












shed light on additional biologically meaningful pathways that could
be missed in the current comparisons.

Another limitation relates to missing key elements from the
clinical information. For example, for advanced BCCs, it was not
possible to know whether a selection bias might have been a
reason why surgery and/or radiation were not performed, or
whether patient and tumor factors such as the underlying location,
immunosuppression status, and histopathological subtypes played
a role in clinical decision-making.

Less than 100 genes were differentially regulated when com-
paring BCCs based on histopathological subtypes (67 up-regulated
genes and 0 down-regulated gene) or on sensitivity to vismodegib
(12 up-regulated genes and 67 down-regulated genes). We recog-
nize that these comparisons suffer from a lack of power due to
small sample sizes, as both feature a group with <10 tumors (six for
high-risk histopathological subtypes, five for vismodegib-sensitive,
vismodegib-treated tumors). Despite the limited number of genes,
classification accuracy based on their expression levels was high,
indicating that these genes could be used as potential biomarkers
to distinguish clinical BCC tumors based on histopathological
subtype (high-risk versus low-risk) or vismodegib resistance status
(resistant versus sensitive). For high-risk BCCs based on histo-
pathological subtypes with aggressive features, up-regulated genes

of interest included CDKN2A, whose germline mutations are im-
plicated in hereditary malignant melanoma (30), BCAT1, an amino
acid transaminase implicated in breast cancer progression through
increased mTOR-mediated mitochondrial activity (31), and AIM2, a
contributor to tumoral inflammation in cutaneous squamous cell
carcinoma (32). Further studies on a large cohort of high-risk BCC
tumors based on histopathological subtypes, for which samples are
harder to obtain in a dermatology practice, may yield additional
clues to important molecular pathways.

It was shown that residual resistant BCC tumor cells after vis-
modegib treatment in a mouse model can adopt a stem cell–like
transcriptional profile, along with increased Wnt signalling (14). In
vismodegib-resistant BCC samples, we observed an up-regulation
of two Wnt/β-catenin pathway modulators, FSTL1 and DACT1. FSTL1
is an inflammatory protein. Blocking FSTL1 via a monoclonal an-
tibody suppresses metastasis and disease progression in several
mouse tumor models (33). DACT1 on the other hand stabilizes
β-catenin, leading to disease progression in colon cancer (34). The
up-regulation of Wnt/β-catenin pathway and of two of its modu-
lators, FSTL1 and DACT1, in resistant tumors is likely an intrinsic
characteristic of vismodegib resistance, as it remains elevated
compared with untreated, vismodegib-naı̈ve BCCs. Among other
up-regulated genes in vismodegib-resistant tumors, two have

Figure 6. Vismodegib-resistant versus vismodegib-sensitive basal cell carcinomas (BCCs).
(A) Unsupervised hierarchical clustering based on all differentially regulated (up and down) genes in vismodegib-resistant BCCs (pink) versus vismodegib-sensitive
BCCs (blue). A color key refers to gene expression in normalized log2 (pseudocounts). (B) Up-regulated BioCarta pathways in vismodegib-resistant BCCs compared with
vismodegib-sensitive BCCs. A false discovery rate Q-value cutoff <0.05 was used. The logarithm of negative (Q-value) is plotted. (C) Violin plots representing the distribution
of gene expression, shown in log2 (pseudocounts), for vismodegib-resistant (red) versus vismodegib-sensitive BCCs (turquoise). From left to right and top to bottom,
plots for DACT1, EDAR, FSTL1, and PDGFC are displayed. Q-values are displayed. (D) Violin plots representing the distribution of gene expression, shown in log2
(pseudocounts), for vismodegib-resistant (red) versus vismodegib-naı̈ve (untreated) BCCs (turquoise). From left to right, plots for DACT1 and FSTL1 are displayed. Q-values
are displayed. Please note that in (D), vismodegib-naı̈ve tumors are displayed as a comparative group.
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known functions, EDAR and PDGFC. EDAR mutations cause hypo-
hidrotic ectodermal dysplasia (35). PDGFC encodes a platelet-
derived growth factor that has an anti-apoptotic role in tumor-
associated macrophages, thus contributing to tumorigenesis and
malignant inflammation (36). Signalling through PDGFC can be
abrogated by PDGFR inhibitors such as imatinib, sunitib, and
pazopanib (37). Based on the results of our study, utility of PDGFR
inhibitors should be investigated for vismodegib-resistant BCC
tumors. Other pathways involved in vismodegib resistance may be
uncovered after RNA-Seq data from a more substantial number of
vismodegib-sensitive BCCs becomes available.

Advanced BCCs up-regulate extracellular matrix proteins and
protein degradation machinery, which is consistent with their lo-
cally destructive behavior, their stromal reaction protecting them
from the host’s immune response, and their metastatic potential.
Matrix metalloproteinases (MMP) are involved in tumoral inflam-
mation, cancer cell proliferation, angiogenesis, and angioinvasion
(38). MMP inhibitors with broad activity have not had the same
success in human studies, when compared with mice (38); tar-
geted MMP inhibitors are currently under investigation (38). In
advanced BCC samples, TLR signalling and PI3K/Akt signalling
were also found to be up-regulated. TLR agonists such as imi-
quimod are used to treat low-risk superficial BCC (39). However, in
solid tumors, paradoxically, increased TLR signalling is linked to

immune suppression, tumor proliferation, survival, and metastasis
(40). Except for PIK3AP1/BCAP, up-regulated PI3K/Akt pathway genes
mostly encode receptors and their ligands, namely upstream of PI3K
activation. PIK3AP1 encodes the B-cell adapter for PI3K linking CD19
and B-cell receptor in the PI3K pathway (41). It also activates the NF-
κB pathway and is critical for PI3K/Akt activation through TLR sig-
nalling (42).

Genes identified from this BCC transcriptome analysis can be
tested in routine biopsy samples obtained from patients in the
clinics. They may be used as biomarkers for diagnostic or thera-
peutic stratification quite successfully. We have tested in silico
findings from RNA-Seq data in a different cohort of patients pre-
senting with BCCs. We confirmed, in our clinical samples, the value
of key members of theWnt/β-catenin and IL-17 signalling pathways,
cell cycle genes, as well as of important players of tumoral in-
flammation such as matrix metalloproteinases and cytokines, as
molecular biomarkers. Overall, our success rates in the McGill
validation cohort were ~95% for tested genes (18/19) and ~87% for
BCC tumors (13/15). A larger validation cohort is likely needed to
further characterize these biomarkers. Targeted therapies in BCCs
are mostly administered systemically and reserved for advanced
cases because of significant cost and adverse effects. Because <1%
of BCC tumors are advanced (18), local delivery of targeted ther-
apies (topical or intralesional) represents a promising avenue for

Figure 7. Summary of differentially regulated and potentially targetable pathways in basal cell carcinoma (BCC).
(A) Summary of enriched differentially regulated pathways and/or genes for all BCCs versus normal skin (top panel), high-risk versus low-risk BCCs (second top panel),
advanced versus non-advanced BCCs (second bottom panel), and vismodegib-resistant versus vismodegib-sensitive BCCs (bottom panel). Scale bars on schematized
histology sections represent approximately 200 μm. (B) Potential therapeutic targets for BCCs in select signalling pathways. Asterisks indicate specific molecules for which
agents are either available or under development.
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non-advanced BCCs. One such example is the development of
topical sonic hedgehog inhibitors such as patidegib (43). Our study
has provided evidence for other potential drug targets for both
future local and systemic therapies.

Materials and Methods

Data acquisition

We obtained whole-genome RNA-sequencing (RNA-Seq) data of 75
BCC samples and 34 normal skin samples: 13 BCC samples and eight
normal skin samples were from Atwood et al (Gene Expression
Omnibus accession number GSE58377) (13), 51 BCC samples and 26
normal skin samples were from Bonilla et al (European Genome-
phenome Archive EGA accession number EGAS00001001540) (7),
and 11 BCC samples from Sharpe et al (EGA accession number
EGAS00001000845) (12). A breakdown of samples and clinical data
are presented in Table S1.

Primary RNA-Seq analysis and differential gene expression
analysis

Primary RNA-Seq analysis was performed as previously reported
(44). Raw fastq files were curated to remove low-quality reads using
FastX-Toolkit. Reads were aligned against the hg38 reference hu-
man genome using HISAT2 (45). Read counts were obtained using
htseq-count (46), whereas transcripts per million reads were
computed by Cufflinks (47). Median Transcript Integrity Number
(medTIN) (48), an in silico measurement of RNA integrity that is
similar to the experimentally derived RNA integrity number, have
been generated for all samples (medianmedTIN = 77.12). There were
no statistically significant differences between medTINs from dif-
ferent comparisons (P > 0.05; Mann–Whitney U test; Fig S6), in-
cluding normal skin versus BCC (Fig S6A), low-risk versus high-risk
BCC based solely on histopathological subtypes with aggressive
features (Fig S6B), non-advanced versus advanced BCC (Fig S6C),
and vismodegib-sensitive versus vismodegib-resistant BCC (Fig
S6D). Batch effect was assessed and accounted for as described
(49).

Tumor purity was determined by ESTIMATE (50) using gene ex-
pression data. We have divided BCCs into aggressive BCCs (ad-
vanced tumors + high-risk BCCs based on histopathological
subtypes) and non-aggressive BCCs. Median tumor purities were
81.5% for aggressive BCCs versus 91.0% for non-aggressive coun-
terparts, a statistically significance difference (P < 0.001;
Whitney–Mann U test; Fig S7). Considering the biology of BCC, this is
expected for several reasons. First, small tumors usually can be
easily demarcated, both clinically and with dermoscopy. Second,
advanced tumors are typically more inflammatory or may be
ulcerated. Third, BCCs rely heavily on stromal elements, and are in
fact characterized by a fibromyxoid stroma, especially for high-risk
BCCs and BCCs undergoing progression (51). Both an inflammatory
response and a stromal response are characteristic (52). Most gene
expression-based algorithms for tumor purities consider tumor
purity as pure tumoral component minus stromal abundance and
immune infiltration (50).

To better visualize effects from tumor purity, we have performed
Principal Component Analysis on gene expression and tumor purity.
We have generated principal component analysis plots according
to the first two principal components, with points sized according to
tumor purity (higher tumor purity = larger size), for all four com-
parisons: normal skin versus BCC (Fig S8A), low-risk versus high-risk
BCC based solely on histopathological subtypes with aggressive
features (Fig S8B), non-advanced versus advanced BCC (Fig S8C),
and vismodegib-sensitive versus vismodegib-resistant BCC (Fig
S8D). We did not observe significant clustering of samples based
primarily on tumor purity.

Differentially expressed genes were identified by edgeR (53) with
fold change >2.0 (1.5 for the histopathological subtypes and vismo-
degib-naı̈ve analyses) and FDR corrected for multiple hypothesis
testing using Benjamini–Hochberg method <0.05. The following
comparisons were designed: (1) BCCs versus normal skin (7, 12, 13), (2)
high-risk BCCs with histological subtypes having aggressive features
(morpheaform, micronodular, metatypical, keratotic, and infiltrative)
versus low-risk BCCs (nodular, superficial, others) (7), (3) locally ad-
vanced andmetastatic BCCs (advanced) versus non-advanced BCCs (7,
12), and (4) vismodegib-resistant versus vismodegib-sensitive BCCs (7,
12, 13). For comparison (2) (histopathological subtypes), the distinction
is purely based on subtypes themselves, and not on patient outcomes
nor on treatment selection, as these clinical data are not available. For
visualization of individual gene expression, log 2 pseudo-counts for
selected genes were plotted using R package ggplot2 (54).

Downstream RNA-Seq analysis from gene lists

Enriched pathways and GO terms were determined using ToppFun
(55), with FDR corrected for multiple hypothesis testing <0.05 (56).
We considered the following reference databases for pathways:
KEGG (57), PANTHER (58), Reactome (59), and National Cancer In-
stitute’s BioCarta. Hierarchical clustering was performed using
either all differentially expressed genes, when the total number of
genes was <100 or using the following procedure: among the top 100
most up-regulated genes as ranked by fold change, we selected the
top 50 genes as ranked by logCPM to high raw RNA expression level.
Heat maps according to the gene expression levels and samples
were generated using R package heat map (60). V-measure, a
clustering validity metric combining homogeneity of clusters and
completeness of clusters, were determined for all heat maps (61).

Patients and tissues

All patients were enrolled in this study with written informed
consent and in accordance with the Declaration of Helsinki from
McGill University Health Centre and affiliated hospitals (REB study
#2018-4134 and #2018-3962). Fifteen BCC samples and three normal
skin samples (fibroepithelial polyps, seborrheic keratosis) were
freshly obtained, snap-frozen for gene expression analysis.

Real-time quantitative reverse-transcription PCR (qRT-PCR)

RNA was extracted from tissues using Trizol (Thermo Fisher Sci-
entific) and converted to cDNA using iScript cDNA synthesis kit (Bio-
Rad). qRT-PCR was performed as previously described (62).
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Normalized enrichments were calculated according to the Pfaffl
method (63) as previously described (64), normalizing to normal
skin control samples and to two housekeeping genes (SDHA and
B2M). Primers are available upon request. Receiver operator curves
were generated using R package pROC (65).

Data Availability

Accession numbers of published RNA-Seq datasets are reported in
the Materials and Methods section. Primers for qRT-PCR are
available upon request.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000651.
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Scharwächter C, Kumar K, Blaschke B, Ruzicka T, Reifenberger G (2005)
Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in
sporadic basal cell carcinomas. Br J Dermatol 152: 43–51. doi:10.1111/
j.1365-2133.2005.06353.x

7. Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, Seplyarskiy
VB, Sharpe HJ, McKee T, Letourneau A, et al (2016) Genomic analysis
identifies new drivers and progression pathways in skin basal cell
carcinoma. Nat Genet 48: 398–406. doi:10.1038/ng.3525

8. Stecca B, Ruiz i Altaba A (2009) A GLI1-p53 inhibitory loop controls neural
stem cell and tumour cell numbers. EMBO J 28: 663–676. doi:10.1038/
emboj.2009.16

9. Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, Solomon
JA, Yoo S, Arron ST, Friedlander PA, et al (2012) Efficacy and safety of
vismodegib in advanced basal-cell carcinoma. N Engl J Med 366:
2171–2179. doi:10.1056/NEJMoa1113713

10. Migden MR, Guminski A, Gutzmer R, Dirix L, Lewis KD, Combemale P, Herd
RM, Kudchadkar R, Trefzer U, Gogov S, et al (2015) Treatment with two
different doses of sonidegib in patients with locally advanced or
metastatic basal cell carcinoma (BOLT): A multicentre, randomised,
double-blind phase 2 trial. Lancet Oncol 16: 716–728. doi:10.1016/S1470-
2045(15)70100-2

11. Xie P, Lefrancois P (2018) Efficacy, safety, and comparison of sonic
hedgehog inhibitors in basal cell carcinomas: A systematic review and
meta-analysis. J Am Acad Dermatol 79: 1089–1100.e17. doi:10.1016/
j.jaad.2018.07.004

12. Sharpe HJ, Pau G, Dijkgraaf GJ, Basset-Seguin N, Modrusan Z, Januario T,
Tsui V, Durham AB, Dlugosz AA, Haverty PM, et al (2015) Genomic analysis
of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell
27: 327–341. doi:10.1016/j.ccell.2015.02.001

13. Atwood SX, Sarin KY, Whitson RJ, Li JR, Kim G, Rezaee M, Ally MS, Kim J, Yao
C, Chang AL, et al (2015) Smoothened variants explain the majority of
drug resistance in basal cell carcinoma. Cancer Cell 27: 342–353.
doi:10.1016/j.ccell.2015.02.002

14. Biehs B, Dijkgraaf GJP, Piskol R, Alicke B, Boumahdi S, Peale F, Gould SE,
de Sauvage FJ (2018) A cell identity switch allows residual BCC to survive
Hedgehog pathway inhibition. Nature 562: 429–433. doi:10.1038/s41586-
018-0596-y

15. O’Driscoll L, McMorrow J, Doolan P, McKiernan E, Mehta JP, Ryan E,
Gammell P, Joyce H, O’Donovan N, Walsh N, et al (2006)
Investigation of the molecular profile of basal cell carcinoma using
whole genome microarrays. Mol Cancer 5: 74. doi:10.1186/1476-
4598-5-74

16. Ad Hoc Task F, Connolly SM, Baker DR, Coldiron BM, Fazio MJ, Connolly
SM, Baker DR, Coldiron BM, Fazio MJ, Storrs PA, et al (2012) AAD/ACMS/
ASDSA/ASMS 2012 appropriate use criteria for Mohs micrographic
surgery: A report of the American Academy of Dermatology, American
College of Mohs Surgery, American Society for Dermatologic Surgery
Association, and the American Society for Mohs Surgery. J Am Acad
Dermatol 67: 531–550. doi:10.1111/j.1524-4725.2012.02574.x

Transcriptional landscape of BCC Litvinov et al. https://doi.org/10.26508/lsa.202000651 vol 4 | no 7 | e202000651 10 of 12

https://doi.org/10.26508/lsa.202000651
https://doi.org/10.26508/lsa.202000651
http://www.calculquebec.ca
http://www.computeontario.ca
http://www.westgrid.ca
http://www.computecanada.ca/
https://doi.org/10.1001/archdermatol.2010.19
https://doi.org/10.1001/archdermatol.2010.19
https://doi.org/10.1016/s0190-9622(08)81509-5
https://doi.org/10.1016/s0190-9622(08)81509-5
https://doi.org/10.1056/NEJMra044151
https://doi.org/10.1126/science.1098020
https://doi.org/10.1126/science.1098020
https://doi.org/10.1038/jid.2013.276
https://doi.org/10.1111/j.1365-2133.2005.06353.x
https://doi.org/10.1111/j.1365-2133.2005.06353.x
https://doi.org/10.1038/ng.3525
https://doi.org/10.1038/emboj.2009.16
https://doi.org/10.1038/emboj.2009.16
https://doi.org/10.1056/NEJMoa1113713
https://doi.org/10.1016/S1470-2045(15)70100-2
https://doi.org/10.1016/S1470-2045(15)70100-2
https://doi.org/10.1016/j.jaad.2018.07.004
https://doi.org/10.1016/j.jaad.2018.07.004
https://doi.org/10.1016/j.ccell.2015.02.001
https://doi.org/10.1016/j.ccell.2015.02.002
https://doi.org/10.1038/s41586-018-0596-y
https://doi.org/10.1038/s41586-018-0596-y
https://doi.org/10.1186/1476-4598-5-74
https://doi.org/10.1186/1476-4598-5-74
https://doi.org/10.1111/j.1524-4725.2012.02574.x
https://doi.org/10.26508/lsa.202000651


17. van Loo E, Mosterd K, Krekels GA, Roozeboom MH, Ostertag JU, Dirksen
CD, Steijlen PM, Neumann HA, Nelemans PJ, Kelleners-Smeets NW (2014)
Surgical excision versus Mohs’ micrographic surgery for basal cell
carcinoma of the face: A randomised clinical trial with 10 year follow-up.
Eur J Cancer 50: 3011–3020. doi:10.1016/j.ejca.2014.08.018

18. Goldenberg G, Karagiannis T, Palmer JB, Lotya J, O’Neill C, Kisa R, Herrera
V, Siegel DM (2016) Incidence and prevalence of basal cell carcinoma
(BCC) and locally advanced BCC (LABCC) in a large commercially insured
population in the United States: A retrospective cohort study. J Am Acad
Dermatol 75: 957–966.e2. doi:10.1016/j.jaad.2016.06.020

19. Yang SH, Andl T, Grachtchouk V, Wang A, Liu J, Syu LJ, Ferris J, Wang TS,
Glick AB, Millar SE, et al (2008) Pathological responses to oncogenic
Hedgehog signaling in skin are dependent on canonical Wnt/beta3-
catenin signaling. Nat Genet 40: 1130–1135. doi:10.1038/ng.192

20. Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the
vertebrate neural tube: A sonic hedgehog morphogen-regulated
transcriptional network. Development 135: 2489–2503. doi:10.1242/
dev.009324

21. Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin
pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev
62: 50–60. doi:10.1016/j.ctrv.2017.11.002

22. Fabre J, Giustiniani J, Garbar C, Antonicelli F, Merrouche Y, Bensussan A,
Bagot M, Al-Dacak R (2016) Targeting the tumor microenvironment: The
protumor effects of IL-17 related to cancer type. Int J Mol Sci 17: 1433.
doi:10.3390/ijms17091433

23. Benevides L, da Fonseca DM, Donate PB, Tiezzi DG, De Carvalho DD, de
Andrade JM, Martins GA, Silva JS (2015) IL17 promotes mammary tumor
progression by changing the behavior of tumor cells and eliciting
tumorigenic neutrophils recruitment. Cancer Res 75: 3788–3799.
doi:10.1158/0008-5472.CAN-15-0054

24. Hawkes JE, Yan BY, Chan TC, Krueger JG (2018) Discovery of the IL-23/IL-17
signaling pathway and the treatment of psoriasis. J Immunol 201:
1605–1613. doi:10.4049/jimmunol.1800013

25. Nardinocchi L, Sonego G, Passarelli F, Avitabile S, Scarponi C, Failla CM,
Simoni S, Albanesi C, Cavani A (2015) Interleukin-17 and interleukin-22
promote tumor progression in human nonmelanoma skin cancer. Eur J
Immunol 45: 922–931. doi:10.1002/eji.201445052

26. Pellegrini C, Orlandi A, Costanza G, Di Stefani A, Piccioni A, Di Cesare A,
Chiricozzi A, Ferlosio A, Peris K, Fargnoli MC (2017) Expression of IL-23/
Th17-related cytokines in basal cell carcinoma and in the response to
medical treatments. PLoS One 12: e0183415. doi:10.1371/
journal.pone.0183415

27. Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K (2018)
N-cadherin in cancer metastasis, its emerging role in haematological
malignancies and potential as a therapeutic target in cancer. BMC
Cancer 18: 939. doi:10.1186/s12885-018-4845-0

28. Raab-Westphal S, Marshall JF, Goodman SL (2017) Integrins as
therapeutic targets: Successes and cancers. Cancers (Basel) 9: 110.
doi:10.3390/cancers9090110

29. Michalik L, Wahli W (2006) Involvement of PPAR nuclear receptors in
tissue injury and wound repair. J Clin Invest 116: 598–606. doi:10.1172/
JCI27958

30. Soura E, Eliades PJ, Shannon K, Stratigos AJ, Tsao H (2016) Hereditary
melanoma: Update on syndromes and management: Genetics of
familial atypical multiple mole melanoma syndrome. J Am Acad
Dermatol 74: 395–407. doi:10.1016/j.jaad.2015.08.038

31. Zhang L, Han J (2017) Branched-chain amino acid transaminase 1 (BCAT1)
promotes the growth of breast cancer cells through improving mTOR-
mediated mitochondrial biogenesis and function. Biochem Biophys Res
Commun 486: 224–231. doi:10.1016/j.bbrc.2017.02.101
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