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Profiling of immune dysfunction in COVID-19 patients
allows early prediction of disease progression
André F Rendeiro1,2, Joseph Casano3, Charles Kyriakos Vorkas4, Harjot Singh4, Ayana Morales4, Robert A DeSimone3 ,
Grant B Ellsworth4 , Rosemary Soave4, Shashi N Kapadia4,5, Kohta Saito4, Christopher D Brown4 , JingMei Hsu6,
Christopher Kyriakides7, Steven Chiu3, Luca Vincenzo Cappelli3 , Maria Teresa Cacciapuoti3, Wayne Tam3,
Lorenzo Galluzzi2,8,9,10, Paul D Simonson3, Olivier Elemento1,2,*, Mirella Salvatore5,11,* , Giorgio Inghirami3,*

With a rising incidence of COVID-19–associated morbidity and
mortality worldwide, it is critical to elucidate the innate and
adaptive immune responses that drive disease severity. We
performed longitudinal immune profiling of peripheral blood
mononuclear cells from 45 patients and healthy donors. We
observed a dynamic immune landscape of innate and adaptive
immune cells in disease progression and absolute changes of
lymphocyte and myeloid cells in severe versus mild cases or
healthy controls. Intubation and death were coupled with se-
lected natural killer cell KIR receptor usage and IgM+ B cells and
associated with profound CD4 and CD8 T-cell exhaustion. Pseudo-
temporal reconstruction of the hierarchy of disease progression
revealed dynamic time changes in the global population reca-
pitulating individual patients and the development of an eight-
marker classifier of disease severity. Estimating the effect of
clinical progression on the immune response and early assess-
ment of disease progression risks may allow implementation of
tailored therapies.
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Introduction

Coronavirus disease-2019 (COVID-19), causedby severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that (as of
August 2020) has infected more than 25 million people worldwide,
caused more than 840,000 deaths, and strains health systems on an
unprecedented scale. COVID-19 has heterogeneous clinicalmanifestation,
ranging from mild symptoms such as cough and low-grade fever to

severe conditions including respiratory failure and death (Guan et al,
2020; Richardson et al, 2020). Although most patients with mild
disease develop an appropriate immune response that culminates
with viral clearance (Guan et al, 2020; Huang et al, 2020; Richardson et
al, 2020; Shi et al, 2020 Preprint), severe disease manifestations have
been linked to lymphopenia and immune hyperresponsiveness
leading to cytokine release syndrome (Guan et al, 2020; Huang et al,
2020; Richardson et al, 2020; Shi et al, 2020 Preprint). The most ef-
fective therapeutic approaches developed so far for severe cases
involve either general immunosuppression with glucocorticoids
(Hennigan & Kavanaugh, 2008) or selective neutralization of IL-6 with
tocilizumab (Guaraldi et al, 2020), a monoclonal antibody used to
manage cytokine release syndrome in indications such as rheu-
matoid arthritis (Hennigan & Kavanaugh, 2008). The efficacy of these
therapies strongly supports a key role for immune dysregulation in
the pathogenesis of COVID-19. However, neither treatment has
achieved high clinical remission rates in patients with severe COVID-
19 (Kewan et al, 2020; RECOVERY Collaborative Group et al, 2020),
suggesting that other immunological or immune-independent at-
tributes may contribute to severity, treatment failure, and ultimately
patient death. Thus, in-depth characterization of immune responses
to SARS-CoV-2 infection is urgently needed.

Recent characterization efforts have uncovered broad dysre-
gulation of the innate immune system (Schulte-Schrepping et al,
2020b) coupled with altered inflammatory responses (Hadjadj et al,
2020) and impaired adaptive immunity (Zhou et al, 2020). Specifi-
cally, the adaptive immune compartment of COVID-19 patients
exhibits marked lymphopenia (Huang et al, 2020; Kuri-Cervantes
et al, 2020; Mathew et al, 2020), polarization of T cells toward a
memory phenotype (Mathew et al, 2020), and functional exhaustion
(Blackburn et al, 2009; De Biasi et al, 2020; Zheng et al, 2020a, 2020b),
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demonstrating that SARS-CoV-2 infection induces both cellular
(Grifoni et al, 2020; Weiskopf et al, 2020) and humoral responses
(Schulte-Schrepping et al, 2020b). However, the molecular and
cellular mechanisms through which SARS-CoV-2 infection induces
these broad immunological derangements in only some patients
remains to be elucidated. Furthermore, little is known about the role
of the innate immune responses that constitute the first defense
against SARS-CoV-2 infection. Moreover, the degree of interaction
between various (Alkhouli et al, 2020) immune compartments and
demographic factors andmedical comorbidities is unclear. The most
prominent risk factors for severe disease and death by COVID-19
include age, cardiovascular or oncological comorbidities, and im-
munosuppression (Yu et al, 2020; Yang et al, 2020a; Guo et al, 2020b).
In addition, men appear to be at significantly higher risk for severe
COVID-19 than women (Alkhouli et al, 2020). Whereas mortality rates
are estimated at 4–6% in the general population, high-risk pop-
ulations experience mortality rates >60% (Yang et al, 2020b).

Clarifying the early immunological alterations associated with
mild versus severe COVID-19 may not only offer therapeutically
actionable targets, but also enable the identification of cases at
highest risk for clinical deterioration and death. The development
of an effective clinical decision-making tool rooted in immuno-
logical monitoring has the potential to optimize patient care and
resource utilization.

By profiling mild and severe COVID-19 patients and healthy
donors with flow cytometry, we demonstrate that SARS-CoV-2 is
associated with broad dysregulation of the circulating immune
system, characterized by the relative loss of lymphoid cells coupled
to expansion of myeloid cells. Severe cases demonstrated en-
richment of NK cells expressing the immunosuppressive receptor
killer cell immunoglobulin-like receptor, two Ig domains and short
cytoplasmic tail 4 (KIR2DS4 and CD158i), and alterations in the B-cell
compartment marked by reduced CD19, CD20, and IgM+ cells. These
immune profiles enable reconstruction of a hierarchy of disease
progression with pseudo-temporal modeling, which allows esti-
mation of dynamic longitudinal changes within individual patients.
Our approach also estimates the effect of clinical factors on im-
mune dysregulation and thus establishes an immune-monitoring
tool for disease progression.

Results

SARS-CoV-2 infection causes major changes in the circulating
immune system

We conducted an observational study of 45 individuals with COVID-
19 that were treated at New York Presbyterian Hospital and Lower
Manhattan Hospitals, Weill Cornell Medicine (IRB 20-03021645) as
in- or outpatients between April and July, 2020. The disease was
categorized as “mild” if the patient was not admitted or required <6
liters noninvasive supplemental oxygen to maintain SpO2 >92% (n =
21). Patients with “severe” disease required hospitalization and
received >6 liters supplemental oxygen or mechanical ventilation
(n = 15). Blood samples were collected at enrollment and, when
permissible, approximately every 7 d thereafter. Samples were also
collected from non-hospitalized individuals who had recovered

from mild, laboratory-confirmed SARS-CoV-2 infection (“conva-
lescent” group, n = 9) and from healthy COVID-19–negative donors
(n = 12) (Fig 1A). The median age of COVID-19 patients was 65 yr,
which was significantly higher than healthy donors (30 yr) (Tables S1
and S2 and Fig S1).

We performed high-dimensional immune cell profiling of cir-
culating blood by flow cytometry based on seven independent
fluorochrome-conjugated antibody panels, each targeting a spe-
cific surface protein marker of T, B, NK, and myeloid-derived
suppressor cells (MDSCs) (Figs 1B and S2 and Tables S3–S6). Lon-
gitudinal sampling was performed in eight patients, one in the
“mild” and seven in the “severe” group, and included at least three
samples per patient, making a complete dataset including 102
samples from 57 individuals.

Consistent with previous reports (Aschenbrenner et al, 2020 Preprint;
Hadjadj et al, 2020; Kuri-Cervantes et al, 2020; Mathew et al, 2020), we
observed global lossof lymphocytes amongCD45+ cells andenrichment
of the myeloid cell compartment in the peripheral blood of COVID-19
patients compared with healthy donors (Fig 1C, top). This was exac-
erbated in patients with severe disease compared with individuals with
mild disease (Fig 1C, bottom). This lymphocyte depletion was primarily
observed in the T- and NK-cell compartments (Fig 1D). There was no
difference in the abundance of B cells betweenmild and severe groups.
These results highlight amajor shift in peripheral immune cell absolute
abundance from the lymphoid to myeloid lineage (Tables S6).

SARS-CoV-2 infection causes imbalances in the naive andmemory
T-cell compartments and induces exhaustion

We next profiled CD4+ and CD8+ T cells in COVID-19 patients and
healthy donors (Fig S2). The CD4/CD8 ratio correlated positively with
disease severity (Fig 2A) (Mathew et al, 2020;Weiskopf et al, 2020). There
was also an expansion of memory T cells (CD45RO+) with reciprocal
contraction of the naive compartment (CD45RA+) in severe cases
relative to mild disease or healthy donors (Fig 2B). We next quantified
the abundance of populations expressing C–C motif chemokine re-
ceptor 7 (CCR7; CD197), selectin L (SELL; CD62L), and FAS cell surface
death receptor (FAS) (CD95). Within CD45RA+ cells, effector CCR7− (TEFF)
populations were increased in COVID-19 patients and those with se-
vere disease, especially in the CD8+ compartment (Fig 2C). Conversely,
there was significant depletion of CD8+CD45RO+CD95− T cells in pa-
tients, which was exacerbated with severe disease.

To characterize these populations more objectively and inde-
pendently of manual gating, we analyzed the expression of eight
surface proteins at the single-cell level by jointly embedding CD3+

cells from all samples with the Uniform Manifold Approximation
and Project (UMAP) method and clustering them (Fig 2D). Not all
clusters contained cells from all severity groups proportionally.
Specifically, clusters 12, 18, and 21, which are characterized by re-
duced FAS expression, were enriched for cells from healthy donors
(Fig 2E). Moreover, there was increased expression of CD95 in
samples from COVID-19 patients that correlated with disease se-
verity (Fig 2F and G), and FAS− cells were particularly depleted in all
patients (Fig 2G). Indeed, CD95+CD25+ T cells were increased in
severe cases, whereas no difference was observed between con-
valescent patients and healthy donors (Fig 2H).
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Next, we assessed the frequency of CD4 regulatory T cells (TREG,
characterized by CD127dimCD25bright). As markers of follicular helper
T cells (TFH), we also measured CD4+, CXCR5+, PD1+, ICOS+ TFH, which
are critical to B cells in the initiation and maintenance of humoral im-
mune responses (Vinuesa et al, 2016). We found a significant but modest
increase in TFH in mild and severe COVID-19 cases, with their presence in
convalescent patients similar to in healthy donors (Fig S3A and B).
However, upon considering a broader spectrum of TFH cells regardless of
ICOS expression, CD4+, CXCR5+, and PD-1+ TFH were most abundant in
COVID-19 patients with mild disease (Fig 2I). In TREG, severe COVID-19
patients showed significant increase compared with healthy donors (Fig
S3C), whereas previous reports showed an increase in patients with mild
course (Shi et al, 2020 Preprint; Wang et al, 2020).

To investigate T-cell functional phenotypes, we assessed the
expression of co-inhibitory T-cell receptors. We observed sustained in-
crease of programmed cell death 1 (PD-1) in COVID-19 patients compared
with healthy donors in both CD4 and CD8 compartments. At the same
time, V-set immunoregulatory receptor (VISTA) and lymphocyte-activating
gene 3 (LAG3) were up-regulated in mild cases (Fig 2J). Exhausted
T-cell phenotypes, with high expression of VISTA and LAG3, can be

encountered in chronic viral diseases (Ye et al, 2017), including chronic
SARS-CoV-2 infection (DeBiasi et al, 2020). This phenotype suggests that
these inhibitory receptors may operate at least partially via non-
overlapping immunosuppressive signals that negatively regulate
T-cell responses during chronic viral infection (Blackburn et al, 2009).

These results highlight a shift toward an activated T-cell memory
phenotype in COVID-19 patients, with a potential role for CD95-mediated
cell death. By and large, convalescent patients and healthy donors
displayed similar immunotypes in comparison with COVID-19 patients.
However, wedid identify populations suchasCD45RA+, CCR7+, CD62L−, FAS−

CD8+ TEFF cells, which remained significantly different to healthy donors up
to ~2 mo into recovery (Fig 2C). These cells may represent “T stemmemory
(TSM) cells” with poor expansion potential (Berger et al, 2008) and/or ab-
errant terminallydifferentiatedeffectormemory (TEM) cells (Laingetal, 2020).

SARS-CoV-2 induces expansion of polymorphonuclear MDSCs and
biases NK KIR usage

Having observed myeloid expansion in COVID-19 patients (Fig 1C),
we next investigated the abundance of the MDSC subset. These

Figure 1. Immunoprofiling of COVID-19 patients
reveals a disarrayed immune system.
(A) Composition of the study cohort. (B) Description of
immune panels and their target epitopes. (C)
Composition of major immune compartments as a
percentage of all live CD45+ cells. (D) Abundance of
major lymphoid compartments as a percentage of all
lymphocytes. For (C) and (D), the upper panels divide
patients by general disease status and three lower
panels further divide the study subjects by clinical
intervention or outcome. Significance was assessed
using Mann–Whitney U tests and corrected for multiple
testing with the Benjamini–Hochberg false discovery
rate (FDR). **FDR-adjusted P-value < 0.01; *FDR-
adjusted P-value of 0.01–0.05.
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Figure 2. T cells from COVID-19 patients have high levels of CD25, FAS, and exhaustion markers.
(A) The ratio of CD4 to CD8 cells is dependent on disease state and clinical intervention. (B) The abundance of CD45RA/RO cells in either CD4+ or CD8+ compartments is
dependent on disease state or clinical intervention. (C) Abundance of immune populations changes significantly between disease states. (D) Uniform Manifold
Approximation and Projection (UMAP) projection of all cells colored by either surface receptor expression, cluster assignment, or disease severity. (E) Immune phenotype
of each cluster (top) and its composition in disease severity (bottom). (F) Expression levels of CD25 and FAS receptors in the UMAP projection. (G) FAS expression across
all clusters depending on disease severity (left) and the proportion of cells not expressing FAS for each sample (right). (H) Scatter plot of CD25 and FAS expression for each
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elements are activated by IL-6 (Tobin et al, 2019) and have im-
munomodulatory functions in cancer (Gabrilovich & Nagaraj, 2009;
Kumar et al, 2016) and viral infections (O’Connor et al, 2017). Our flow
cytometry panel considered CD3−, CD56−, CD19−, HLA-DR−/dim, CD33+,
CD11b+ cells and focused on distinguishing CD14−, CD15+ granulocytic
cells (G-MDSCS); CD14+, CD15−/dim monocytic-like cells (M-MDSC); and
CD14−, CD15−/dim immature cells (I-MDSC) from each other. G-MDSCs
were rarely detected in healthy donors but were prevalent in mild
and severe COVID-19 patients (Fig 3A and B). Convalescent patients
showed numbers of G- and M-MDSCs closer to healthy donors, with a
nonsignificant increase in I-MDSCs compared with healthy donors.
Conversely, I-MDSC cells, although relatively rare as a fraction of all
immune cells, were further reduced with disease (Fig 3A and B).
Because neutrophils are phenotypically similar to MDSCs, we com-
pared their abundance with MDSCs. Although there was a positive
correlation between G-MDSCs and a high neutrophil count, neither
could account entirely for the other (Fig S4).

Next, we created a joint embedding of 2.4million CD16+ cells fromall
samples using the UMAP method, deriving clusters based on similar
cells (Fig 3C). Clusters containing CD15+ cells were disproportionately
enriched in samples from COVID-19 patients, whereas clusters with
CD3+, IL4R (CD124) were mostly composed of cells from healthy donors
(Fig 3D). In addition, CD15 expression was most prominent in COVID-19
patients, particularly in severe cases, but when selecting for CD3− or
CD3− CD33+ cells, convalescent patients possessed a number of CD15+

cells more similar to patients with active disease than healthy donors.
Next, we focused on innate lymphoid cells and determined the ex-

pression of KIR receptors in CD56+, CD16bright NK cells. Whereas we ob-
served no significant differences in the relative abundance of KIR
receptors among COVID-19 patients with mild disease and healthy con-
trols (Fig 3E), a significantly higher proportion of cells expressed CD158i
(KIR2DS4) in severe patients than in mild or convalescent individuals.
Moreover, we observed fewer CD158e (KIR3DL1) cells in patients with mild
disease comparedwith severepatients anda lower proportionof cells not
expressing any of the measured receptors (KIR−) in patients with severe
disease. To further explore NK cell subsets independent of conventional
gating,weharnessedsingle-cell analysis and integrated>500,000 cells ina
UMAP representation, identifying cell clusters based on surface marker
expression (Fig 3F). Clusters significantly enriched in CD158i-expressing
cells were paucicellular in healthy donors compared with COVID-19 pa-
tients (Fig 3G), and the relative frequency of CD158i-expressing cells was
lower in healthy donors, regardless of the expression of other KIR re-
ceptors (Fig 3H). Because the expression of KIR variants is stochastic, the
apparent selection of KIR-expressing cells in severe COVID-19 patients
could indicate thataviral antigenpresentedbyMHCclass Imoleculeswith
higher affinity for CD158i could select for NK cells expressing this receptor.

B cells of COVID-19 patients show distinct patterns of
immunoglobulin expression associated with disease severity

Because B cells play a critical role in adaptive immunity, we in-
vestigated the expression levels of surface CD19, CD20, IgM, and IgG

in circulating cells. Despite the backdrop of a relative decrease in B
cell numbers as disease progresses, we observed only a mild,
nonsignificant increase in plasmacytoid cells in patients with se-
vere COVID-19 compared with healthy donors (Fig 4A). However, the
number of IgM+ CD19+ CD20+ B cells was decreased in patients with
severe disease comparedwithmild, whereas IgG+, CD19+, CD20+ cells
remained comparable across all patients (Fig 4B). Next, we visu-
alized single cells from all patients in a common UMAP plot and
assigned clusters based on surface marker expression (Fig 4C). This
approach identified two distinct groups based on the expression of
surface IgM, with the total number of IgM+ cells within clusters
increased in severe COVID-19 patients (Fig 4D). Conversely, healthy
donors displayed B cells with high expression of surface CD19+ and
CD20+ antigens (Fig 4D). Closer inspection of CD19 and CD20 ex-
pression identified two distinct populations that differ in CD20
levels (Fig 4E). This approach also revealed that the relative
abundance of circulating CD19 and CD20bright B cells was lower in
COVID-19 patients compared with healthy individuals regardless of
disease severity.

To shed light on the functional relevance of these different B cell
subsets, we quantified the expression of IgG and IgM in each pop-
ulation identified based on CD19 and CD20 co-staining (Fig 4F).
Circulating CD19low B cells (populations A and B) were enriched for
IgG+ cells in patients with mild and severe COVID-19 and IgM+ cells in
severe COVID-19 patients, whereas convalescent patients resembled
healthy donors. No such difference was observed with CD19+ and
CD20bright B cells (population C) and CD19+ CD20+ and CD19+ CD20− B
cells (populations D and E). Overall, despite dwindling numbers of B
cells overall, specific subsets of B cells, especially those with lower
CD19 expression, have distinct immunoglobulin expression patterns
in COVID-19 patients, with severe patients more frequently bearing
IgM+ B cells. We speculate that these findings may be related to the
plasmacytoid differentiation and immunoglobulin switching pro-
grams, which may be dysfunctional due to SARS-CoV-2 infection.

Pseudo-temporal modeling unveils a highly dynamic immune cell
landscape of COVID-19 over time

Having characterized the main circulating compartments of the
immune system, we next sought to leverage the high dimensionality
of the dataset and hypothesized that its underlying data structure
would be useful for reconstructing the clinical course of COVID-19.
Thus, we used pseudotime inference to reconstruct an underlying
latent space from a healthy state to a severe disease state (Fig 5A
and B).

Further analysis of the inferred space enabled identification
of circulating immune cell populations associated with disease
progression. In particular, we identified a space driven by a de-
crease of lymphocytes, gain of myeloid cells (G-MDSCs in partic-
ular), and a terminally activated/exhausted T cell phenotype (Fig
5C). Besides discovering immune signatures associated with each
degree of severity, this analysis allows the relative positioning of

cell according to disease severity. (I) Abundance of CD4+ CXCR5+ PD-1+ TFH by disease severity. (J) Immune populations with significantly different amounts of cells
expressing immune checkpoint receptors by disease severity. Significance was assessed by Mann–Whitney U tests and corrected for multiple testing with the
Benjamini–Hochberg false discovery rate (FDR). **FDR-adjusted P-value < 0.01; *FDR-adjusted P-value 0.01–0.05.
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Figure 3. Emergence of granulocytic myeloid-derived suppressor cells and preferential expression of specific NK cell receptors in the innate immune system of
COVID-19 patients.
(A) Abundance of myeloid-derived suppressor cells as a percentage of all immune cells according to disease severity. (B) UniformManifold Approximation and Projection
(UMAP) projection of all cells from all patients colored by the expression levels of surface receptors, derived clusters, or disease severity among all patients. (B, C) Immune
profile of each cluster from (B) based on the expression of surface markers (top) and composition in disease severity (bottom). (D) Expression levels of CD15 dependent
on disease severity (left) and quantification of cells expressing it (right) according to CD16, CD3, and CD33 expression. (E) Abundance of cells expressing various KIR
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each time point in relation to the continuous changes characterized by
pseudotime (Fig 5D). Variable changes associated with the pseudo-
temporal axis could be classified in three clusters (Fig 5D). The first
was composedof 68 populations, with an increase toward higher disease
severity with representatives such as the fraction of myeloid cells, PD-1+

CD4+ T cells, andCD62L− cells amongCD45RA+, CD8+ T cells (Fig 5E left). The
second corresponded to a virtually stable cluster with 52 populations
such as IgM+ B cells, with only mild fluctuation in the intermediate stage
(Fig 5E, center). The third included a cluster with a steady decrease by
disease severity, encompassing the overall lymphoid population as well
as B cells and CD45RA+ CD4+ T cells (Fig 5E, right). This effectively es-
tablishes a temporal hierarchyof changes asdiseaseprogresses inwhich
populations such as CD62L+, CCR7+, CD45RA+, CD8+ T cells have a steady
decline and others such as B cells have a stronger decline toward the
severe end of the pseudo-temporal timeline. In addition, the dynamic
character of changes raises the possibility of using flow cytometry to
improve COVID-19 patient stratification based on real-time immuno-
logical monitoring. Although our observations do not indicate causality,
immunological variations in the pseudo-temporal dimension may offer
testable hypotheses on COVID-19 progression mechanisms.

Integration of clinical and demographic factors affecting COVID-19
immunity and stratification of patients by disease severity

Because various clinical and demographic factors influence dis-
ease incidence and mortality (Guan et al, 2020; Richardson et al,
2020; Zhao et al, 2020), we investigated the interaction between
SARS-CoV-2 infection, the circulating immune system, and various
demographic and clinical factors. Thus, we fit regularized linear
models to the proportional flow cytometry data with covariates
such as sex, race, age, disease severity, presence of comorbidities,
hospitalization, intubation, and death (Fig S5A). We also estimated
the interaction of sex with clinical variables such as disease se-
verity, hospitalization, intubation, and death. The resulting network
of significant effects identified several clinical factors associated
with specific immune cell populations, highlighting how age, sex,
and disease severity jointly influence the circulating immune
systems in patients with COVID-19 (Fig 6A).

As a baseline, we could recover known effects independent of
disease, such as a higher CD4:CD8 ratio in females than males and
an overall decrease of the lymphoid population with age (Fig S5B).
Last, we found associations between sex and clinical variables such
as a significantly higher fraction of CD62L+, CCR7+, CD45RO+, CD4+ T
cells in males that died compared with females (Fig 6B, left) and
much lower total lymphocyte levels in females that died compared
with males (Fig 6B, right). Regarding the effect of tocilizumab on the
immune system, we compared posttreatment samples from eight
treated severe patients to seven severe untreated patients. Al-
though we observed the largest effect in certain subsets of CD4+ T
cells, there was also an increased relative abundance of B cells and
a decrease in T cells expressing the co-inhibitory receptor hepatitis

A virus cellular receptor 2 (HAVCR2; TIM3) (Fig S5C). Moreover, the
signature associated with severe versus mild patients was broadly
counteracted by tocilizumab (Fig 6C). Associations between sex and
clinical variables were found, such as a lower fraction of CD62L+,
CCR7+, CD45RA+, CD8+ T cells in females treated with tocilizumab
compared with males, contrary to the opposing trend in untreated
individuals (Fig 6D), or the lower frequency of CD158a NK cells in
female intubated patients (Fig 6E).

Because there is a need to stratify patients to provide better, more
effective, and less costly care, particularly in the earlier stages of
disease, we hypothesized that the high dimensionality of the immu-
notypes would make it possible to train a classifier to predict disease
severity early on. A random forest classifier was trained to distinguish
patients with mild from severe disease using only the earliest available
sample of each patient in a cross-validated manner (Fig 6F). We ob-
served goodperformance of the classifier (median area under receiving
operator curve [ROC AUC], 0.81) compared with one with randomized
severity labels (median ROC AUC, 0.49) (Fig 6G), providing good balance
between true positive and false positive rates. Because our dataset is
composed of immune populations from seven flow cytometry panels,
we testedwhether a smaller number of variables coulddiscern patients
with mild and severe disease courses. With only eight variables, the
classifier could distinguish patients with different disease severities,
albeit with lower performance (ROC AUC, 0.73 versus 0.49 with ran-
domized labels) (Fig 6H). Furthermore, we hypothesized that our
classifier could be used for real-time immunomonitoring of COVID-19
patients. Thus, we applied it to subsequent samples of patients with
more than three samples collected over the disease course, while
withholding those samples from the training set (Fig 6I). Patient 26, who
had an overall mild disease course, had all samples classified as mild;
severe patients often showed dynamic severity probabilities over time,
with at least one time point classified as severe disease. To exemplify
how this prediction relates back toflow cytometry data, we illustrate the
aggregated expression of the activationmarker CD25 and CD45RA/RO in
single T cells over time (Fig 6J). Patients with lower predicted severity
toward the endof their course (e.g., patient 23) tended to have less CD25
expression and increased CD45RA expression, whereas the opposite
was also true (e.g., patient 16). Patients with predictions that were either
more stable or dynamic over time (patients 26 and 24, respectively)
showed dynamics of expression in accordance to their overall pre-
dicted pattern over time. This proof-of-principlework demonstrates our
ability to leverage high-content immune profiling to predict overall
disease course and provides the basis for real-time immune-monitoring
of COVID-19 patients.

Discussion

Here, we describe the circulating immune landscape of COVID-19
patients compared with healthy individuals. Consistent with pre-
vious reports (Kuri-Cervantes et al, 2020; Mathew et al, 2020; Wang

receptors as a percentage of NK cells according to disease severity. (F) UMAP projection of all cells from all patients colored by the expression of surface receptors,
derived clusters, or disease severity. (F, G) Immune profile of each cluster from (F) based on the expression of surface markers (top) and composition in disease severity
(bottom). (H) Expression levels of all four measured KIR receptors in each disease state. Significance was assessed using Mann–Whitney U tests and corrected for multiple
testing with the Benjamini–Hochberg false discovery rate (FDR). **FDR-adjusted P-value < 0.01; *FDR-adjusted P-value 0.01–0.05.
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et al, 2020; Schulte-Schrepping et al, 2020b), we demonstrate that
disease progression is dominated by the progressive loss of cir-
culating lymphocytes and gain of myeloid cells. We also detected
selective expansion of NK populations and MDSCs, suggesting that

the innate compartment may contribute to the immunological
disarray of COVID-19 patients. We then harnessed this multidi-
mensional dataset to generate a machine-learning classifier that
could predict disease severity using a defined flow cytometric

Figure 4. B cells of COVID-19 patients are marked by a shift toward a plasmocytic IgM phenotype.
(A, B) The abundance of total B cells, plasma, and IgG+ and IgG+ cells between disease states. (C) Uniform Manifold Approximation and Projection (UMAP) projection of
all cells colored by surface receptor expression, cluster assignment, or disease severity. (D) Immunophenotype of each cluster (top) and its composition by disease
severity (bottom). (E) Identification and quantification of five populations of B cells dependent on CD20 and CD19 expression. (E, F) Comparison of the abundance of the
populations identified in (E) between disease states. Significance was assessed using Mann–Whitney U tests and corrected for multiple testing with
Benjamini–Hochberg false discovery rate (FDR). **FDR-adjusted P-value < 0.01; *FDR-adjusted P-value 0.01–0.05.
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signature. Our work provides a proof-of-concept that an immune-
monitoring algorithm could provide a rapid and personalized
approach to manage COVID-19.

Although previous studies have focused on lymphocyte pop-
ulations (Bellesi et al, 2020; Hadjadj et al, 2020; Kuri-Cervantes et al,
2020; Mathew et al, 2020), to our knowledge the role of innate
immune cells is less understood (Agrati et al, 2020). Our study
highlights the expansion of MDSCs, especially G-MDSCs, in severe

COVID-19 patients. Unlike their natural counterparts, these ele-
ments have suppressive function (Zhou et al, 2018) that impairs
immune responses in cancer (Kumar et al, 2016) and derails ef-
fective responses against bacterial and viral infections by the
adaptive immune system (Bohorquez et al, 2019; Ruan et al, 2020).
Given the overall depletion of the immune system’s lymphoid
branch during COVID-19, an interesting hypothesis is that G-MDSCs
and other myeloid cells represent uncontrolled negative feedback.

Figure 5. Pseudo-temporal reconstitution of disease progression reveals a hierarchy of immune changes in COVID-19 disease.
(A) Projection of immune profiles into a two-dimensional latent space that reconstructs the hierarchy of disease progression. The x-axis represents disease progression
in the pseudo-temporal space. Sample from patients which died from COVID-19 are marked with a diagonal black line. (B) Distribution of samples grouped by disease
state along the pseudo-temporal axis derived in (B). (C) Immune populations associated with the pseudo-temporal axis represented by either the absolute change in
percentage in their extremes (x-axis) or strength of linear association (y-axis). (D) Clusters of immune populations based on their abundance along the pseudo-
temporal axis. (D, E) Examples of immune populations from each cluster in (D).
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Figure 6. Factors conditioning the immune response during COVID-19 and predicting disease severity.
(A) Directed graph of clinical factors (green) and immune populations (pink). Edges represent the association between factors and immune populations and are colored
by the direction and strength of association (blue, negative; red, positive). (B) Abundance of select immune populations with significantly different responses between
sexes dependent on outcome. (C) Estimated coefficients of change for severe versus mild disease (left) or tocilizumab treatment (right) for immune populations that
change discordantly. (D, E) Abundance of select immune populations with significantly different responses between sexes dependent on tocilizumab treatment (D) or
intubation (E). (F) Graphical depiction of the machine-learning framework for predicting disease severity using the earliest available samples per patient and cross
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These elements ultimately contribute to the establishment of pan-
immunosuppression, leading to dysregulated responses from the
adaptive immune system. It will be essential to establish whether
they are actively recruited to infected lungs and whether they are
causally involved in disease pathogenesis or represent a systemic
compensatory response to inflammation. Because MDSCs are vir-
tually absent in healthy individuals, questions arise regarding the
mechanisms of their genesis and tissue recruitment and how they
interact with lung tissue. At the same time, our novel observation that
NK cells expressing the CD158i variant are over-represented in pa-
tients with severe disease raises the question of whether this variant
and other KIRs implicate NK cells in disease progression (Fig 3).

Within the adaptive immune system, the mechanisms leading to
severe immune depletion, a landmark seen with disease pro-
gression and markedly apparent in autopsy samples, are unknown
(Bradley et al, 2020). To this end, we observed increased CD25+ T
cells in COVID-19 patients, indicating a higher state of activation (Fig
2), but also an increase in CD95+ with disease progression. This
phenotype was significantly marked in severe patients, consistent
with a recent study (Bellesi et al, 2020). FAS has a crucial role in
mediating cell death via FAS ligand engagement, as in activation-
induced cell death, or by shifting cells to a more apoptotic-prone
phenotype. Although FAS is a natural regulatory checkpoint of T cells,
it plays a role in autoimmunity (Suda & Nagata, 1997) and cancer (Chen
et al, 2010), and activation-induced cell death is involved in loss of CD4+

and CD8+ cells in HIV patients (Dockrell et al, 1999). However, severely
exhausted T cells can undergo apoptosis, and virus-specific T-cell
decline can favor viral escape (Moskophidis et al, 1993;Wherry&Ahmed,
2004; Williams & Bevan, 2007). Indeed, similar to previous reports (De
Biasi et al, 2020; Zheng et al, 2020a, 2020b), T cells displayed an overall
exhausted phenotype, with overexpression of VISTA, TIM3, LAG3, TIGIT,
and PD-1 co-inhibitory receptors in COVID-19 patient T cell populations.
This likely results in inability of the adaptive immune system to keep
viral proliferation in check. In the B-cell compartment, we observed
lower expression of CD19 in COVID-19 patients and higher expression of
membrane-bound IgM and IgG in both mild and severe patients. These
data suggest that under viral exposure, B cells undergo plasmacytoid
maturation and immunoglobulin switching. Remarkably, several pa-
tients displayed higher IgM than IgG CD19+ CD20+/− cells, suggesting
abnormal and delayed maturation of plasma cells (Fig 4). Although the
implications remain speculative, they do warrant further investigation
given the central role of B cells in the development of immunity by
COVID-19 patients.

Taking advantage of our dataset’s high-dimensional charac-
teristics and pseudo-temporal modeling, we constructed a COVID-
19 disease course landscape. This strategy reveals a continuum of
disease progression between healthy state, mild disease, and
severe disease. Remarkably, convalescent patients displayed im-
mune phenotypes similar to healthy donors, suggesting a possible
return to a largely healthy state, as previously suggested based on
the exhaustion phenotype in adaptive responses (Zheng et al,

2020a, 2020b). Conversely, we could speculate that the immune
landscape of mild/convalescent patients never achieved the level of
disarray observed in severe patients. Although there were marked
differences between patients with prevalent mild or severe disease,
their recognition remains a unique challenge. One interesting open
question is whether the changes associated with mild versus severe
disease protect against disease progression or, conversely, which
immune populations related to severe illness play a role in the
progression to severe disease. Although proof-of-principle, our
classifier of severe disease shows robustness and overall value in
predicting disease progression based on immune profiling and near-
real-time disease monitoring. Thus, it may be valuable to inform
clinical action like that proposed in chronic diseases with other high-
dimensional assays (Lucas et al, 2020; Unterman et al, 2020 Preprint;
Zheng et al, 2020a). Moreover, we demonstrated that a classifier
with a limited number of markers retains good performance. If
confirmed in large cohorts, it could provide a useful approach to
stratify patients and predict clinical evolution using a rapid and
economical assay.

Although our study confirmed some findings and provides new
data on the innate immune landscape of COVID-19 patients, we
recognize several limitations. The relatively small sample size and
the fact we as others (Juno et al, 2020; Kuri-Cervantes et al, 2020;
Mathew et al, 2020) used a control population of healthy individuals
that are not age-matched are important drawbacks. Although fully
extrapolating our results to a population level should carried out
with caution, by comparing the immune profile of younger healthy
donors to data from healthy older individuals (n = 5) (Fig S6A), we
observed that the main immune changes associated with COVID-19
in our study are still significant (Fig S6B). The lack of standardized
time point collection across patients means that temporal infer-
ences across patients may not represent the real disease trajectory
of any particular patient and may represent another limitation of
our study. Overall, these limitations could be overcome with the
support of large population studies that may be better powered to
relate new immune populations with disease progression or clinical
factors. In this current pandemic, profiling a larger sample of the
population and investigating multiple time points systematically
may help identify viral adaptation to the host (particularly when
coupled to analysis of viral sequence) in patients with different
outcomes. These programs may be achieved if an effective insti-
tutional organization, multicentric networking, and substantial fi-
nancial support are available.

The targeted nature of flow cytometry interrogates limited sets of
immune populations and implies that only certain molecules can
be effectively profiled. In our study we used mainly proportional
data when comparing the abundance of immune populations
between patient groups. While this may not necessarily imply
absolute changes in cell numbers, we observed good overall
agreement between changes in proportions and absolute counts
when comparing severe and mild disease status (Fig S7). This

validation. (G, H) Performance of classifiers trained with real or randomly shuffled labels and either all immune populations (G) or with selection for the top most
predictive eight populations (H). (I) Predicted severity scores over time since symptoms started for immune profiles from patients with at least three longitudinal sampling
points. (G, J) Relative expression of CD25, CD45RA, and CD45RO over time in four patients from (G). **False discovery rate-adjusted P-value < 0.01; *false discovery rate-
adjusted P-value 0.01–0.05.
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highlights the importance of studies using orthogonal modalities
such as cytokine profiling (Lucas et al, 2020), single-cell RNA se-
quencing (Unterman et al, 2020 Preprint; Wilk et al, 2020; Lee et al,
2020; Zhu et al, 2020; Guo et al, 2020a Preprint), and their integration
(Su et al, 2020 Preprint; Schulte-Schrepping et al, 2020a Preprint).
Nevertheless, even without orthogonal studies, our machine
learning approach for predicting disease severity demonstrates
predictive potential, although it should be tested in a validation
cohort before use in a clinical setting.

Last, we wish to note the work of others and their complementary
findings. For example, Laing et al (2020) used peripheral blood flow
cytometry and circulating cytokine measurements to demonstrate ap-
parent immune dysregulation in COVID-19 patients. They highlighted
additional interesting, complementary features, including increased IL-6,
IL-10, and IP-10 and depletions of basophils, plasmacytoid dendritic
cells, TH1 cells, and TH17 cells. Incorporating their most differentiating
markers with ours could yield a more complete yet targeted panel of
markers with more predictive power to determine which patients will
rapidly progress to a severe disease state. This incorporation of addi-
tional differentiating markers should be pursued in future studies.

Collectively, our study highlights a profound imbalance in the
COVID-19 immune landscape, characterized by G-MDSC expansion
and T cell exhaustion that may open avenues for clinical trans-
lation. Further, our approach provides a powerful tool to predict
clinical outcomes and tailor more effective and proactive therapies
to COVID-19 patients.

Materials and Methods

Study design, sample acquisition, and clinical data

The study was approved by the Institutional Review Board of Weill
Cornell Medicine. Participants were recruited from patients hospital-
ized at New York Presbyterian Hospital from April to July 2020. Some
participants in a COVID-19 convalescent plasma donor screening
program with prior confirmed diagnosis (by RT-PCR or serology) were
given the option to contribute a sample for this research. Acute re-
spiratory distress syndrome was categorized in accordance with the
Berlin definition reflecting each subject’s worst oxygenation level and
with physicians adjudicating chest radiographs (ARDS Definition Task
Force et al, 2012). Informed consent was obtained from all participants.

Flow cytometry

For flow cytometric analysis of circulating leukocytes, peripheral blood
was collected in Na-heparin. Except for the MDSC panel, in which
PBMCs were prepared by density gradient centrifugation, erythrocytes
were lysed with BD Pharm Lyse. Peripheral blood was washed in
Dulbecco’s PBS (DPBS), lysed in 1× BD Pharm Lyse, andwashed again in
DPBS. PBMC cell suspensions were prepared with Ficoll-Paque fol-
lowing themanufacturer’s protocol. Cells were stored briefly in storage
medium (10%heat-inactivated fetal bovine serum/1% L-glutamine/1%
pen-strep) before staining with antibody cocktails.

For each panel, onemillion cells were stainedwith specific cocktails
of fluorochrome-conjugated antibodies (Tables S3 and S4). Cells were
washed with DPBS and then stained with dead cell dye (BD Fixable

Viability Stain 700) before washing with wash buffer (0.5% BSA/DPBS/
NaN3). Cells were then treated with 50 μl of Fc-blocking solution (2%
normal rabbit serum/10% BD Fc Block/DPBS) before application of a
100-μl antibody cocktail diluted in wash buffer. Samples were stained
within 6 h of sample collection and analyzed on a BD Biosciences
FACSCanto flow cytometer within 2 h of staining. The stopping gate was
set to acquire 500,000 viable, nucleated single cells.

Supervised quantification of immune cell populations (gating)

Immune populations were quantified by manual analysis with BD
FACSDiva. Absolute counts of populations were exported to comma
separated values and relative population sizes were calculated in
Microsoft Excel. Gating for each panel startedwith a time gate, followed
by a singlet gate (FSC-A versus FSC-H). Next, viable cells (dead cell dye
versus FSC-A) and nucleated cells (FSC-A versus SSC-A) were gated.
Populations of MDSCs were gated sequentially from leukocytes (CD45
versus SSC-A), then CD3/CD56/CD19 (Lin)- and HLA-DR−/dim cells, fol-
lowed by CD33+ and CD11b+ cells. From there, granulocytic cells were
defined as CD14− and CD15+, monocytic cells as CD14+ and CD15−/
dim, and immature forms as CD14− CD15−/dim.

TREG were defined by sequential gating of lymphocytes (CD45
versus SSC), T cells (CD45 versus CD3), T helper (CD8 versus CD4),
and finally TREG were defined as CD127 dim and CD25+. The TFH panel
was gated the same as in the T cell regulatory panel down to the
CD4+ helper gate. Under this gate, CD185+ cells were quantified
(CD185 versus CD8) and the ICOS bright, PD-1 bright (CD278 versus
CD279) cells were gated. The ICOS bright, PD-1 bright TFH gate was
placed under the CD185+ gate to identify the population with all the
phenotypic markers of TFH lineage in this panel.

The analysis of the T cell memory and checkpoint panels started
with identifying T cells (CD3 versus SSC), then the CD4 helper and
CD8 cytotoxic subsets. To analyze the T-cell checkpoint panel, in-
dividual exhaustion markers were gated on histogram plots. The
T-cell memory panel was further subdivided into CD45RA+/CD45RO−

and CD45RA−/CD45RO+ subsets. Under these gates, two quadrant
gates were placed on CD62L versus CCR7 and CD62L versus FAS.

Gating for the B-cell panel began with CD45 versus CD19 then
FSC-A and SSC-A to identify cells of the B lineage. The CD20+ and
CD20− subsets were gated (CD19 versus CD20) and IgG and IgM were
quantified within the CD20+ subset (IgM versus IgG).

NK cells were identified by sequential gates on CD56 versus CD3,
FSC-A versus SSC-A, and CD56 versus CD16. CD56+, CD16 bright,
mature NK cells were then interrogated for their reactivity with
individual anti-KIR (CD158) and anti-NKG2A (CD159a) antibodies
with gates on histogram plots. KIR-negative NK were identified by
sequential gating on CD158a versus CD158b double-negative, then
CD158i and CD158e double-negative subsets.

Statistical testing

Nonparametric Mann–Whitney U tests were used to assess the
significance of pairwise changes in the proportions of immune
populations between severity groups using the Pingouin package,
version 0.3.7. Multiple test correction was performed with the
Benjamini–Hochberg FDR method.
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Single-cell analysis of immune cell populations

To select cells from the events, single cells were gated using
forward-side scatter height and area, CD45-positivity, viability dye-
negativity, and the major marker of each panel (e.g., CD3 for T cell
memory panel). Compensation was applied using FlowKit (White,
2020) version 0.5.0, and an inverse hyperbolic transformation
(AsinhTransform) was applied with parameters t = 10,000, m = 4.5, a
= 0. To construct a shared latent representation for all cells, di-
mensionality reduction was performed with principal component
analysis, a neighbor graph was computed using 15 neighbors per
cell, UMAP (Becht et al, 2018) with default parameters, and Leiden
clustering, all using the Scanpy package (Wolf et al, 2018) version
1.5.1. For each discovered single-cell cluster, a proportion of cells
were calculated in relation to a specific clinical factor after nor-
malization by the frequency of the same factor in the cohort.

Pseudotime inference and time series modeling of immune cell
dynamics during disease progression

To learn a latent manifold of the data, the nonlinear method Laplacian
Eingenmaps (Belkin & Niyogi, 2003) was used as implemented in the
“SpectralEmbedding” method of the scikit-learn framework (Pedregosa
& Varoquaux, 2011) (version 0.23.0) with default parameters. A z-scored
matrix of proportional data was input for all immune cell populations
(variables) and patient samples (observations). To rank the features by
their association with the learned space, Pearson’s correlation was
calculatedbetween thefirst component andeachvariable, in addition to
the fold and absolute change in the variable between the top and
bottom10%of the samples in eachextremeof theembedding. The same
procedure applied to a UniformManifold Approximation and Projection
(UMAP) latent representation of the same data yielded similar results,
with the exception that the spread of samples according to disease
progression was parallel to multiple learned axes rather than single.

To rank variables by the amount of change in both real time since
the reported start of symptoms for a single patient or over the
learned latent space across all patients, GPy package (GPy) was
used to fit Gaussian Process regression models on the learned
pseudotime axis (independent variable) and the abundance of
each immune cell population (dependent variables). A variable
radial basis function kernel and a constant kernel (both with an
added noise kernel) were fitted and the log-likelihood and SD of the
posterior probability of the two were compared as described
previously (Rendeiro et al, 2020). To cluster the abundance of
immune populations based on their dynamics over the pseudotime
axis, the same kernels were used to fit a Mixture of Hierarchical
Gaussian Processes (MOHGP) as implemented in the GPClust
package (Hensman et al, 2012 Preprint, 2013) using eight as an initial
guess of number of clusters.

Linear modeling of immune cell type abundances

Because of the proportional nature of the dataset, generalized
linear models were fit using a γ-distributed noise model with a log-
link function. Ridge regularization was used to ensure robust co-
efficients given the low abundance of some populations, and the
model was fit with ordinary least squares optimization using the

statsmodels package (Seabold & Perktold, 2010) version 0.11.1.
Categorical variables were one-hot encoded and numeric ones
such as age or days since symptoms started were kept as years or
days, respectively; the date of acquisition was transformed into
days and scaled to the unit interval. Because values for clinical
categorical variables and comorbidities were only available to
COVID-19 patients, various models were used that aimed to explore
different aspects of immune system change during COVID-19:

1. Comparison of healthy donors to COVID-19 patients: sex + race +
age + batch + COVID-19.

2. Effect of clinical/demographic factors on COVID-19 patients: sex
+ race + batch + COVID-19 + severity group + hospitalization +
intubation + death + diabetes + obesity + hypertension + age in
years + days since symptoms start.

3. Effect of tocilizumab treatment on severe patients only: sex +
age + batch + tocilizumab.

To generate a graph of interactions between factors and immune
populations, significant coefficients (FDR-adjusted P-value < 0.05) were
used as undirected edges between factors and immune populations.
For edges between factors, the Pearson correlation between factors
across immune populations was used. Exclusively for visualization,
coefficients for the continuous variables “age”and “time since symptoms
started” were multiplied by half of the median of the values of that
variable (33.0 and 10.8, respectively) to make the range of coefficients
comparable with the categorical variables. Visualizations were produced
using Gephi version 0.9.2 with the Force Atlas2 layout with parameters
“LinLog mode,” “scaling factor” 8.0, and “gravity” 11.0.

Prediction of disease severity from immunotypes

A Random Forest Classifier was trained as implemented in scikit-learn
framework (Pedregosa & Varoquaux, 2011) (version 0.23.0) to distin-
guish between cases with “mild” and “severe” disease using 10-fold
cross validation. The cross validation loop was repeated 100 times and
models were fit with real or randomized labels. Test set performance
was assessed with the ROC AUC. To investigate the performance of the
classifier, feature importance was averaged across cross validation
folds and iterations and the log fold importance of the real models
over the randomized labels was calculated. A sign was added to the
feature importance depending on the sign of the Pearson correlation
of each variable with each class. Only the earliest temporal sample of
each patient was used to ensure lack of data leakage (avoid training/
testing on samples from the same patient without stratified cross
validation) and to maximize the utility of the model. The same cross
validation scheme was used to develop a classifier using a subset of
features but including feature selection using mutual information
inside the cross validation loop. To predict severity longitudinally for
single patients, a model was trained on the initial samples from all
other patients and tested on the samples of the patient in question.

Data Availability

Quantification of immune cell populations is available as a Sup-
plementary Table file. Hierarchical data format files with single cell
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data (h5ad) are available as indicated in the repository with source
code for the study (https://github.com/ElementoLab/covid-flowcyto).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.202000955.

Acknowledgements

This project was supported by a Translational Pathology Research COVID-19
grant to G Inghirami and by the National Center for Advancing Translational
Science of the National Institute of Health Under Award Number
UL1TR002384 to O Elemento and M Salvatore. AF Rendeiro is supported by
the National Cancer Institute grant T32CA203702. CK Vorkas is supported by
National Institutes of Health (NIH) K08 AI132739; A Morales is supported by
grant KL2TR002385 of the Clinical and Translational Science Center at Weill
Cornell Medical College. K Saito is supported by NIH K08 AI139360; CD Brown
is supported by NIH T32 AI07613-19 (PI: Gulick) and by the Kellen Foundation.
L Galluzzi is supported by from the Leukemia and Lymphoma Society (LLS), a
startup grant from the Dept. of Radiation Oncology at Weill Cornell Medicine
(New York, US), a Rapid Response Grant from the Functional Genomics
Initiative (New York, US). We thank Andrew Marderstein, Fayzan Chaudhry,
and Liron Yoffe for helpful discussions on the machine learning classifier for
disease severity. We are grateful for the support of members of the Im-
munopathology laboratory at New York Presbyterian Hospital, Weill Cornell
Medicine, whose dedication and contribution have been instrumental for the
execution of this project. We are grateful to the patients and their family who
agreed to be part of the study and all the medical staff who cared for them.

Author Contributions

AF Rendeiro: conceptualization, data curation, software, formal analysis,
visualization, methodology, project administration, and writing—original
draft, review, and editing.
J Casano: resources, data curation, formal analysis, investigation,
methodology, and writing—review and editing.
CK Vorkas: conceptualization, resources, data curation, supervision, in-
vestigation,methodology, andwriting—original draft, review, and editing.
H Singh: data curation and writing—review and editing.
A Morales: data curation and investigation.
RA DeSimone: data curation and writing—review and editing.
GB Ellsworth: data curation and writing—review and editing.
R Soave: data curation.
SN Kapadia: data curation.
K Saito: data curation.
CD Brown: data curation.
J Hsu: data curation.
C Kyriakides: data curation, investigation, and writing—review and editing.
S Chiu: resources, data curation, formal analysis, validation, in-
vestigation, and methodology.
LV Cappelli: data curation and writing—review and editing.
MT Cacciapuoti: data curation.
W Tam: data curation.
L Galluzzi: conceptualization and writing—original draft, review, and
editing.
PD Simonson: data curation, software, formal analysis, investiga-
tion, and writing—review and editing.

O Elemento: conceptualization, resources, supervision, funding ac-
quisition, project administration, and writing—original draft, review,
and editing.
M Salvatore: conceptualization, resources, data curation, supervi-
sion, funding acquisition, investigation, methodology, project ad-
ministration, and writing—original draft, review, and editing.
G Inghirami: conceptualization, resources, data curation, supervi-
sion, funding acquisition, investigation, methodology, project ad-
ministration, and writing—original draft, review, and editing.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

Agrati C, Sacchi A, Bordoni V, Cimini E, Notari S, Grassi G, Casetti R, Tartaglia E,
Lalle E, D’Abramo A, et al (2020) Expansion of myeloid-derived
suppressor cells in patients with severe coronavirus disease (COVID-
19). Cell Death Differ 27: 3196–3207. doi:10.1038/s41418-020-0572-6

Alkhouli M, Nanjundappa A, Annie F, Bates MC, Bhatt DL (2020) Sex
differences in case fatality rate of COVID-19: Insights from a
multinational registry. Mayo Clin Proc 95: 1613–1620. doi:10.1016/
j.mayocp.2020.05.014

ASARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT,
Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky (2012) Acute
respiratory distress syndrome: The Berlin definition. JAMA 307:
2526–2533. doi:10.1001/jama.2012.5669

Aschenbrenner AC, Mouktaroudi M, Kraemer B, Antonakos N, Oestreich M,
Gkizeli K, Nuesch-Germano M, Saridaki M, Bonaguro L, Reusch N, et al
(2020) Disease severity-specific neutrophil signatures in blood
transcriptomes stratify COVID-19 patients. BioRxiv–Infectious
Diseases (except HIV/AIDS) doi:10.1101/2020.07.07.20148395

Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, Ginhoux F, Newell
EW (2018) Dimensionality reduction for visualizing single-cell data
using UMAP. Nat Biotechnol 37: 38–44. doi:10.1038/nbt.4314

Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Comput 15: 1373–1396. doi:10.1162/
089976603321780317

Bellesi S, Metafuni E, Hohaus S, Maiolo E, Marchionni F, D’Innocenzo S, La
Sorda M, Ferraironi M, Ramundo F, Fantoni M, et al (2020) Increased
CD95 (Fas) and PD-1 expression in peripheral blood T lymphocytes in
COVID-19 patients. Br J Haematol 191: 207–211. doi:10.1111/bjh.17034

Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR (2008)
Adoptive transfer of effector CD8+ T cells derived from central
memory cells establishes persistent T cell memory in primates. J Clin
Invest 118: 294–305. doi:10.1172/jci32103

Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR,
Freeman GJ, Vignali DAA, Wherry EJ (2009) Coregulation of CD8+ T cell
exhaustion by multiple inhibitory receptors during chronic viral
infection. Nat Immunol 10: 29–37. doi:10.1038/ni.1679
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Krämer B, Krammer T, Brumhard S, Bonaguro L, et al (2020a)
Suppressive myeloid cells are a hallmark of severe COVID-19.
BioRxiv–infectious Diseases (except HIV/AIDS) doi:10.3390/
cells9112374

Schulte-Schrepping J, Reusch N, Paclik D, Baβler K, Schlickeiser S, Zhang B,
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