














cells upon CHIKV and MAYV infection (Figs 5C and S6), arguing against
a global translational shut-off as the underlying reason and pointing
towards a specific effect on IFITM3. Interestingly, the release inhibitor
Tetherin/CD317/BST-2 (Neil et al, 2008; Van Damme et al, 2008)

seemed also to be down-regulated upon CHIKV and MAYV infection,
although statistical significance was reached only for CHIKV (Figs 5C
and S6). Finally, CHIKV and MAYV infection failed to modulate IFITM3
mRNA expression in HeLa cells (Fig 5D), excluding that infection

Figure 5. Posttranscriptional
reduction of endogenous IFITM3
expression in CHIKV-infected cells.
(A) HeLa cells were infected with
EGFP-CHIKV (MOI 100) for 24 h,
permeabilized, and immunostained for
IFITM3 before microscopic analysis.
Dotted lines indicate the border of
EGFP-positive cells (scale bar = 50 µm).
(B)Quantification of microscopic images
of infected HeLa cells. IFITM3 mean
fluorescence intensity (MFI) was
determined using ImageJ and is plotted
against EGFP MFI (mock cells n = 50;
CHIKV-infected cells n = 80). (C) HeLa
cells were infected with EGFP-CHIKV and
EGFP-MAYV (MOI 10) for 24 h.
Subsequently, permeabilized cells
were stained for IFITM3, ISG15, MX1, or
BST-2 and MFI values were
normalized to EGFP-negative cells.
(D) HeLa cells were infected with
EGFP-CHIKV or EGFP-MAYV (MOI 10)
and 24 h postinfection, IFITM3, and IFIT1
mRNA levels were measured by
quantitative RT-PCR.
Source data are available for this figure.
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modulates transcription of the IFITM3 gene, and suggesting an
infection-induced modulation of IFITM3 protein steady-state levels.
IFN-α treatment boosted IFITM3 mRNA levels, as expected. Further-
more, another prototypic ISG, IFIT1, was clearly induced by both IFN-α
treatment and CHIKV infection (Fig 5D). Conclusively, these data
support a posttranscriptional modulation of IFITM3 expression in
CHIKV- and MAYV-infected cells, potentially representing a virus-
mediated counteraction strategy of IFITM restriction.

Reduction of particle infectivity through expression of
endogenous IFITM3 in alphavirus-producing cells

Reduction of IFITM3 protein abundance upon alphaviral infection
suggested that IFITM3 exerted antiviral functions beyond entry
inhibition. Therefore, we determined the impact of IFITM3 ex-
pression in virus-producing cells on the infectivity of progeny vi-
rions. IFITM3 can incorporate into viral particles and reduce their
ability to infect new cells (Compton et al, 2014; Tartour et al, 2014,
2017; Appourchaux et al, 2019). To bypass the impact of IFITM
proteins on virus entry, we transfected cells expressing IFITM3
endogenously or exogenously, and their IFITM3-negative coun-
terparts. 24 h posttransfection, we analyzed the abundance of viral
capsid and amount of infectivity in the supernatant (Fig 6A). Capsid

abundance was lower in supernatants from IFITM3-expressing cells,
which however was related to a generally lower transfection rate
and lower cell-associated capsid expression. We failed to detect
virion-associated IFITM3 in the supernatant of any infected cell
cultures under these experimental conditions (Fig 6A). Viral titers,
when normalized for differences in transfection efficiencies, were
not significantly influenced by the IFITM3 expression status (Fig 6B).
However, the specific infectivity, defined as the infectivity per
capsid, was twofold reduced for CHIKV and HIV-1 produced in
IFITM3-expressing parental HeLa cells and for HIV-1 produced in
HEK293T cells expressing IFITM3-HA (Fig 6C). However, the specific
infectivity of CHIKV did not seem to be affected by heterologous
IFITM3 expression (Fig 6C). These data provide first evidence for a
potential ability of endogenous IFITM3 to negatively imprint na-
scent CHIKV, in addition to inhibition of virus entry. Future work is
required to establish the relative contribution of these two IFITM3-
mediated antiviral strategies in the context of alphaviral infection.

Discussion

First evidence for anti-CHIKV properties of human IFITM proteins 1,
2, and 3 was provided in a high-throughput ISG overexpression

Figure 6. Reduction of virion infectivity through
expression of IFITM3 in virus-producing cells.
(A) Immunoblot analysis of lysates and concentrated
supernatants of 293T and Hela cells transfected with
full-length EGFP-CHIKV mRNA or pBR-NL4.3-GFP
plasmid at 24 h posttransfection. (B) Viral titers
produced by cells transfected in (A) normalized to the
relative amount of GFP-positive cells. Viral titers were
determined by titration and flow cytometric analysis of
supernatants on 293T cells (CHIKV) or Tzm-bl cells (HIV),
respectively. (C) Relative specific infectivity of
produced virions as calculated by the infectivity per
abundance of viral capsid.
Source data are available for this figure.
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screen in STAT-deficient human fibroblasts (Schoggins et al, 2011).
However, the pattern of IFITM-mediated CHIKV inhibition and po-
tential CHIKV-mediated counteraction strategies remain obscure.
By applying a two-armed approach that included investigation of
endogenous IFITM3 and variations thereof, and of heterologously
expressed, epitope-tagged IFITM proteins and mutants, we estab-
lished and characterized the antiviral activity of IFITM proteins
against CHIKV and MAYV.

Our study centered on the investigation of IFITM3’s role on
alphaviral infection. Expression of endogenous and heterologous
IFITM3 rendered HeLa and HEK293T cells less susceptible to CHIKV
infection, respectively. In the endogenous expression context,
frameshift insertion in the 59 part of the IFITM3 gene, deletion of a
large part of the first exon of the IFITM3 gene or of a smaller, 31-base
pair region comprising the first, canonical ATG, resulted in ablation
of IFITM3 expression and antiviral activity. Similarly, cells expressing
a frameshift in the 59 part of the first exon of the IFITM3 gene were
unable to restrict IAV infection and lost the ability to restrict CHIKV.

It has been hypothesized that the T-to-C substitution in the SNP
rs-12252, located in the first exon of the IFITM3 gene, alters a splice
acceptor site, resulting in a truncated IFITM3 protein lacking its first
21 amino acids and exerting reduced antiviral activity (Everitt et al,
2012). However, this working model did not substantiate because
neither the predicted alternatively spliced mRNA (Randolph et al,
2017; Makvandi-Nejad et al, 2018) nor a truncated IFITM3 protein
(Makvandi-Nejad et al, 2018) has been detected in cells homozy-
gously expressing rs12252-C. In line with these negative results, we
detect a protein of normal size both in cells homozygously
expressing the SNP and in cells overexpressing an IFITM3-encoding
construct carrying the T-to-C transition. However, our anti-IFITM3
immunoblotting technique is clearly able to detect the smaller
molecular weight of IFITM3(Δ1-21)-HA, excluding a technical in-
ability to detect marginally smaller IFITM3 proteins in general.
Whereas IFITM3(Δ1-21)-HA localized to the cell surface and lacks
antiviral activity, subcellular localization and antiviral phenotype of
the rs12252-C variant remained indistinguishable from the wild-
type IFITM3 in terms of anti-CHIKV, anti-MAYV, and anti-IAV activity,
molecular weight and subcellular localization. However, IFITM-3
rs12252-C seemed to be expressed to slightly lower levels than wild-
type IFITM3, without impacting its antiviral efficacy. Together, we
conclude that if any, specific functional properties of the rs12252-C
allele remain to be discovered andmay not directly be implicated in
cell-intrinsic immunity.

Experimental redirection of IFITM3 to the cell surface by dis-
rupting the sorting motif YxxV (Jia et al, 2012, 2014) through in-
troduction of the Y20A or Δ1-21 mutations resulted in a loss of its
anti-CHIKV and anti-MAYV activity. Analogous findings have been
obtained by others for SINV and SFV (Weston et al, 2016), and other
enveloped viruses which invade cells via receptor-mediated en-
docytosis (John et al, 2013; Jia et al, 2014). In addition, heterologous
assays revealed an anti-CHIKV and anti-MAYV activity of IFITM1 that
equaled that of IFITM3. This observation contrasts reports by others
for Sindbis virus and Semliki Forest virus (Weston et al, 2016) but is
in accordance with results obtained in a study that screened the
antiviral potential of several ISGs against CHIKV (Schoggins et al,
2011). Heterologous expression of genes can cause aberrant sub-
cellular localization and/or nonphysiological expression levels.

Therefore, results obtained by heterologous expression need to be
interpreted with caution. Importantly, levels of IFITM protein ex-
pression obtained by heterologous expression of IFITM were similar
to levels induced by IFN treatment of HeLa cells (data not shown).
Future studies are warranted to corroborate the contribution of
IFITM1 to alphavirus restriction.

Restriction was directed against CHIKV E2/E1 glycoprotein-
mediated entry, was maintained in the context of CHIKV glyco-
proteins expressing the vector switch-enabling mutation A226V in
CHIKV E1 and displayed a significant breadth because glycoproteins
of several CHIKV S27 strain sublineages were sensitive to IFITM
protein-mediated restriction.

Most of the cell culture studies on CHIKV are conducted using
cell-free, purified virus. An early report published in 1970 suggested
that CHIKV spreads via cell-to-cell contacts when free virions are
immunologically neutralized (Hahon & Zimmerman, 1970). Along
this line, intercellular transmission of CHIKV was reported more
recently to be less sensitive to antibody-mediated neutralization
(Lee et al, 2011). In the present study, we applied a semi-solid,
agarose-containing overlay to infected cultures to determine the
contribution of cell-free virus versus intercellular transmission, as
performed by others for hepatitis C virus (Timpe et al, 2008), ve-
sicular stomatitis virus and murine leukemia virus (Liberatore et al,
2017). Interestingly, CHIKV tended to spread more efficiently under
agarose overlay, as opposed to HSV-1. The exact mode of inter-
cellular transmission of CHIKV in different cell types will be an
important future object of investigation and might contribute to
understanding alphavirus persistence in vivo. The relative re-
striction potential of individual IFITM proteins and variants was
identical in the cell-free and cell-associated transmission set-ups.
As a contrasting example, HIV-1 is able to overcome IFITM3-
mediated restriction via cell-to-cell spread; however, only when
IFITM3 is expressed solely on target cells (Compton et al, 2014).
Remarkably, IFITM proteins display a second layer of antiviral ac-
tivity, which consists in diminishing the infectivity and fusogenicity
of enveloped virus particles produced in IFITM protein–expressing
cells (Compton et al, 2014; Tartour et al, 2014). This process is often,
but not always, accompanied by incorporation of IFITM proteins
into the membrane of secreted virions (Appourchaux et al, 2019).
Interestingly, our identification of a reduced particle infectivity in
IFITM3-expressing HeLa cells argues for the ability of IFITM3 to
negatively imprint CHIKV and MAYV. Interestingly, this phenotype
was absent in HEK293T cells heterologously expressing IFITM3,
suggesting differences depending on the expression context and
quantities, which have already been reported in the context of
other viral infections (Bozzo et al, 2020 Preprint).

CHIKV has evolved several strategies to evade or antagonize cell-
intrinsic immunity, facilitating successful replication and spread in
its host. The multifunctional nonstructural protein nsP2 of CHIKV,
besides proteolytically processing the nonstructural polyprotein
precursor (Rausalu et al, 2016), inhibits IFN-induced nuclear
translocation of STAT1 in Vero cell lines (Fros et al, 2010). Fur-
thermore, it degrades the Rpb1 subunit of the RNA polymerase II in
BHK-21 and NIH3T3, but not mosquito cells (Akhrymuk et al, 2012). In
addition, translational shutoff has been observed in some
CHIKV-infected cell lines (White et al, 2011). Here, in two different
cellular systems, we obtained no evidence for a broad
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transcriptional or translational shutoff indicating some cell line or
cell type specificity. On the contrary, productive CHIKV infection
associates with reduced IFITM3 protein levels, and this reduction
appears to operate at the posttranscriptional level. In the HEK293T-
based heterologous expression system, only antivirally active,
endosomally located (WT; rs-12252-C) but not inactive, plasma
membrane–resident (Y20A; Δ1-21) IFITM3 proteins were reduced in
quantity in CHIKV-infected cells. This specificity was observed
despite all IFITM-HA proteins being heterologously expressed
under the control of the identical CMV immediate early promoter,
which is unlikely to be targeted by CHIKV evasion strategies. In
CHIKV-infected HeLa cells, endogenous IFITM3 protein levels were
reduced in the absence of a detectable net decrease of IFITM3
mRNA, again pointing towards a specific counteraction strategy
directed against the IFITM3 protein. Interestingly, IFITM3 degra-
dation has been reported to occur through ubiquitination of a
highly conserved PPxY motif that overlaps with the aforementioned
YxxV endocytosis motif by the E3 ubiquitin ligase NEDD4 (Chesarino
et al, 2015). With Y20 representing both a critical phosphorylation
site required for IFITM3 internalization and part of a ubiquitination
motif important for degradation of the protein (Yount et al, 2012;
Chesarino et al, 2014), it is tempting to speculate that a nonstructural
protein of CHIKV promotes, either directly or indirectly, endocytosis
and/or ubiquitination-dependent degradation of IFITM3, a process
that has yet to be studied in detail.

Materials and Methods

Cell lines

BHK-21, HeLa (CCL-2; ATCC), HEK293T (CRL-3216; ATCC), Vero E6 cells
(a kind gift from C Drosten, Charité Berlin), and TZM-bl cells (ob-
tained from the NIH AIDS Reagent Program) were cultured in DMEM
with 10% FBS, 100 µg/ml streptomycin, and 2 mM L-glutamine. For
an agarose-overlay, pre-warmed DMEM with 2% FBS mixed with
liquid SeaPlaque Agarose (Lonza) to a final concentration of 0.8%
agarose was added to cells 2 h postinfection. For plaque assays,
Vero E6 cells were overlayed with 2.5% Avicel (Merck) after 1 h of
virus inoculation. HEK293T cells expressing vector or IFITM-HA
proteins were generated via retroviral transduction and subse-
quent puromycin selection. Interferon stimulation was performed
using indicated concentrations of Roferon (Interferon-α2a; Roche).

Gene editing

IFITM3-edited HeLa clones were generated by electroporation of
pMAX-CRISPR plasmids encoding EF1α promotor-driven Cas9-2A-
EGFP and U6 promoter-driven chimeric gRNAs via the Neon
Transfection System (Thermo Fisher Scientific), settings were as
recommended by the manufacturer (Neon cell line database, Hela
cells): 5 × 106 cells/ml, 1,005 V, 35 ms pulse width, two pulses. 50 µg/
ml of each plasmid was used, for generation of rs12252 point
mutation via HDR, 5 µM ssDNA repair template (Integrated DNA
Technologies) was added. After electroporation, EGFP-expressing
cells were FACS-sorted and single cell clones were obtained by

limiting dilution. For gRNA target sequences and HDR-template
sequence see Table 1. PCR-amplified gene loci of individual clones
were genotyped by Sanger sequencing (SeqLab) using the following
primers. IFITM3 locus forward: TTTGTTCCGCCCTCATCTGG; IFITM3 lo-
cus reverse1 (KO, rs12252. Δ1st ATG): CACCCTCTGAGCATTCCCTG, IFITM3
locus reverse2 (Δexon1): GTGCCAGTCTGGAAGGTGAA, IFITM2 locus
forward: CCCTGGCCAGCTCTGCA and IFITM2 locus reverse: CCCCTG
GATTTCCGCCAG.

Plasmids, retro-, and lentiviral vectors

Individual pQCXIP constructs encoding IFITM1-HA, IFITM2-HA, and
IFITM-3-HA were obtained by Stephen Elledge (Brass et al, 2009).
pQCXIP-IFITM3-HA rs12252, Δ1-21, and Y20A were generated by
cloning corresponding gblocks (Integrated DNA Technologies) into
pQXCIP using the NotI and AgeI restriction sites. Retroviral particles
were generated by lipofection of HEK293T cells with pQCXIP-IFITM-
HA constructs, and plasmids encoding MLV gag pol (Bartosch et al,
2003) and pCMV-VSV-G (Stewart et al, 2003). For production of
lentiviral pseudotypes expressing luciferase, HEK293T cells were
lipofected with pCSII-EF-luciferase (Agarwal et al, 2006), pCMV
DR8.91 (Zufferey et al, 1997) and a plasmid encoding indicated viral
glycoprotein, MLV gp and Ebola gp (Chan et al, 2000). CHIKV gly-
coprotein mutations were introduced into the pIRES2-EGFP-CHIKV
E3-E1 (Weber et al, 2017), S27 isolate-based plasmid via site-directed
mutagenesis using the QuikChange II Site-Directed Mutagenesis Kit
(Agilent Technologies). The following mutations were introduced:
E1(A226V); E1(A226V/M269V/), E2(K252Q): sl1; E1(K211N/A226V), E2(V222I): sl2;
E1(A226V/M269V), E3(S18F): sl3A; E1(A226V/M269V), E2(R198Q), E3(S18F): sl3B;
E1(A226V/M269V), E2(L210Q): sl4. pCHIKrep1 EGFP, encoding CHIKV non-
structural proteins 1–4 was kindly provided by Gorben Pijlman (Fros
et al, 2010).

Viruses

EGFP-CHIKV and EGFP-MAYV were produced by electroporation of in
vitro transcribed RNA derived from the molecular clones pCHIK-
LR2006-OPY-59EGFP (Tsetsarkin et al, 2007) and pACYC-MAYV-EGFP
(Li et al, 2019b), respectively, into BHK-21 cells. 2 d later, supernatant
was filtered, and viral titers were determined by titration on
HEK293T cells. In vitro transcribed full-length CHIKV mRNA and
mRNA encoding single viral proteins was transfected into target
cells with the TransIT mRNA kit (Mirus). MAYV (strain TRVL15537) was
passaged on Vero cells. HSV-1 stocks were prepared as previously
described (Grosche et al, 2019). Briefly, almost confluent BHK cells
were infected at anMOI of 0.01 PFU/cell for 3 d with the BAC-derived
strain HSV1(17+)Lox-pMCMVGFP, which expresses GFP under the
control of the major immediate-early promoter of murine cyto-
megalovirus (Snijder et al, 2012). The culture medium was collected,
cells and debris were sedimented, and HSV-1 particles were har-
vested by high-speed centrifugation. The resulting virus pellets
were resuspended in MNT buffer. Single-use stocks were aliquoted
and kept at −80°C. IAV (strain A/PuertoRico/8/34 H1N1) was gen-
erated by an eight-plasmid rescue system kindly provided by
Richard Webby (St. Jude Children’s Research Hospital), using
transfection of HEK293T cells and subsequent infection of MDCK
cells to generate viral progeny (Hoffmann et al, 2002). HIV clone
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pBR-NL4.3-EGFP (Wildum et al, 2006) was transfected into target
cells using Lipofectamine 2000 (Thermo Fisher Scientific) and viral
titers were determined by titration on Tzm-bl cells.

Immunoblotting

Cells were lysed with M-PER Mammalian Protein Extraction Reagent
(Pierce) and processed according to the recommended protocol.
The lysate was mixed with Laemmli buffer and boiled for 10 min at
95°C. Proteins were run on a 10% SDS–PAGE and immobilized on a
nitrocellulose membrane (GE Healthcare) using the Trans-Blot
Turbo system (Bio-Rad). Blocked membranes were incubated
with the following antibodies: mouse anti-MAPK (clone D2, 1:1,000;
Santa Cruz Technologies), rabbit anti-Tubulin (2144, 1:1,000; Cell
Signaling Technologies), mouse anti-HA (clone 16B12, 1:1,000;
BioLegend), mouse anti-IFITM1 (clone 5B5E2, 1:5,000; Proteintech),
mouse anti-IFITM2 (clone 3D5F7, 1:5,000; Proteintech), rabbit anti-
IFITM3 (Cat. no. AP1153a, 1:500; Abcepta), rabbit anti-CHIKV antise-
rum (1:10,000; IBT Bioservices), or mouse anti-HIV-1 p24 (1:1,000;
ExBio). Secondary antibodies conjugated to Alexa 680/800 fluo-
rescent dyes were used for detection and quantification by Odyssey
Infrared Imaging System (LI-COR Biosciences).

Flow cytometry

Cells were fixed with 4% PFA (Carl Roth) and permeabilized in 0.1%
Triton X-100 (Thermo Fisher Scientific) in PBS before immuno-
staining, if not stated otherwise. Cells were immunostained with the
following antibodies: rabbit anti-IFITM3 (Cat. no. AP1153a, 1:500;
Abcepta), mouse anti-ISG15 (clone F-9, 1:500; Santa Cruz Technol-
ogies), rabbit anti-MX2 (sc-166412, 1:500; Santa Cruz Technologies),
mouse anti-BST2 BV421 (566382, 1:40; BD Biosciences) and mouse
anti-HA (clone 16B12, 1:1,400; BioLegend). Secondary antibodies
conjugated to Alexa Fluor 488 or 647 (1:1,500; Invitrogen) were used
for detection. Flow cytometry analysis was performed using FACS
Calibur, FACS Celesta, or FACS Accuri with BD CellQuest Pro 4.0.2
Software (BD Pharmingen) and FlowJo V10 Software (FlowJo).

Immunofluorescence microscopy

Cells were grown in µ-slide eight wells (Ibidi). Cells were fixed with
4% PFA and permeabilized with 0.5% Triton X-100 in PBS. Immu-
nostaining was performed with primary antibodies for 1 h at room
temperature for HA (1:1,000; BioLegend) or rabbit anti-IFITM3 (Cat.
no. AP1153a, 1:500; Abcepta) and secondary antibodies conjugated
to Alexa Fluor 488 and 647 (1:1,000; Invitrogen) for 1 h at room
temperature. Nuclear DNA was stained with 2.5 µg/ml DAPI (Invi-
trogen) for 5 min at room temperature. Microscopic analysis was
performed using a Nikon Ti-E microscope equipped with a Yoko-
gawa CSU-X1 spinning-disc and an Andor DU-888 camera. ImageJ
was used to prepare microscopy images and for quantification of
signal intensity of the immunostaining.

Quantitative RT-PCR

Cells were lysed and RNA extracted using the Promega Maxwell 16
with the LEV simplyRNA tissue. cDNA was prepared using dNTPs

(Thermo Fisher Scientific), random hexamers (Jena Bioscience) and
M-MuLV reverse transcriptase (NEB) with buffer. Quantification of
relative cellular mRNA levels was performed with the 7500 Fast
Real-Time PCR System (Applied Biosystems) or the LightCycler 480
PCR System (Roche) in technical triplicates using Taq-Man PCR
technology with the following Taqman probes and primers (Thermo
Fisher Scientific): human IFITM3 (assay ID Hs03057129_s1), IFIT1
(assay ID Hs01911452_s1), and RNASEP (#4316849). Influenza virus
RNA replication was assessed by quantifying HA mRNA levels with
forward primer CAGATGCAGACACAATATGT and reverse primer TAGTG
GGGCTATTCCTTTTA. Relative expression was calculated with the
ΔΔCT method, using RNASEP or GAPDH mRNA as reference.

Data presentation and statistical analysis

If not otherwise stated, bars and symbols show the arithmetic mean
of indicated amount of repetitions. Error bars indicate SD from at
least three or SEM from the indicated amount of individual ex-
periments. Statistical analysis was performed with GraphPad Prism
8.3.0 using two-tailed unpaired t tests. P-values < 0.05 were con-
sidered significant (*), <0.01 very significant (**), <0.001 extremely
significant (***); n.s., not significant (≥0.05).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000909.
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