay system (Promega)
using a GLOMAX 20/20 luminometer (Promega). The in vitro data are
presented as the percentage of T. gondii survival in IFN-γ–stimulated
cells relative to unstimulated cells (control).

Immunofluorescence microscopy

MEFs were uninfected or infected with T. gondii (MOI 5 or 2) after
stimulation with IFN-γ (10 ng/ml) for 24 h. The cells were infected for
the indicated time in the respective figures and then fixed for 10min in
PBS containing 3.7% formaldehyde. Cells were then permeabilized with
PBS containing 0.002% digitonin (Nacalai Tesque) and blocked with 8%
FBS in PBS for 1 h at room temperature. Next, the cells were incubated
with antibodies relevant to the experiments for 1 h at 37°C. After gently
washing the samples in PBS, the samples were incubated with Alexa
488– and 594–conjugated secondary antibodies as well as DAPI for 1 h
at 37°C in the dark. The samples were then mounted onto glass slides
with PermaFluor (Thermo Fischer Scientific) and observed under a
confocal laser microscope (FV1200 IX-83; Olympus). Images are shown
at ×1,000 magnification (scale bar 10 μm). To measure recruitment
rates, 100 vacuoleswere observed and thenumbers of vacuoles coated
with effectors were calculated. The counting was repeated three times
(three technical replicates). The mean of the three technical replicates
was calculated and shown in each circle. The independent experi-
ments were repeated three times (three biological replicates).

Statistical analysis

Three points in all graphs represent three means derived from
three independent experiments (three biological replicates). All
statistical analyses were performed using Prism 9 (GraphPad). In
assays for T. gondii survival and recruitment of Irgb6_Flag, Irga6, or
Irga6, ordinary one-way ANOVA was used when there were more
than two groups.

Data Availability

The crystal structure data of Nucleotide-free Irgb6 and GTP-bound
Irgb6 in this study have been registered in the Protein Data Bank
(PDB) on PDBID 7VES and PDBID 7VEX, respectively.

Online supplemental material

Fig S1A and B shows that Irgb6 expressed in E. coli was purified as a
monomer and has GTPase activity. Fig S2A and B shows the GTP
pockets of Irgb6_GTP. Fig S2C shows the GTP pockets of Irgb6_NF. Fig
S3A shows amino acid sequence alignment among Irgb6, Irga6, and
Irgb10. Fig S3B shows the structural homology between Irgb6_NF
and Irga6_NF. Fig S3C shows the crystal packing of Irgb6_NF. Fig S4A
shows structures of PI5P, PS, PE, and PC. Fig S4B–S4K shows the
detailed Glide scores by in situ docking simulations. Fig S5A shows
localization of Irgb6 wild-type and mutants in uninfected cells. Fig
S5B shows raw data for Fig 5C. Fig S6A shows PVM-binding site of
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Irga6 in the active GTP-form represents widely open pocket. Fig S6B
and C shows PVM-binding pocket of Irgb6 in the GTP-bound form
represents semi closed form and closed form, respectively.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202101149.
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