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Gut microbiota–derived short-chain fatty acids protect
against the progression of endometriosis
Sangappa B Chadchan1,2, Pooja Popli1,2, Chandrasekhar R Ambati5, Eric Tycksen4 , Sang Jun Han5, Serdar E Bulun6,
Nagireddy Putluri5, Scott W Biest1,3, Ramakrishna Kommagani1,2

Worldwide, ~196 million are afflicted with endometriosis, a painful
disease in which endometrial tissue implants and proliferates on
abdominal peritoneal surfaces. Theories on the origin of endo-
metriosis remained inconclusive. Whereas up to 90% of women
experience retrograde menstruation, only 10% develop endome-
triosis, suggesting that factors that alter peritoneal environment
might contribute to endometriosis. Herein, we report that whereas
some gut bacteria promote endometriosis, others protect against
endometriosis by fermenting fiber to produce short-chain fatty
acids. Specifically, we found that altered gut microbiota drives
endometriotic lesion growth and feces from mice with endome-
triosis contained less of short-chain fatty acid and n-butyrate than
feces frommice without endometriosis. Treatment with n-butyrate
reduced growth of both mouse endometriotic lesions and human
endometriotic lesions in a pre-clinical mouse model. Mechanistic
studies revealed that n-butyrate inhibited human endometriotic
cell survival and lesion growth through G-protein–coupled re-
ceptors, histone deacetylases, and a GTPase activating protein,
RAP1GAP. Our findings will enable future studies aimed at devel-
oping diagnostic tests, gut bacteria metabolites and treatment
strategies, dietary supplements, n-butyrate analogs, or probiotics
for endometriosis.
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Introduction

Endometriosis, in which endometrial tissue exits the uterus and
implants and proliferates on peritoneal surfaces in the abdomen,
afflicts ~196 million women globally, or 1 in 10 females between 12
and 52 yr of age. Half of these women experience chronic pelvic pain
(1), and many experience excessive bleeding, infertility, and pain
with menstruation, intercourse, bowel movements, or urination.
The prevailing theory is that endometriotic lesions establish during
retrograde menstruation, which 90% of women experience, expels

endometrial tissue into the peritoneal space, where it can implant
on surrounding tissues such as the intestine (1). Usually, the im-
mune system clears these cells. However, if this process fails, the
endometrial cells establish lesions, which can then spread in re-
sponse to inflammation and macrophage-released pro-inflammatory
cytokines and growth factors (2, 3). Each of the current strategies to
treat endometriosis—pain medication, hormonal therapy, surgical
excision of endometriotic lesions, and hysterectomy—has negative
side effects, and none can prevent recurrences (4). Thus, to develop
new approaches to treat this painful disease and improve women’s
fertility, we need a more detailed understanding of the underlying
mechanisms of and improve the women’s fertility rate and health
affected by this disease.

We previously reported that mice that consumed broad-spectrum
antibiotics after surgical induction of endometriosis developed
smaller endometriotic lesions than mice that did not consume
antibiotics (5). In addition, Ata et al (6) reported that gut bacterial
profiles differed between women with and without endometriosis
(n = 14 per group) (6). Recently, a clinical study of human stool
samples revealed that overall diversity (α and β) of gut microbiota
was significantly higher in healthy controls than in patients with
endometriosis (7). In-depth analysis suggested that 12 genera
belonging to the classes Bacilli, Bacteroidia, Clostridia, Coriobacteriia,
and Gammaproteobacter differed between healthy controls and
endometriosis patients (7). Moreover, fecal metabolomics identified
difference in gut microbiota and associated metabolites in mice with
and without endometriosis (8). Although these data suggest func-
tional crosstalk between the gut microbiota and endometriotic le-
sions, themechanismsbywhich gutmicrobiota influence endometriotic
lesion growth are unknown.

One mechanism by which mammalian gut bacteria affect host
physiology and immunological processes (9) is by processing otherwise
indigestible nutrients into biologically active metabolites (10, 11) in-
cluding short-chain fatty acids (SCFAs). SCFAs such as acetate, propi-
onate, n-butyrate, pentanoic (valeric) acid, and hexanoic (caproic) acid
are used as an energy source by enterocytes or are transported into
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the bloodstream (12), where they can have anti-proliferative (13,
14, 15) and anti-inflammatory (16) effects on distant organs (17).
For example, n-butyrate suppresses proliferation of human breast
(14) and colorectal (18) cancer cells. Moreover, n-butyrate induces
anti-inflammatory effects in both colonic lamina propriamacrophages
and bone marrow-derived macrophages (19). In addition, n-butyrate
inhibits expression of the pro-inflammatory cytokines tumor necrosis
factor α (TNF-α) and IL-6 in lipopolysaccharide-induced mac-
rophages (20). SCFAs primarily affect cells via two key mecha-
nisms. First, they can activate the G-protein-coupled receptors
GPR43, GPR41, and GPR109A (21), which are known to down-
regulate inflammation (22, 23). Second, they can inhibit histone
deacetylases (24, 25).

Here, we used a mouse injection model of endometriosis to test
the hypothesis that gut microbiota–derived SCFAs influence endo-
metriotic lesion progression. We report that mice with endometriosis
have less fecal n-butyrate than thosewithout endometriosis and that
n-butyrate administration can reduce endometriotic lesion growth.
Moreover, we show that n-butyrate acts through G-protein–coupled
receptors (GPRs), histone deacetylases, and RAP1GAP to inhibit endo-
metriotic lesion growth and interestingly, n-butyrate regulate RAP1GAP
possibly through inhibition of HDAC1. In addition, we showed that
n-butyrate reduces the level of active RAP1 in the endometriotic
epithelial cells. Finally, we report that n-butyrate inhibits growth of
human endometriotic cells both in vitro and in vivo in a pre-clinical
mouse model.

Results

Gut bacteria drive lesion growth in a mouse model of
endometriosis

To determine whether gut bacteria promote endometriotic lesion
growth in a mouse injection model of endometriosis, we con-
sidered two possible models: germ-free or microbiota-depleted
mice. We chose the microbiota-depleted model for two main rea-
sons. First, germ-free mice have several developmental defects that
microbiota-depleted mice do not have (26). This is likely because
germ-free mice are sterile throughout life, whereas microbiota-
depleted mice have normal microbial compositions until the time
of depletion. Second, germ-free mice lack several immune func-
tions (27) and thus are not a suitable model for inflammatory
diseases such as endometriosis. In contrast, microbiota-depleted
mice have nearly normal immune functions (28). We generated
microbiota-depleted mice by orally gavagingmice daily with broad-
spectrum antibiotics for 7 d as described previously (29, 30). Next,
we induced endometriosis by dissecting the uterus out of estrogen-
treated donor mice and injecting uterine fragments into the peri-
toneal space of control and microbiota-depleted (labeled as MD in
figures) mice (31, 32) (Fig S1A). Upon examination 21 d later, MD mice
had smaller and fewer endometriotic lesions that were less fluid-
filled and contained fewer proliferative cells (Ki-67-positive) than
control mice had (Fig S1B–G).

To determine whether the reduced endometriotic lesion growth
in microbiota-depleted mice was due to altered gut bacteria, we

generated microbiota-depleted mice, injected uterine fragments
from control donor mice, and then orally gavaged the recipient
mice with feces from mice with and without endometriosis (Fig 1A).
Microbiota-depleted mice that received feces from mice with en-
dometriosis developed endometriotic lesions that were of similar
size and mass as those that developed in non-microbiota-depleted
mice (Fig 1B–E, compare MD+E to control). However, microbiota-
depleted mice that received feces from mice without endome-
triosis (MD+NE) had significantly smaller endometriotic lesions
than microbiota-depleted mice that received feces from mice
with endometriosis (MD+E) (Fig 1B–E). In addition, lesions in
control mice and in microbiota-depleted mice that received
feces from mice with endometriosis (MD+E) had thick epithelium
and stroma, whereas lesions in microbiota-depleted mice that
received PBS (MD+PBS) or feces from mice without endometri-
osis (MD+NE) had thin epithelium and stroma (Fig 1F). Finally,
lesions in microbiota-depleted mice that received feces from
mice with endometriosis (MD+E) had similar numbers of prolif-
erative cells (stained with Ki-67) as lesions in control mice and
more proliferative cells than lesions in microbiota-depleted mice
that received feces from mice without endometriosis (MD+E) or
PBS (MD+PBS) (Fig 1G). These data indicate that feces from mice
with endometriosis contain a factor(s) that promotes endo-
metriotic lesion growth or that feces from mice without endome-
triosis contains a factor(s) that inhibits/protects endometriotic lesion
growth.

SCFAs are reduced in feces from mice with endometriosis

Given that gut bacteria produce SCFAs that can affect host phys-
iology, we wondered whether mice with and without endometriosis
had similar concentrations of fecal SCFAs. Thus, we measured the
relative concentrations of 10 SCFAs in feces from mice with (Endo)
and without (Sham) endometriosis (Fig 2A). The accurate and re-
producible methods for the quantification of SCFA in fecal samples
using liquid chromatography-tandem mass spectrometry (LC-MS)
are well established (33, 34). In sham mice, the most abundant
SCFAs were acetate, propionate, and n-butyrate (Fig S2A and B). On
examining all 10 SCFAs, we found that mice with endometriosis
had similar concentrations of seven SCFAs (acetate, propionate,
2-methyl-butyrate, iso-valerate, 3-methly valerate, iso-caproate, and
caproate) as sham (without endometriosis) mice (Fig 2A). However,
mice with endometriosis had significantly lower concentrations of
n-butyrate, iso-butyrate, and valerate than mice without endo-
metriosis (Fig 2A). Apart from n-butyrate, other two most common
SCFA, acetate and propionate were nonsignificantly down-regulated
in the feces ofmicewith endometriosis (Fig 2A). These results suggest
that the development of endometriosis is associated with an altered
composition of gut SCFAs.

n-butyrate inhibits endometriotic cell viability and lesion
formation

We next examined the effects of the three most common
SCFAs—acetate, propionate, and n-butyrate (Fig S2A and B) on
endometriosis lesion growth in mice. We induced endometriosis by
injecting uterine fragments from donor mice into the peritoneal
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space of recipient mice and then provided the mice with drinking
water containing acetate, propionate, or n-butyrate (300 mM) (35,
36) for 21 d (Fig 2B). Mice that consumed acetate or propionate
showed the modest effect on the endometriotic lesion mass and
statistically nonsignificant reduction in the lesion volume (Fig
2C–F). However, mice that consumed n-butyrate developed sig-
nificantly fewer and smaller lesions thanmice that consumed vehicle
(Fig 2C–F). In addition, lesions in mice that consumed n-butyrate had
thin stroma and epithelium (Fig S3A) and fewer proliferative (Ki-67-
positive) cells andmacrophages (F4/80-positive cells) than lesions in
mice that consumed acetate, propionate or vehicle (Fig S3B and C).
These results suggest that n-butyrate, but not acetate or propionate,

inhibits endometriotic lesion growth and inflammatory cell infil-
tration in mice.

We next investigated the effect of n-butyrate on cells derived
from human endometriotic lesions. At physiological concentra-
tions (37), n-butyrate inhibited in vitro growth of both immor-
talized human endometriotic epithelial cells expressing luciferase
(iHEECs/Luc) (Fig 3A) and primary human endometriotic stromal
cells (HEnSCs) (Fig 3B). When we treated iHEECs/Luc (Fig S4A and
B) and HEnSCs (Fig S4C and D) with acetate or propionate, it
showed the modest effect on cellular proliferation at later time
points only. Next, we injected iHEECs/Luc and immortalized hu-
man endometrial stromal cells expressing luciferase (iHESCs/Luc)

Figure 1. Gut bacteria are required for endometriotic
lesion growth in mice.
(A) Schematic of experimental timeline and
procedures. Mice were microbiota depleted (MD) for 7 d,
then injected with uterine fragments on Day 0. Mice
were orally gavaged with PBS (MD+PBS), feces from
mice without endometriosis (MD+NE), or feces from
mice with endometriosis (MD+E) on Days 7 and 14.
(B, C, D, E) Representative ectopic lesion images, (C)
volumes, (D)masses, and (E) number of lesions from the
indicated groups, 21 d after injection of endometrial
fragments. (F, G) Representative images of ectopic
lesions from the indicated treatment groups stained
with (F) hematoxylin and eosin (H & E) (yellow
dashed lines demarcate the epithelium and (G) anti-
Ki-67 antibody). E, epithelium; S, stroma. Data are
presented as mean ± SE (n = 5 mice). Scale bar
100 μm, *P < 0.05; **P < 0.01; and ***P < 0.001 ns,
nonsignificant.
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into the peritoneal space of immunocompromised mice and
provided them with drinking water containing vehicle or 300 mM
n-butyrate for 21 d. Mice that consumed n-butyrate developed
significantly smaller lesions than mice that consumed vehicle

(Fig 3C–F). In addition, the human cell–derived lesions in mice that
consumed n-butyrate had fewer proliferative (stained for Ki-67)
cells (Fig 3G and H) and macrophages (F4/80-positive cells) than
lesions in mice that consumed vehicle (Fig 3I). We conclude that

Figure 2. n-butyrate but not acetate or propionate inhibits endometriotic lesion growth in mice.
(A) The absolute concentration of indicated short-chain fatty acids in feces of mice with (Endo) and without (Sham) endometriosis. Data are presented asmean ± SE (n =
9–10 mice). (B) Schematic of experimental timeline and procedures. (C, D, E, F) Representative endometriotic lesion images, (D) volumes, (E) masses, and (F) number of
lesions from the indicated groups 21 d after injection of uterine fragments. Data are presented as mean ± SE (n = 5). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, and ns,
nonsignificant.
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n-butyrate inhibits growth of human endometriotic cells both in
vitro and in vivo in a pre-clinical mouse model.

n-butyrate inhibits endometriotic lesion growth, in part,
via GPCRs

SCFAs can activate the G-protein–coupled receptors GPR43, GPR41,
and GPR109A (38). As n-butyrate primarily functions through GPR43
and GPR109A (22, 23, 39, 40, 41, 42, 43, 44), we wondered whether
these receptors were required for the action of n-butyrate in
endometriotic cells. Thus, we pretreated iHEECs/Luc for 1 h with
GPR43 antagonist GLPG0974 (100 nM) (45), GPR109A inhibitor
mepenzolate bromide (MB), (100 nM) (46), or both and then treated
the cells with 2 mM n-butyrate for 24 h. Whereas cells treat-
ed with n-butyrate proliferated significantly less than vehicle-
treated cells, those treated with n-butyrate along with either of
the GPR antagonist or inhibitors proliferated significantly more

than cells treated with n-butyrate alone. Those treated with
n-butyrate plus both GPR inhibitors proliferated even more
(Fig 4A). These data suggest that both GPR43 and GPR109A are
required for n-butyrate–mediated inhibition of endometriotic cell
growth. To confirm this finding, we transfected iHEECs/Luc with
control non-targeting siRNA, siRNA targeting the gene encoding
GPR43 (FFAR2), siRNA targeting the gene encoding GPR109A
(HCAR2), or both targeted siRNAs. After 48 h, we treated the cells
with vehicle or 2 mM n-butyrate. Knockdown of FFAR2, HCAR2,
or both partially restored cell viability in n-butyrate-treated
cells (Fig 4B and C). Together, these results suggest that n-butyrate
signals through both GPR43 and GPR109A to prevent endometriotic cell
growth.

Next, to assess the in vivo role of GPCRs in the n-butyrate–
mediated suppression of endometriotic lesion growth, we induced
endometriosis by injecting uterine fragments from donor mice into
the peritoneal space of recipient mice. Then, we intraperitoneally

Figure 3. n-butyrate inhibits human endometriotic lesion growth in mice.
(A, B) Representative MTT cell viability assays of (A) Immortalized Human Endometriotic Epithelial Cells/Luciferase (iHEECs/Luc) and (B) primary Human Endometriotic
Stromal Cells (HEnSCs) isolated from human endometriotic lesion biopsies at indicated time points and n-butyrate concentrations. Graphs represent data as mean ± SE
from triplicate samples from one experiment (three experiments were conducted in total, n = 3). (C, D) Representative (C) bioluminescence images and (D) lesions from
mice of the indicated groups 21 d after induction of endometriosis. (E, F) Quantitation of lesion (E) volumes and (F) masses. (G, H, I) Representative images of ectopic
lesions from the indicated treatment groups stained with (G) hematoxylin and eosin (H & E) (yellow dashed lines demarcate the epithelium), scale bar 200 μm (H) anti-Ki-
67 antibody and (I) anti-F4/80 antibody. E, epithelium; S, stroma. Data are presented as mean ± SE; (n = 5 mice per group), scale bar 100 μm; **P < 0.01, and ***P < 0.001.
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injected the mice with 10 mg/kg GLPG0974 (47) plus 10 mg/kg MB
(48) once per day from days 0 through 21 and provided the mice
with drinking water containing vehicle or 300 mM n-butyrate until
day 21 (Fig 4D). Mice that received GLPG0974 plus MB plus n-butyrate

developed endometriotic lesions that were larger than did themice
that received n-butyrate alone (Fig 4E–H). In addition, the mice that
received the two inhibitors and n-butyrate developed endometriotic
lesion that were of similar histological appearance (Fig S5A) and had

Figure 4. n-butyrate functions through G-protein–coupled receptors (GPRs) to inhibit endometriotic lesion growth.
(A) MTT cell viability assays of iHEECs/Luc treated with GPR43 antagonist GLPG0974, GPR109A inhibitor mepenzolate bromide, or both combined and treated with 2 mM
n-butyrate for indicated time points. (B)MTT cell viability assays of iHEECs/Luc transfected with the indicated siRNAs and treated with 2 mM n-butyrate for indicated time
points. (C) Quantitative RT-PCR of FFAR2 and HCAR2 in siRNA-transfected iHEECs/Luc after 48 h. The graphs in (A), (B), and (C) show representative data presented as mean
± SE from triplicate samples from one experiment (three experiments were conducted in total, n = 3). (D) Schematic of experimental timeline and procedures. (E, F, G, H)
Representative images of ectopic endometriotic lesions, (F) volumes, (G) masses, and (H) numbers of lesions from the indicated groups 21 d after injection of uterine
fragments. Data are presented as mean ± SE (n = 5), *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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similar numbers of proliferative cells (Fig S5B) as those in control
mice. These in vivo findings further support the idea that n-butyrate
inhibits lesion growth by acting through both GPR43 and GPR109A
receptors.

n-butyrate inhibits HDAC, and HDAC activity is required for
endometriotic cell and lesion growth

Blocking GPR43 and GPR109A only partially prevented n-butyrate–
mediated inhibition of endometriotic cell growth in vitro and lesion
growth in vivo, suggesting that n-butyrate also has GPCR-independent
functions in endometriosis. Earlier reports suggested that n-butyrate
can inhibit class I and II histone deacetylases (HDACs) (19, 24, 25, 49).
HDAC activity can be assessed by measuring the amount of acet-
ylated histone H3, and n-butyrate treatment leads to increased
acetylated histone H3 in other cell types (19, 49). To determine
whether n-butyrate acts as an HDAC inhibitor in iHEECs/Luc cells,
we treated these cells with the pan-HDAC inhibitors trichostatin-A
(TSA) and Vorinostat (SAHA); the HDAC1 and three inhibitor Enti-
nostat (MS-275); the HDAC2 inhibitor Valproic acid (VPA); or the
HDAC3 inhibitor RGFP966. Western blotting revealed that treatment
with n-butyrate, TSA, SAHA, or Entinostat all increased the abun-
dance of acetylated histone H3 (Ac-H3) to a similar extent (Fig S6A).
We next measured cell viability and found that treatment with
SAHA, TSA, or Entinostat inhibited viability to a greater extent than
did treatment with n-butyrate (Fig S6B). Conversely, inhibition of
HDAC2 and HADC3 by their respective inhibitors (VPA and RGFP966)
only moderately inhibited cell viability at later time points (Fig S6B).
Consistent with an idea that HDAC1 plays a role in endometriotic
lesion growth, we found that it was abundantly expressed in ectopic
endometriotic lesions in mice (Fig 5A).

Next, we investigated the effect of these HDAC inhibitors on
growth of endometriotic lesions in mice. We induced endometriosis
as described earlier and then intraperitoneally injected the mice
with HDAC inhibitors once per day from days 0 through 21 (Fig 5B).
Lesions from mice that received VPA (HDAC2 inhibitor) or RGFP966
(HDAC3 inhibitor) had similar volume, mass, and number as lesions
from control/vehicle mice (Fig 5C–F). In contrast, lesions from mice
that received n-butyrate, pan-HDAC inhibitors (TSA and SAHA), or
MS-275 (HDAC1 & three inhibitor) had smaller and fewer endo-
metriotic lesions than control/vehicle mice (Fig 5C–F). In addition,
lesions in mice that consumed n-butyrate, TSA, SAHA, or MS-275 had
thin stroma and epithelium (Fig 5G). We conclude that n-butyrate
inhibits HDAC activity in endometriotic cells and that HDAC activity
is required for endometriotic cell viability and lesion growth.

RAP1GAP contributes to the n-butyrate–mediated inhibition of
endometriotic cell viability

To further explore the mechanism by which n-butyrate inhibits
endometriotic cell growth, we performed RNA-seq analysis of
iHEECs/Luc treated with vehicle or n-butyrate for 24 h. As shown in
Fig 6A, hierarchical clustering revealed a distinct n-butyrate–
dependent transcriptome in iHEECs/Luc cells. Using a 2.0-fold
cutoff and Benjamini–Hochberg false discovery rate of <0.05
threshold for inclusion, we identified 1,830 genes that were differentially
expressed between vehicle- and n-butyrate–treated iHEECs/Luc (Fig S7A

and B and Table S1). Gene Ontology (GO) enrichment analysis
revealed that n-butyrate up-regulated expression of genes in-
volved in several biological processes including synaptic signaling,
cation transmembrane transport, ion and chemical homeostasis,
and cell–cell signaling, and down-regulated expression of genes
involved in chromosome organization, chromatin organization,
histone modification, covalent chromatin modification, and cellular
response to DNA damage. In addition, the top 25 pathways containing
the most significantly up-regulated genes in n-butyrate–treated cells
included calcium signaling, metabolic pathways, RAP1 signaling, etc.
(Fig S7C).

We chose to focus on the RAP1 signaling pathway for several
reasons. First, this pathway plays a key role in cell proliferation,
growth, adhesion, and motility, and RAP1 is a central regulator of
tumor cell migration and invasion (50). RAP1 is active when bound
to GTP, and its activity is regulated by GTP exchange factors, which
activate it, and GTPase activating protein (RAP1GAP), which inac-
tivates it. Consistent with its ability to inactivate RAP1, RAP1GAP is a
tumor suppressor in several human cancers, including endometrial
(51), thyroid (52, 53), pancreas (54), colon (55), melanomas (56),
prostate (57), and head and neck carcinomas (58). Second, we found
that expression of several genes in the RAP1 pathway were dif-
ferentially expressed between vehicle and n-butyrate–treated cells
(Fig S8). Third, RAP1GAP was one of the top genes up-regulated by
n-butyrate in our RNA-Seq analysis (Table S1). Fourth, from publicly
available Gene Expression Omnibus (GEO) datasets (GSE6364), we
found that the RAP1GAP raw expression score was significantly
lower in endometriotic lesions than in endometrial tissue from
healthy control women (59) (Fig 6B). Furthermore, we confirmed by
qRT-PCR that expression of RAP1GAP, but not RAP1GAP2 or RAP1GDS
was up-regulated in iHEECs/Luc cells exposed to n-butyrate (Fig
6C). In contrast to n-butyrate, acetate and propionate had no effect
on RAP1GAP (Fig S9A) RAP1GAP2 (Fig S9B) and RAP1GDS (Fig S9C)
expression in iHEECs/Luc cells. Subsequently, we analyzed the level
of active RAP1 in the iHEECs/Luc treated with 2 mM n-butyrate for
24 h. Active RAP1 detection kit based analysis revealed that
n-butyrate significantly reduced the level of active RAP1 (Fig 6D, left
panel). In contrast, the total level of RAP1 remains unchanged (Fig
6D, right panel). Finally, we confirmed that the level of RAP1GAP was
equally induced by both n-butyrate and Entinostat (MS-275), sug-
gesting that n-butyrate might induce the RAP1GAP through inhi-
bition of HDAC1 (Fig S10A). Furthermore, treatment of n-butyrate or
MS-275 had no effect on the induction of RAP1GAP2 (Fig S10B) and
RAP1GDS (Fig S10C).

Given the role of RAP1GAP as a tumor suppressor and our data
indicating that its expression is up-regulated by n-butyrate, we
wondered whether RAP1GAP is required for n-butyrate–mediated
suppression of cellular viability. To test this idea, we knocked
down RAP1GAP expression in iHEECs/Luc cells for 48 h and then
treated them with vehicle or 2 mM n-butyrate. Knockdown of
RAP1GAP in untreated cells had no effect on cell viability. However,
n-butyrate–treated cells in which RAP1GAP was knocked down pro-
liferated significantly more than n-butyrate–treated cells trans-
fected with control siRNA (Fig 6E). We conclude that n-butyrate
inhibits endometriotic cell growth, in part, by inducing expression
of RAP1GAP, resulting in inactivation of the pro-growth RAP1 sig-
naling pathway.
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Figure 5. n-butyrate inhibits HDAC activity, which is required for endometriotic cell growth.
(A) Representative images of eutopic endometrium and ectopic lesions of mice stained with anti-HDAC1 antibody from the indicated groups. E, epithelium; S, stroma.
White arrow indicates the HADC1-positive cells. Scale bar 100 μm. (B) Schematic of experimental timeline and procedures. (C, D, E, F) Representative images of
endometriotic lesions, (D) volumes, (E) masses, and (F) number of lesions from the indicated treatment groups 21 d after injection of uterine fragments. (G) Representative
images of ectopic lesions stained with hematoxylin and eosin (H & E) from the indicated treatment groups (yellow dashed lines demarcate the epithelium).
E, epithelium; S, stroma. Scale bar 100 μm. Data are presented as mean ± SE (n = 5), *P < 0.05, **P < 0.01, ***P < 0.001, and ns, nonsignificant.
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Discussion

Together, our data support the following model. First, endometri-
osis alters the gut microbiome, resulting in reduced production of
the SCFA, n-butyrate. Second, n-butyrate, but not acetate or pro-
pionate, inhibits endometriotic lesion growth. Third, n-butyrate
reduces endometriotic growth by at least three potentially over-
lapping mechanisms: activating GPR43 and GPR109A, inhibiting
histone deacetylase activity, and activating expression of RAP1GAP,
which inactivates the pro-growth RAP1 signaling pathway.

Several recent studies revealed a correlation between micro-
biota and endometriosis pathogenesis (6, 31, 60). For example,
women with endometriosis were more likely than women without
endometriosis to have uterine microbial dysbiosis (6, 61, 62, 63).
Moreover, previous work from our laboratory and others showed
that mice and women with endometriosis had altered gut microbial
communities (5, 6, 7, 31, 64). This idea is consistent with our fecal
microbiota transplant experiments, in which only fecal samples
from mice with endometriosis restored lesion growth in microbiota-
depleted mice. Moreover, our findings support the idea that gut

bacteria, as opposed to bacteria elsewhere in the body, play a
role in endometriotic lesion development. Given that women
with endometriosis have increased susceptibility to inflamma-
tory bowel disease (65), this altered gut bacteria in fact may link
endometriosis progression and colonic disease.

SCFAs are the by-products of bacterial fermentation of dietary
fiber and are generally beneficial (66, 67). SCFAs act as signaling
molecules and regulate several host biological processes, including
metabolism, immune function, and cellular proliferation (68, 69).
The most abundant SCFAs in humans are acetate, propionate, and
n-butyrate (70, 71, 72, 73). Although most SCFAs are used by colon
epithelial cells, SCFAs do enter the blood and reach peripheral
tissues (74). Generally, SCFAs are detected in serum and urine (75),
although at much lower concentrations than in the gut and feces
(76). Nonetheless, SCFAs act at extra-intestinal sites and can al-
leviate diabetes (77, 78) asthma (79), bone loss (80, 81), and obesity
(82). Treatment of HDAC inhibitor romidepsin inhibits the human
endometriotic cell proliferation, and VEGF expression (83, 84). Our
findings that n-butyrate inhibited HDAC activity and that HDAC
activity is required for endometriotic cell growth are consistent with

Figure 6. RAP1GAP mediates n-butyrate–driven endometriotic cell growth inhibition.
(A) Heat map of transcripts differentially expressed between vehicle- and n-butyrate–treated iHEECs/Luc with cutoff of FDR < 0.05 and logFC >2.0; n = 3 each group.
(B) Relative raw abundance of RAP1GAP, RAP1GAP2, and RAP1GDS transcripts from microarray analysis within a publicly available GEO dataset (GSE6364). Data are
presented as mean ± SE (n = 10). (C) Relative abundance of RAP1GAP, RAP1GAP2, and RAP1GDS transcripts in iHEECs/Luc treated with 2 mM n-butyrate for 24 h; n = 3 each
group. (D) Relative abundance of active RAP1 (GTP-bound) and total RAP1, in iHEECs/Luc treated with 2mM n-butyrate for 24 h; n = 4 each group. (E)MTT assay of iHEECs/
Luc transfected with control or RAP1GAP siRNA and then treated with 2 mM n-butyrate for indicated times. Data are presented as the mean ± SE from triplicate samples
from one experiment (three experiments were conducted in total). The graph on the right depicts quantitative RT-PCR–based confirmation of RAP1GAP knockdown in
iHEECs/Luc after 48 h of siRNA transfection. **P < 0.01, ***P < 0.001, ****P < 0.0001, and ns, nonsignificant.
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studies reporting elevated HDAC1 expression in lesions from
women with endometriosis (85, 86). Thus, future efforts could be
directed at delivering HDAC inhibitors, bacteria engineered to over-
produce n-butyrate (87, 88), n-butyrate producing Lactobacillus
strains (81), or n-butyrate analogs to treat endometriosis.

In many cell types, SCFAs function by activating G-protein
coupled receptors (19, 89, 90, 91). Consistent with the fact that
n-butyrate primarily activates GPR43 (40, 41, 42) and GPR109A (22,
23) in other tissues; we found that both GPR43 and GPR109A were
required for n-butyrate–mediated inhibition of endometriotic cell
and lesion growth. Given the anti-inflammatory role of these,
G-protein coupled receptors (91, 92), we plan to use GPR43 and
GPR109A null mice or double knockouts to determine whether
n-butyrate acts through these receptors to inhibit the inflam-
mation associated with endometriosis. Our findings that n-butyrate
inhibited endometriotic cell growth, in part, via RAP1GAP are con-
sistent with the role of RAP1GAP as a tumor suppressor in multiple
cancers. Given our data, we are especially interested to determine
whether GPR43, GPR109A, and HDACs are involved in n-butyrate–
mediated regulation of RAP1GAP expression. Such work may have
implications beyond endometriosis and could deepen our under-
standing of the mechanisms by which n-butyrate affects growth of
many tumor types.

In summary, our findings demonstrate that the bacteria-derived
metabolite n-butyrate reduces endometriotic lesion growth. As
production of SCFAs is dependent on both the type of gut bacteria
and dietary fiber intake (93), new avenues to prevent endometriosis
could include diet regimens, n-butyrate analogs, probiotics with
n-butyrate-producing bacteria, or n-butyrate-containing dietary
supplements. Finally, future work should be directed at determining
whether women with endometriosis have lower fecal n-butyrate
concentration than do healthy controls. If so, such a finding could
lead to development of a simple diagnostic or predictive tool for
endometriosis.

Materials and Methods

Animal studies

Mouse studies were performed according to a protocol (number
2019-1079) approved by the Washington University School of Medi-
cine Institutional Animal Care and Use Committee. Mice (C57BL/6,
Taconic; and immunocompromised nude, NU-FOXN1NU, Cat. no. 088-
CRL, Charles River Lab) were maintained in standard 12-h light/dark
conditions and provided ad libitum access to food and water.

Microbiota depletion with antibiotics

Mice (9–10 wk of age) were orally gavaged every 12 h for 7 d with a
cocktail containing 100 mg/kg ampicillin, 50 mg/kg vancomycin,
100 mg/kg neomycin, 100 mg/kg metronidazole, and 1 mg/kg
amphotericin-B. A gavage volume of 10 ml/kg body weight was
delivered with a stainless steel tube without sedation (28, 29). A
fresh antibiotic mixture was prepared every 3 d. The control mice
were gavaged with a similar volume of water.

Heterologous injection endometriosis model

Donor mice were subcutaneously injected with estradiol benzoate
(3 μg/mouse or 100 μg/kg) on day -7 (31, 32). On day 0, donor mice
were euthanized (one donor mouse for every two recipients), and
uteri were removed, placed in a Petri dish containing warm saline,
and cut longitudinally with scissors (94, 95). Endometrial tissue
from each uterine horn was mechanically disrupted to produce two
suspensions in which the maximal diameter of any piece of en-
dometrial tissue was less than 1 mm. Each suspension (0.4 ml) was
intraperitoneally injected (96) into a recipient mouse with a 1-ml
syringe and a 25-g needle (97). For the sham condition, a similar
procedure was performed, except mice were injected with saline.
After 21 d, mice were euthanized by cervical dislocation. The ab-
dominal cavity was immediately opened, and lesions were excised,
counted, measured, weighed, and processed for histology and
immunofluorescence (31, 32). 1.5-ml tubes were used to collect a
fresh fecal sample from the mice, by holding mice on the cage and
little pressure was applied on the back of the mice, and they
defecate into a tube, two to three times were tried to collect feces
from individual mice.

Oral gavage with feces

Fecal pellets from mice were frozen at −80°C immediately after
collection as reported previously (5, 98). On the day of trans-
plantation, fecal pellets were resuspended in PBS (1 fecal pellet/0.1
ml of PBS), and 200 μl of pooled fecal material was given by oral
gavage on days 7 and 14 after induction of endometriosis.

Measuring SCFAs by mass spectrometry

The concentrations of SCFAs weremeasured in themetabolomics core
at Baylor College of Medicine. Procedures for sample preparation,
extraction, and analysis by derivatization were performed as previ-
ously described (99). Briefly, 500 μl acetonitrile was added to each
fecal sample or to liver tissue (quality controls), samples were ho-
mogenized, and supernatant was collected. To 40 μl of supernatant,
20 μl of 200 mM 12C6-3NPH and 120 mM 1-Ethyl-3-(3-dimethylami-
nopropyl) carbodiimide (EDC) were added, and the mixture was in-
cubated for 30min at 40°C. Themixture was then cooled andmade up
to 1.91 ml with 10% aqueous acetonitrile, and 10 μl of this solution was
injected into a liquid chromatography tandem mass spectrometer
(Agilent Technologies) (100). Agilent Mass Hunter workstation software
was used to analyze chromatograms, and the peak areawas integrated
depending on the retention time. The concentration of eachmeasured
metabolite was calculated from normalized data (101, 102, 103, 104).
Two sample t tests were conducted to assess differences in con-
centrations of each metabolite (101, 102, 103, 104).

Treatment of mice with SCFAs, GPR modulators, and
HDAC inhibitors

From day 0 to day 21 after endometriosis induction, mice were
provided drinking water containing 300 mM sodium acetate (36),
sodium propionate (36), or sodium butyrate (19) (all from Sigma-
Aldrich) (36). These solutions were changed every week. The GPR43
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antagonist GLPG0974 (10 mg/kg) and GPR109A inhibitor MB (10 mg/
kg) were dissolved in dimethyl sulfoxide (vehicle) with 30% PEG-300
(Sigma-Aldrich) and administered via daily intra-peritoneal injec-
tion. Trichostatin-A (1 mg/kg), SAHA (25 mg/kg), MS-275 (20 mg/kg),
valproic acid (500 mg/kg), and RGFP0966 (25 mg/kg) (all from
Sigma-Aldrich) were dissolved in dimethyl sulfoxide with 30% PEG-
300 and administered from day 0 to day 21 via daily intra-peritoneal
injection. Similar amount of dimethyl sulfoxide with 30% PEG-300
was administered as vehicle.

Isolation of stromal cells from human endometriotic lesions

Human endometriotic tissues were obtained from women under a
protocol (IRB ID #: 201807160) approved by the Washington Uni-
versity Institutional Review Board. All participants were recruited
through the Washington University online classified section and
local newspaper ads. Eligible participants signed an Informed
Consent and Authorization form. Participants were excluded if they
had used probiotics, antibiotics, or any anti-inflammatory drugs
within 2 wk before surgery or had a history of uterine fibroids,
polycystic ovarian syndrome, or endometrial cancer. Ectopic
endometriotic lesions and eutopic endometrial biopsies were
collected from women undergoing endometriosis surgery. Human
endometriotic stromal cells were isolated from biopsies as pre-
viously described (105). In brief, cells were cultured in DMEM/F12
(Thermo Fisher Scientific) containing 10% fetal bovine serum and
1% antibiotic and antimycotics in a humidified atmosphere with 5%
CO2 and 95% air at 37°C. All experiments were carried out with
human endometriotic stromal cells isolated from at least three
participants. Dr. Serdar Bulun fromNorthwesternUniversity, Feinberg
School of Medicine, generously provided one additional human
endometriotic stromal cell lines.

siRNA transfection

Immortalized Human Endometrial Stromal Cells/Luciferase (iHESCs/
Luc) and Immortalized Human Endometriotic Epithelial Cells/Luciferase
(iHEECs/Luc) (both cell lines generously provided by Dr. Sang Jun
Han from Baylor College of Medicine (106)) were separately
maintained in DMEM/F12 containing 10% FBS, 100 U/ml penicillin,
100 mg/ml streptomycin, and 2.5 mg/ml amphotericin-B in hu-
midified condition with 5% CO2 and 95% air at 37°C. The iHEECs/Luc
cells are derived from an ovarian endometrioma lesion as de-
scribed previously (107). The medium was changed every other day.
The iHEECs/Luc were plated in six-well culture plates and treated
in triplicate with Lipofectamine 2000 transfection reagent and 60
pmol of non-targeting siRNA (D-001810-10-05) or siRNAs tar-
geting FFAR2 (L-005574-00-0005), HCAR2 (L-006688-02-0005), or
RAP1GAP (L-019706-00-0005) (GE Healthcare Dharmacon Inc.), as
described previously (105, 108). After 48 h, cells were treated with
2 mM sodium butyrate in complete growth media.

Xenotransplantation of human endometrial cells

This model of endometriosis was generated in athymic nude mice
(Charles River) as described previously (106). Briefly, 2 d before the
day of transplantation, mice were ovariectomized, and a sterile

60-d release pellet containing 0.36 mg of 17-β estradiol (Innovative
Research of America) was implanted. On the day of transplantation,
iHESCs/Luc and iHEECs/Luc cells were trypsinized with 0.05%
trypsin–EDTA, and 2 × 106 iHESCs/Luc and 2 × 106 iHEECs/Luc cells
were combined in 10 ml of DMEM/F12, pelleted, washed, resus-
pended in 100 μl of DMEM/F12, and mixed with 100 μl of Matrigel
(BD Biosciences). The cell suspension/Matrigel mixture (200 μl)
was intraperitoneally injected into the mice on the midventral
line just caudal to the umbilicus. After 21 d, mice were injected
with D-Luciferin, and bioluminescence images of each mouse
were collected with an in vivo image analysis system. Mice were
then euthanized and endometriotic lesions were collected. Endo-
metriotic lesion volumes (cubic millimetre) were measured with a
Vernier Caliper.

Hematoxylin and Eosin staining

Tissues were fixed in 4% paraformaldehyde, embedded in paraffin,
and then sectioned (5 μm) with a microtome (Leica Biosystem).
Tissue sections were deparaffinized, rehydrated, and stained with
Hematoxylin and Eosin as described previously (5). All the histology
was performed on three sections from each lesion of individual
mice, and one representative section image is shown in the re-
spective figures.

Immunofluorescence

Formalin-fixed and paraffin-embedded sections were deparaffi-
nized in xylene and rehydrated in an ethanol gradient, and antigen
was retrieved after boiling in citrate-buffer (Vector Laboratories
Inc.). After blocking with 2.5% goat serum (Vector laboratories)
diluted in PBS for 1 h at room temperature, sections were incubated
overnight at 4°C with primary antibodies (Table S2) diluted in 2.5%
normal goat serum. After washing with PBS, sections were incu-
bated with Alexa Fluor 488–conjugated secondary antibodies (Life
Technologies) for 1 h at room temperature, washed, and mounted
with ProLong Gold Antifade Mountant with DAPI (Thermo Fisher
Scientific).

Cell viability assays

Cell viability was determined by performing the 3-(4,5-
Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT)
assay (Promega) according to the manufacturer’s instructions.
Briefly, iHEECs/Luc or primary human endometriotic stromal cells
were counted and plated in 96-well plates, and relative viability
rates were evaluated at the indicated time points after treatment
with n-butyrate, 100 nM GLPG0974, 100 nM MB, 20 μM SAHA, 500 nM
TSA, 3 μM MS-275, 3 mM Valproic acid, or 10 μM RGFP0966 (all from
Sigma-Aldrich). For the GPRs study, the cells were pre-treated for 1 h
with 100 nM GLPG0974, 100 nM MB, or both, then treated with 2 mM
n-butyrate for 24 h. For knockdown experiments, after 48 h of siRNA
transfection, iHEECs/Luc were re-plated in 96-well plates at 5 × 103

cells per well. After 24 h, cells were treated with 2 mM sodium
butyrate (Sigma-Aldrich) for 0, 24, 48, or 72 h. At each time point, cell
viability was determined by the MTT assay. In all cases, 15 μl of MTS
(dye solution) reagent (Promega) was added to each well and

Role for short-chain fatty acids in endometriosis Chadchan et al. https://doi.org/10.26508/lsa.202101224 vol 4 | no 12 | e202101224 11 of 17

https://doi.org/10.26508/lsa.202101224


incubated for another 2 h. After addition of 100 μl of Solubilization
Solution, absorbance was measured at 570 nm with 650 nm as a
reference wavelength in a 96-well plate reader. The experiments
were performed three times each with three to five technical
replicates.

Transcription analysis

Cells were lysed in lysis buffer, and total RNA was isolated with the
Purelink RNA mini kit (Invitrogen) according to the manufacturer’s
instructions. RNA was quantified with a Nano-Drop 2000 (Thermo
Fisher Scientific). Then, 1 μg of RNA was reverse transcribed with the
High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Sci-
entific). The amplified cDNA was diluted to 10 ng/μl, and qRT-PCR
was performed with primers listed in Table S3 and Fast Taqman 2X
mastermix (Applied Biosystems/Life Technologies) on a 7500 Fast
Real-Time PCR system (Applied Biosystems/Life Technologies). The
delta–delta cycle threshold method was used to normalize ex-
pression to the reference gene 18S.

Detection of active RAP1

Active RAP1 (GTP-bound) was detected using an active RAP1 detection
kit, Cat, no. #8818; Cell Signaling Technology Inc. All steps were
performed according to the manufacturer’s instructions. Briefly,
750 μg of protein lysate from iHEECs/Luc cells treated with vehicle or
2mMn-butyrate for 24 h weremixed to the GST-RalGDS-RBD in a spin
cup inserted in the collection tube. Subsequently, the spin cups were
incubated at 4°C for 1 h with gentle rocking. The GTP-bound RAP1
(active RAP1) protein was eluted by adding the reducing sample
buffer. Finally, the eluted samples proceeded for Western blotting.

Western blotting

Protein lysates (40 μg per lane) were loaded on a 4–15% SDS–PAGE gel
(Bio-Rad), separated in 1X Tris-Glycine Buffer (Bio-Rad), and trans-
ferred to Polyvinylidene fluoride (PVDF) membranes (Millipore) via a
wet electro-blotting system (Bio-Rad), all according to the manufac-
turer’s directions and as described previously (109). PVDF membranes
were blocked for 1 h in 5% non-fat milk (Bio-Rad) in Tris-buffered
saline containing 0.1% Tween-20 (TBS-T; Bio-Rad), then incubated
overnight at 4°C with antibodies listed in Table S2 in 5% BSA in TBS-T.
Blots were then probed with anti-Rabbit IgG conjugated with horse-
radishperoxidase (1:5,000; Cell Signaling Technology) in 5%BSA in TBS-T
for 1 h at room temperature. Signal was detected with the Immobilon
Western Chemiluminescent HRP Substrate (Millipore), and blot images
were collected with a Bio-Rad ChemiDoc imaging system.

RNA sequencing and analysis

The iHEECs/Luc were treated with 2 mM n-butyrate for 24 h and RNA
was isolated as mentioned above. The experiment was repeated
three times with minimum three technical replicates. Total RNA
integrity was determined using Agilent Bioanalyzer or 4200
Tapestation. Library preparation was performed with 500 ng–1 μg of
total RNA. Ribosomal RNA was removed by an RNase-H method
using RiboErase kits (Kapa Biosystems). mRNAwas then fragmented

in reverse transcriptase buffer and heating to 94°C for 8 min. mRNA
was reverse transcribed to yield cDNA using SuperScript III RT
enzyme (Life Technologies, per manufacturer’s instructions) and
randomhexamers. A second strand reaction was performed to yield
ds-cDNA. cDNA was blunt ended, had an “A” base added to the 39
ends, and then had Illumina sequencing adapters ligated to the ends.
Ligated fragments were then amplified for 12–15 cycles using primers
incorporating unique dual index tags. Fragments were sequenced on an
Illumina NovaSeq-6000 using paired end reads extending 150 bases.
Basecalls and demultiplexing were performedwith Illumina’s bcl2fastq2
software. RNA-seq reads were then aligned to the Ensembl release 76
primary assembly with STAR version 2.5.1a. Gene counts were derived
from the number of uniquely aligned unambiguous reads by Subread:
featureCount version 1.4.6-p5. Isoform expression of known Ensembl
transcripts was estimated with Salmon version 0.8.2. Sequencing per-
formance was assessed for the total number of aligned reads, total
number of uniquely aligned reads, and features detected. The ribo-
somal fraction, known junction saturation, and read distribution over
known gene models were quantified with RSeQC version 2.6.2.

All gene counts were then imported into the R/Bioconductor
package EdgeR, and TMM normalization size factors were calculated
to adjust for differences in library size. The TMM size factors and the
matrix of counts were then imported into the R/Bioconductor package
Limma. Weighted likelihoods based on the observed mean–variance
relationship of every gene and sample were then calculated for all
samples with the voomWithQualityWeights. The performance of all
genes was assessed with plots of the residual SD of every gene to their
average log-count with a robustly fitted trend line of the residuals.
Differential expression analysis was then performed to identify dif-
ferences between conditions, and the results were filtered for only
those genes with Benjamini–Hochberg false-discovery rate adjusted
P-values less than or equal to 0.05.

Global perturbations in known GO terms, MSigDb, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were detected
with the R/Bioconductor package GAGE to test for changes in log2-
fold-change expression between the genes within a gene set over
those in the background. The R/Bioconductor package heatmap3
was used to display heat maps across groups of samples for each GO
or MSigDb term with a Benjamini–Hochberg false-discovery rate
adjusted P-value less than or equal to 0.05. Perturbed KEGGpathways
with P-values less than or equal to 0.05 were rendered as annotated
KEGG graphs with the R/Bioconductor package Pathview.

To identify differentially expressed genes, the raw counts were
variance stabilized with the R/Bioconductor package DESeq2 and
then analyzed via weighted gene correlation network analysis with
the R/Bioconductor package WGCNA. Briefly, all genes were cor-
related across each other by Pearson correlations and clustered
by expression similarity into unsigned modules using a power
threshold empirically determined from the data. An eigengene was
then created for each de novo cluster, and its expression profile
was correlated across all coefficients of the model matrix. Because
these clusters of genes were created by expression profile rather
than known functional similarity, the clustered modules were given
the names of random colors such that grey was the only predefined
module and contained genes that did not cluster well with others.
These de novo clustered genes were then tested for functional
enrichment of known GO terms with hypergeometric tests available
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in the R/Bioconductor package clusterProfiler. Significant terms
with Benjamini–Hochberg adjusted P-values less than 0.05 were
then collapsed by similarity into clusterProfiler category network
plots to display the most significant terms for each module of hub
genes to interpolate the function of each significant module. The
information for all clustered genes for each module were then
combined with their respective statistical significance results from
Limma to determine whether or not those features were also found
to be significantly differentially expressed.

Statistical analysis

A two-tailed paired t test was used to analyze data from experi-
ments with two experimental groups and ANOVA by nonparametric
alternatives was used for multiple comparisons to analyze data
from experiments containing more than two groups. P < 0.05 was
considered significant. All data are presented as mean ± SE.
GraphPad Prism 8 software was used for all statistical analyses.

Data Availability

Transcriptome data from this study are available at GEO under
accession number GSE184431.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202101224.
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80. Lucas S, Omata Y, Hofmann J, Böttcher M, Iljazovic A, Sarter K, Albrecht
O, Schulz O, Krishnacoumar B, Krönke G, et al (2018) Short-chain fatty
acids regulate systemic bonemass and protect from pathological bone
loss. Nat Commun 9: 55. doi:10.1038/s41467-017-02490-4

81. Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA, Hsu E, Adams J,
Weitzmann MN, Jones RM, et al (2018) The microbial metabolite
butyrate stimulates bone formation via T regulatory cell-mediated
regulation of WNT10B expression. Immunity 49: 1116–1131.e7.
doi:10.1016/j.immuni.2018.10.013

82. den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH,
Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ, et al (2015) Short-
chain fatty acids protect against high-fat diet-induced obesity via a
PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes
64: 2398–2408. doi:10.2337/db14-1213

83. Imesch P, Samartzis EP, Schneider M, Fink D, Fedier A (2011) Inhibition of
transcription, expression, and secretion of the vascular epithelial
growth factor in human epithelial endometriotic cells by romidepsin.
Fertil Steril 95: 1579–1583. doi:10.1016/j.fertnstert.2010.12.058

84. Imesch P, Fink D, Fedier A (2010) Romidepsin reduces histone
deacetylase activity, induces acetylation of histones, inhibits
proliferation, and activates apoptosis in immortalized epithelial
endometriotic cells. Fertil Steril 94: 2838–2842. doi:10.1016/
j.fertnstert.2010.04.052

85. Kawano Y, Nasu K, Li H, Tsuno A, Abe W, Takai N, Narahara H (2011)
Application of the histone deacetylase inhibitors for the treatment of
endometriosis: Histone modifications as pathogenesis and novel
therapeutic target. Hum Reprod 26: 2486–2498. doi:10.1093/humrep/
der203

86. Samartzis EP, Noske A, Samartzis N, Fink D, Imesch P (2013) The
expression of histone deacetylase 1, but not other class I histone
deacetylases, is significantly increased in endometriosis. Reprod Sci 20:
1416–1422. doi:10.1177/1933719113488450

87. Bai L, Gao M, Cheng X, Kang G, Cao X, Huang H (2020) Engineered
butyrate-producing bacteria prevents high fat diet-induced obesity in
mice. Microb Cell Fact 19: 94. doi:10.1186/s12934-020-01350-z

88. Bai Y, Mansell TJ (2020) Production and sensing of butyrate in a
probiotic Escherichia coli strain. Int J Mol Sci 21: 3615. doi:10.3390/
ijms21103615

89. Park J, Wang Q, Wu Q, Mao-Draayer Y, Kim CH (2019) Bidirectional
regulatory potentials of short-chain fatty acids and their G-protein-
coupled receptors in autoimmune neuroinflammation. Sci Rep 9: 8837.
doi:10.1038/s41598-019-45311-y

90. Priyadarshini M, Kotlo KU, Dudeja PK, Layden BT (2018) Role of short
chain fatty acid receptors in intestinal physiology and
pathophysiology. Compr Physiol 8: 1091–1115. doi:10.1002/cphy.c170050

91. Sun M, Wu W, Liu Z, Cong Y (2017) Microbiota metabolite short chain
fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol 52:
1–8. doi:10.1007/s00535-016-1242-9

92. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M,
Prasad PD, Manicassamy S, Munn DH, et al (2014) Activation of Gpr109a,
receptor for niacin and the commensal metabolite butyrate,
suppresses colonic inflammation and carcinogenesis. Immunity 40:
128–139. doi:10.1016/j.immuni.2013.12.007

93. Bilotta AJ, Cong Y (2019) Gut microbiota metabolite regulation of host
defenses at mucosal surfaces: Implication in precisionmedicine. Precis
Clin Med 2: 110–119. doi:10.1093/pcmedi/pbz008

94. Long Q, Liu X, Guo SW (2016) Surgery accelerates the development of
endometriosis in mice. Am J Obstet Gynecol 215: 320.e1-320.e15.
doi:10.1016/j.ajog.2016.02.055
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