










Figure 3. Fourfold nested cross-validation of the dataset for model performance evaluation.
(A) best AUC values for ROC and PR curves of each model with the non-filtered dataset. (B) best AUC values for ROC and PR curves of each model with the Ig-filtered
dataset. (C) the average accuracy, specificity and sensibility of all folds for non-filtered peaks. (D) the average accuracy, specificity and sensibility of all folds for Ig-filtered
peaks. (E) the total confusion matrix of the best model (Random Forest) for the non-filtered dataset. (F) the total confusion matrix of the best model (Random Forest) for
the Ig-filtered dataset.
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Because of that, increased levels of SAA1 and SAA2 proteoforms
can be seen as a measure of the increased severity of the disease
and so on prognostic factors. Because of its ubiquitous expression
in several infectious diseases, SAA proteins cannot be associated
directly with the SARS-CoV-2 and should be complemented with
other viral specific molecular tests.

A possible mechanism of increase in SAA proteins in severe
COVID-19 patients could be due to the cytokine storm that is
elicited during the infection. Indeed, increased levels of cytokines
such as interleukin IL-2, IL-7, granulocyte (G)CSF, interferon-γ
inducible protein 10, MCP 1, MIP 1-α, and TNF-α and IL-6 is as-
sociated with COVID-19 disease severity, suggesting that the
mortality observed could be due to virally/induced hyper-
inflammation (34). The elevation of IL-1 and IL-6 increase syn-
ergistically the levels of SAA proteins synergistically. At the same
time, SAA proteins increase the expression of IL-1β mediated by
NLRP3 in human and mouse immune cells (35, 36). SARS-CoV

ORF8b activates the NLRP3 inflammasome inducing the secretion
of active IL-1β and IL-18 (37). Moreover, SARS-CoV ORF3a activates the
NLRP3 inflammasome by promoting TNF receptor–associated factor 3
(TRAF3) ubiquitination of p105 and activation of NF-kB and sub-
sequent transcription and secretion of IL-1β (38). Overactivation
of NLRP3 in SARS-CoV-2 infection has been postulated delin-
eating specific pathways for its activation (38, 39, 40). Blockade
of NFκB, a central player in the SAA-mediated activation of
proinflammatory cytokines could represent a novel therapeutic
target for severe cases of COVID-19. Because of that, SAA proteins
might play a critical role in SARS-CoV-2 infection as an early
response to inflammation but also can be seen as proin-
flammatory proteins to amplify the cytokine storm. Although
comprehensive LC-MS/MS analysis has been performed using
sera from COVID-19 patients, a proteomic fingerprint using
MALDI-TOF MS on plasma samples has not been reported.
Recently, MALDI-TOF MS combined with a machine learning

Figure 4. Assessment of sample variability within the low and high-risk groups.
(A) Average mass spectra with the interquartile range (IQR) shaded in red for the high-risk group (A). (B) Average mass spectra with the IQR shaded in blue for the low-
risk group (B). (C) Comparison of the average mass spectra with the IQR shaded between the two groups for the most relevant discriminative peaks of “m/z” 5,853–5,905 (C).
(D) Comparison of the average mass spectra with the IQR shaded between the two groups for the most relevant discriminative peak at “m/z” 11,681 (D).
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approach was used to detect SARS-CoV-2 in nasal swabs from
infected patients (41). The application of RT-PCR, immunochro-
matography, and recently MALDI-TOF MS has been used and
proven reliable for the diagnosis of SARS-CoV-2 infection.
However, no method exists so far to discriminate between high-
and low-risk patients. This study shows that MALDI-TOF MS
combined with machine learning algorithms offers a repro-
ducible, easy-to-use, fast, low-cost technique that can be
implemented by several researchers worldwide to test the re-
liability of this marker. Moreover, the widespread use of MALDI-
TOF in clinical laboratories will allow an easy transition into the
hospitals.

Limitations of the study

This study has focused on the fractionated plasma focusing on a
limited mass range “m/z” 2,000–20,000. Moreover, the concomitant
ionization of proteins/peptides in this region limits the detection of
low abundant ones. Improved large-scale shotgun approaches
combined with extensive fractionation have been applied to
identify potential COVID-19 biomarkers and could be used in as-
sociation with SAA1 and SAA2 provided in this study to create a
panel of more reliable biomarkers. Association of the current
biomarkers with other biomarkers will offer the possibility to im-
prove the prognostic accuracy. Further validation in prospectively

collected samples and proof of benefit to the existing noninvasive
diagnostic strategies are required.

A larger independent cohort of patients should be analyzed to
corroborate these findings. Inter-laboratory studies across coun-
tries should be performed to validate these data. Moreover, a time-
course study during the development of the infection would give
more information on the validity of these markers as early prog-
nostic markers.

Materials and Methods

Study subjects and design

Plasma from a total of 117 patients with COVID-19 divided into high
risk (n = 57) and low risk (n = 60) was collected prospectively from a
Brazilian cohort (Tables 1 and 2) at the Heart Institute (InCor) and
Central Institute, University of São Paulo Medical School, Brazil,
between March, 2020 and July, 2020 in consecutive sampling. The
study was approved according to the principles expressed in
Declaration of Helsinki by Comissão nacional de ética em pesquisa
and local Ethics Committees (CAAE 30299620.7.0000.0068). All pa-
tients signed an informed consent form. Patients with high risk
were defined based on clinical parameters evaluated at the time of
admission that required hospitalization compared with low-risk

Table 3. Sequences of truncated serum amyloid protein A-1 and A-2 identified as discriminant peaks in the MALDI-TOF MS analysis and sequenced using
nLC-MS/MS.

Protein name Sequence MW, experimental (D) MW, theoretical (D)

Serum amyloid A-1 (SAA1) 19RSFFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,683 11,675.49

Serum amyloid A-1 (SAA1) 20SFFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,530 11,519.39

Serum amyloid A-1 (SAA1) 21FFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,443 11,432.00

Serum amyloid A-2 (SAA2) 19RSFFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,633 11,640.60

Serum amyloid A-2 (SAA2) 20SFFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,476 11,484.50

Serum amyloid A-2 (SAA2) 21FFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,393 11,397.47

Figure 5. 1D-SDS–PAGE of C18-fractionated plasma from high- (3) and low- (6) risk patients.
(A) The region between 10 and 15 kD is highlighted in yellow. (B) Quantification of the 10–15 kD region in the high and low-risk groups.
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patients. Cases were included with a clinical picture suggestive of
COVID-19 defined as two or more of the following: cough, fever,
shortness of breath, diarrhea, myalgia, headache, sore throat,
running nose, sudden gustatory or olfactory loss, and detection of
viral RNA in nasopharyngeal SARS-CoV-2 PCR positive. Patients with
high and low risk of hospitalization were matched for confounding
variables such as age, sex, and comorbidities to explain the dif-
ference between groups (Table S1). Plasma samples were collected,
aliquoted and stored at −80°C for further analyses.

Sample preparation for MALDI-TOF MS analysis and data
processing

Venous punctures from the patients were performed. After the
samples were collected into tubes containing EDTA anticoagulant,
these were centrifuged in a refrigerated unit at 5,000g for 15 min at
4°C. Then, samples were carefully removed from the centrifuge not
to resuspend cells, and the plasma fraction was collected and
aliquoted at −80°C until further analyses.

Different sample preparation strategies were evaluated for
profiling the plasma proteome of COVID-19 patients. (1) Thawed
plasma samples were diluted 1:100 in water. Matrix solution
(sinapinic acid [SA], dihydroxybenzoic acid [DHB], and α-cyano-
hydroxycinnamic acid [HCCA]) were prepared by dissolving in
acetonitrile/water 50:50 vol/vol containing 0.1% or 2.5% TFA at
10 mg/ml and was mixed with 1 μL of diluted serum and directly
spotted in duplicate onto a stainless steel MALDI target plate
(Bruker Daltonics). (2) C18-based plasma protein extraction. C18
polymeric disks were inserted into p200 pipette tips to produce a
micro-column. The disks were activated with 100 μl 100% methanol
and conditioned with 0.1% TFA. 1 µl of plasma samples was diluted
1:10 in 0.1% TFA and further acidified to achieve 1% TFA. After
acidification samples were spun down at 10,000g for 10 min and the
supernatant loaded into themicro-column. The column was further
washed with 100 μl of 0.1% TFA and proteins eluted with a matrix
directly onto the MALDI plate. All steps except the elution were
performed in a bench centrifuge at 1,000g for 2 min to improve
sample processing and reproducibility of the entire strategy.

Samples were analyzed in a MALDI-TOF Autoflex speed smart-
beam mass spectrometer (Bruker Daltonics) using FlexControl
software (version 3.3; Bruker Daltonics). Spectra were recorded in
the positive linear mode (laser frequency, 500 Hz; extraction delay
time, 390 ns; ion source 1 voltage, 19.5 kV; ion source 2 voltage, 18.4
kV; lens voltage, 8.5 kV; mass range, 2,400–20,000 D). Spectra were
acquired using the automatic run mode to avoid subjective in-
terference with the data acquisition. For each sample, 2,500 shots,
in 500-shot steps, were summed. All spectra were calibrated by
using Protein Calibration Standard I (Insulin [M+H]+ = 5,734.52,
Cytochrome C [M+ 2H]2+ = 6,181.05, Myoglobin [M+ 2H]2+ = 8,476.66,
Ubiquitin I [M+H]+ = 8,565.76, Cytochrome C [M+H]+ = 12,360.97,
Myoglobin [M+H]+ = 16,952.31) (Bruker Daltonics).

The data preprocessing was performed using the ClinProTools,
FlexAnalysis 4.0 (Bruker Daltonics), and R-packages. The ClinProTools
software was used for MS spectra visualization and R-packages for
data processing. The pipeline for processing the raw files and ap-
plying the models was adapted from reference 16. Fid files were
converted to mzML using the MSconvert function from the

ProteoWizard suit (version: 3.0.20220) (17). Then, the files were
preprocessed using MALDIquant and MALDIquantForeign packages
(18). The spectra range was trimmed (2.5–15 kD). The resulting
files were transformed (square root method) and smoothed
(Savitzky–Golay method), and the baseline correction was done
by the TopHat algorithm (19, 20). Intensities of all files were
normalized (total ion current calibration method), and the peaks
were detected with a signal-to-ratio noise of two and a half-
WindowSize of 10 (16). For each group, peaks were binned with a
tolerance of 0.003, keeping the ones present in 80% of the
samples; next, the peaks of both groups were binned together.
Sample normality was accessed by a Shapiro–Wilk test and a two-
tailed Wilcoxon rank sum test corrected for multiple hypotheses testing
using the Benjamini–Hochberg was performed. A significant difference
was considered for P-values < 0.05. To evaluate If the observed differ-
ences were simply by chance, we permuted the dataset 100 times and
calculated the global false discovery rate. The resultant dataset was used
for thePCAanalysis and themachine learning analysis. In addition, peaks
were filtered using the information gain (Ig) function of the FSelector
package to search for the most relevant features, this method was used
because it is classifier independent and is faster than wrapper methods,
which is desirable when comparing multiple machine learning algo-
rithms (21). Features with a weight higher than 0 were used for PCA and
machine learning analysis.

Machine learning

For peaks with and without Ig filtering, six different algorithms (SVM-P,
SVM-R, KNN, neural net [NNET], NB, and RF) were accessed to classify
high- and low-risk samples. To choose between themodels, the training
and testingwere performed through fourfold nested repeated five times
10-fold cross-validation using the Caret package in R, the data were split
randomly into the folds (16, 22). For hyperparameter optimization, a
random search among 10 parameters was performed in the inner loop.
ROC and PR curves were created using theMLeval package. The AUC and
PR curves from the best results were reported. Also, the mean accuracy,
sensitivity, and specificity metrics for the cross-validation predictions
were calculated.

1D SDS–PAGE and nanoflow liquid chromatography coupled to
tandem MS analysis

Proteins from case and control samples were separated by one-
dimensional gel electrophoresis using a 12% gel. Gels were
stained using Coomassie brilliant blue and the gel was scanned to
identify differentially expressed bands. Bands were excised in the
MW range of 10,000–15,000 D corresponding to the “m/z” of
discriminant peaks. Bands were in-gel tryptic digested according
to Shevchenko and subjected to nanoflow LC-MS/MS analysis. The
nLC-MS/MS analysis was performed using an Easy nano LC1000
(Thermo Fisher Scientific) HPLC coupled with an LTQ Orbitrap
Velos (Thermo Fisher Scientific). Peptides were loaded on a C18
EASY-column (2 cm × 5 × 100 μm; 120 Å pore; Thermo Fisher
Scientific) using a 300 nl/min flow rate of mobile phase A (0.1%
formic acid) and separated in a C18 PicoFrit PepMap (10 cm × 10 ×
75 μm; 135 Å pore; New Objective), over 105 min using a linear
gradient 2–30% of mobile phase B (100% ACN; 0.1% formic acid).
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The eluted peptides were ionized using electrospray. The top 20
most intense precursor ions with charge-state ≥ 2 were frag-
mented using collision-induced dissociation at 35 normalized
collision energy and 10 ms activation time. The MS scan range was
set between “m/z” 350–1,500, the MS scan resolution was 60,000,
the MS1 ion count was 1 × 106 and the MS2 ion count was 3 × 104.

Statistical analysis, database search, and quantitative analysis

nLC-MS/MS raw data were searched using Proteome Discoverer
(v2.3.0.498; Thermo Fisher Scientific) for protein identification
and label-free quantification quantification. The raw files were
searched against the Homo sapiens protein database containing
20,359 reviewed protein sequences (UniProt, downloaded in June,
2020). The database search was performed using the Sequest HT
processing node with trypsin semi-specific as the proteolytic en-
zyme, two missed cleavages, 10 ppm precursor ion tolerance, and
0.6 D fragment ions mass tolerance. Carbamidomethylation of
cysteine was set as fixed modification and methionine oxidation as
dynamic modification. Label-free quantification was performed
using the Minora algorithm in the processing workflow embedded
in Proteome Discoverer 2.3. Precursor Ions Quantifier node and the
Feature Mapper were added to the consensus workflow for re-
tention time alignment.

Patient and public involvement

This study analyzed a retrospective case-series cohort. No patients
were involved in the study design, setting the research questions, or
the outcome measures directly. No patients were asked to give
advice on interpretation or writing up of results.

Data Availability

MALDI-TOF MS spectra and the patients’ categories were uploaded in
the PRIDE public repository (https://www.ebi.ac.uk/pride/), dataset
identifier PXD025138, Username: reviewer_pxd025138@ebi.ac.uk, Pass-
word: WEvrGIzv. LC-MS/MS data were submitted to PRIDE (https://
www.ebi.ac.uk/pride/), project number PXD021581, Username: revie-
wer_pxd021581@ebi.ac.uk, Password: 79CZBtm6.
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São Paulo (FAPESP), G Palmisano (2018/18257-1, 2018/15549-1, 2020/04923-0),
C Wrenger (2015/26722-8, 2017/03966-4), CRF Marinho (2018/20468-0), and JC
Nicolau (2020/04705-2). G Palmisano, C Wrenger, and CRF Marinho were
supported by Conselho Nacional de Desenvolvimento Cientı́fico e Tecno-
lógico (CNPq). The funders had no role in study design. L Rosa-Fernandes

and VF Santiago are supported by: Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior.

Author Contributions

LC Lazari: data curation, software, formal analysis, validation, in-
vestigation, visualization, methodology, and writing—original draft,
review, and editing.
FDR Ghilardi: resources, data curation, investigation, visualization,
methodology, and writing—original draft, review, and editing.
L Rosa-Fernandes: data curation, formal analysis, investigation,
visualization, methodology, and writing—review and editing.
DM Assis: data curation, formal analysis, investigation, visualization,
methodology, and writing—original draft, review, and editing.
JC Nicolau: resources, data curation, supervision, investigation,
methodology, project administration, and writing—review and
editing.
VF Santiago: data curation, investigation, visualization, methodol-
ogy, and writing—review and editing.
TF Dalçóquio: resources, data curation, investigation, methodology,
and writing—review and editing.
CB Angeli: data curation, investigation, visualization, methodology,
and writing—review and editing.
AJ Bertolin: resources, data curation, investigation, methodology,
and writing—review and editing.
CRF Marinho: resources, data curation, investigation, methodology,
and writing—review and editing.
C Wrenger: resources, data curation, investigation, methodology,
and writing—review and editing.
EL Durigon: resources, data curation, investigation, methodology,
and writing—review and editing.
RF Siciliano: resources, data curation, formal analysis, supervision,
funding acquisition, validation, investigation, visualization, meth-
odology, project administration, and writing—original draft, review,
and editing.
G Palmisano: conceptualization, resources, data curation, software,
formal analysis, supervision, funding acquisition, validation, in-
vestigation, visualization, methodology, project administration, and
writing—original draft, review, and editing.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

1. Sohrabi C, Alsafi Z, Neill NO, Khan M, Kerwan A, Al-jabir A, Iosifidis C, Agha
R (2020) World Health Organization declares global emergency: A review
of the 2019 novel coronavirus (COVID-19). Int J Surg 76: 71–76. doi:10.1016/
j.ijsu.2020.02.034

2. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G
(2020) Remdesivir and chloroquine effectively inhibit the recently
emerged novel coronavirus (2019-nCoV) in vitro. Nature 30: 269–271.
doi:10.1038/s41422-020-0282-0

3. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG,
Seidah NG, Nichol ST (2005) Chloroquine is a potent inhibitor of SARS

Plasma SAA1/SAA2 as prognostic markers in COVID-19 Lazari et al. https://doi.org/10.26508/lsa.202000946 vol 4 | no 8 | e202000946 10 of 12

https://www.ebi.ac.uk/pride/
pride:PXD025138
mailto:reviewer_pxd025138@ebi.ac.uk
https://www.ebi.ac.uk/pride/
https://www.ebi.ac.uk/pride/
pride:PXD021581
mailto:reviewer_pxd021581@ebi.ac.uk
mailto:reviewer_pxd021581@ebi.ac.uk
https://doi.org/10.26508/lsa.202000946
https://doi.org/10.26508/lsa.202000946
https://doi.org/10.1016/j.ijsu.2020.02.034
https://doi.org/10.1016/j.ijsu.2020.02.034
https://doi.org/10.1038/s41422-020-0282-0
https://doi.org/10.26508/lsa.202000946


coronavirus infection and spread. Virol J 69: 1–10. doi:10.1186/1743-422X-
2-69

4. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS (2020) Angiotensin:
Converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular
mechanisms and potential therapeutic target. Intensive Care Med 46:
586–590. doi:10.1007/s00134-020-05985-9

5. Velavan TP, Meyer CG (2020) Mild versus severe COVID-19: Laboratory
markers. Int J Infect Dis 95: 304–307. doi:10.1016/j.ijid.2020.04.061

6. Yao Y, Cao J, Wang Q, Shi Q, Liu K, Luo Z, Chen X, Chen S, Yu K, Huang Z,
et al (2020) D-Dimer as a biomarker for disease severity and mortality in
COVID-19 patients: A case control study. J Intensive Care 8: 1–11.
doi:10.1186/s40560-020-00466-z

7. Zuo Y, Yalavarthi S, Shi H, Gockman K, ZuoM, Madison JA, Blair C, Weber A,
Barnes BJ, Egeblad M, et al (2020) Neutrophil extracellular traps (NETs)
as markers of disease severity in COVID-19. medRxiv doi:10.1101/
2020.04.09.20059626

8. Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass
spectrometry: An emerging technology for microbial identification and
diagnosis. Front Microbiol 6: 1–16. doi:10.3389/fmicb.
2015.00791

9. Cobo F (2013) Application of MALDI-TOF mass spectrometry in clinical
virology: A review. Open Virol J 7: 84–90. doi:10.2174/1874357920130927003

10. Rocca MF, Zintgraff JC, Daterro E, Santos LS, Ledesma M, Vay C, Prieto M,
Benedetti E, Avaro M, Russo M, et al (2020) A combined approach of
MALDI-TOF mass spectrometry authors. J Virol Methods 286: 113991.
doi:10.1016/j.jviromet.2020.113991

11. Patel R (2015) MALDI-TOF MS for the diagnosis of infectious diseases.
Clin Chem 61: 100–111. doi:10.1373/clinchem.2014.221770

12. Teunissen CE, Koel-Simmelink MJA, Pham TV, Knol JC, Khalil M, Trentini A,
Killestein J, Nielsen J, Vrenken H, Popescu V, et al (2011) Identification of
biomarkers for diagnosis and progression of MS by MALDI-TOF mass
spectrometry. Mult Scler 17: 838–850. doi:10.1177/1352458511399614
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