
Research Article

High levels of TFAM repress mammalian mitochondrial
DNA transcription in vivo
Nina A Bonekamp1 , Min Jiang1,2 , Elisa Motori1,3 , Rodolfo Garcia Villegas4 , Camilla Koolmeister4, Ilian Atanassov5,
Andrea Mesaros6, Chan Bae Park7, Nils-Göran Larsson1,4

Mitochondrial transcription factor A (TFAM) is compacting mi-
tochondrial DNA (dmtDNA) into nucleoids and directly controls
mtDNA copy number. Here, we show that the TFAM-to-mtDNA ratio
is critical for maintaining normal mtDNA expression in different
mouse tissues. Moderately increased TFAM protein levels increase
mtDNA copy number but a normal TFAM-to-mtDNA ratio is main-
tained resulting in unaltered mtDNA expression and normal whole
animal metabolism. Mice ubiquitously expressing very high TFAM
levels develop pathology leading to deficient oxidative phos-
phorylation (OXPHOS) and early postnatal lethality. The TFAM-to-
mtDNA ratio varieswidely between tissues in thesemice and is very
high in skeletal muscle leading to strong repression of mtDNA
expression and OXPHOS deficiency. In the heart, increased mtDNA
copy number results in a near normal TFAM-to-mtDNA ratio and
maintained OXPHOS capacity. In liver, induction of LONP1 protease
and mitochondrial RNA polymerase expression counteracts the
silencing effect of high TFAM levels. TFAM thus acts as a general
repressor of mtDNA expression and this effect can be counter-
balanced by tissue-specific expression of regulatory factors.
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Introduction

Treatment of mitochondrial diseases caused by dysfunctional
oxidative phosphorylation (OXPHOS) remains a challenge. The
clinical variability is substantial as almost any organ and cell type
may be affected with varying degrees of severity; with disease onset
varying from the neonatal period to late in adult life. Moreover,
mutations in two different genomes, that is, nuclear DNA and
mitochondrial DNA (mtDNA), can cause OXPHOS defects and thus
mitochondrial disease (Rahman, 2020; Russell et al, 2020). The

majority of mitochondrial proteins (~99%), including all that reg-
ulate mtDNA maintenance and expression, are encoded in the
nucleus and imported into mitochondria. In contrast, mtDNA only
contributes 13 proteins that all have essential roles for the func-
tion of four of the OXPHOS complexes. Mammalian mtDNA is a
compact circular double-stranded genome of about 16.6 kb in
size, where each strand undergoes polycistronic transcription
followed by RNA processing and maturation to yield 2 ribosomal
RNAs (rRNAs), 22 tRNAs, and 11 mRNAs (translated to 13 proteins)
(Anderson et al, 1981; Bibb et al, 1981; Gustafsson et al, 2016). In the
last 30 yr, substantial progress has beenmade in understanding the
genetic basis of mitochondrial diseases. More than 300 different
pathogenic point mutations, deletions and duplications of mtDNA
have been identified since the first disease-causing mtDNA mu-
tations were reported (Holt et al, 1988; Wallace et al, 1988). Because
of the high copy number of mtDNA, pathogenic mutations may
affect all (homoplasmy) or only a subset (heteroplasmy) of all
mtDNA molecules in a cell (Sciacco et al, 1994; Taylor & Turnbull,
2005). A biochemical phenotype is induced once a certain threshold
level of mutant mtDNA is exceeded. To add to the complexity,
mutations in about 300 nuclear genes have been shown to cause
mitochondrial disorders by affecting different aspects of mi-
tochondrial function, such as biogenesis of the OXPHOS sys-
tem, nucleotide transport/synthesis, membrane dynamics, mtDNA
maintenance, and mtDNA expression at different levels, including
transcription, RNA maturation, and translation (Vafai & Mootha,
2012; Thompson et al, 2020).

The use of animal models has facilitated our understanding of
mitochondrial diseases and given insights into a variety of potential
treatment options (Russell et al, 2020), for example, important
pathophysiological features of mitochondrial myopathy were re-
capitulated in mice with a disruption in mtDNA expression in
skeletal muscle (Wredenberg et al, 2002). Importantly, a substantial
increase in mitochondrial mass was demonstrated to partly
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compensate for reduced OXPHOS function by maintaining the
overall ATP production at near-normal levels despite poor function
of individual mitochondria in skeletal muscle (Wredenberg et al,
2002). Furthermore, boosting mitochondrial biogenesis has become
a promising approach exploited for the treatment of mitochondrial
disease (Whitaker et al, 2016). Overexpression of PPAR-γ coactivator
1-α (PGC1α), an important regulator of mitochondrial biogenesis
(Puigserver et al, 1998; Wu et al, 1999; Scarpulla, 2002), can improve
mitochondrial disease manifestations in mice (Viscomi et al, 2011;
Dillon et al, 2012). Because of the complex regulation of PGC1α
activity (Fernandez-Marcos & Auwerx, 2011), direct targeting of
downstream effectors of the PGC1α signalling cascade, such as the
mitochondrial transcription factor A (TFAM) (Virbasius & Scarpulla,
1994), might provide a more directed treatment approach.

TFAM is an essential regulator of mitochondrial function in
mammals because of its dual role as a core component of the
mitochondrial transcription initiation machinery and as the key
factor packaging mtDNA into mitochondrial nucleoids (Falkenberg
et al, 2002; Alam et al, 2003; Kukat et al, 2011, 2015; Shi et al, 2012). The
TFAM protein consists of two high mobility group-box domains that
are separated by a linker and followed by a short C-terminal tail
essential for transcription activation (Fisher & Clayton, 1988; Parisi
& Clayton, 1991; Dairaghi et al, 1995; Kanki et al, 2004). Each of the
two high mobility group box domains causes mtDNA to bend 90°
leading to a 180° U-turn when one molecule of TFAM binds mtDNA
(Ngo et al, 2011; Rubio-Cosials et al, 2011). Specific binding of TFAM to
the two mtDNA promoters results in transcription activation by
recruitment of the mitochondrial RNA polymerase (POLRMT) and
mitochondrial transcription factor B2 (TFB2M) (Hillen et al,
2017). Nonsequence-specific TFAM binding enables packag-
ing of the mitochondrial genome into protein–DNA complexes
to form the mitochondrial nucleoid (Shen & Bogenhagen, 2001;
Alam et al, 2003; Kukat et al, 2011, 2015; Bonekamp & Larsson, 2018).
Importantly, TFAM levels are known to directly control mtDNA
copy number (Larsson et al, 1998; Matsushima et al, 2003;
Ekstrand et al, 2004; Kanki et al, 2004) and multiple in vivo studies
have shown that TFAM overexpression is beneficial in mouse
models with various types of pathology, for example, myocardial
infarction, amyotrophic lateral sclerosis, transient forebrain ischemia
and age-dependent memory loss (Ikeuchi et al, 2005; Hayashi et al,
2008; Hokari et al, 2010; Morimoto et al, 2012). Increasing the absolute
levels of mtDNA has also been shown to improve the function in
certain organs in mouse models of mitochondrial disease and
premature ageing (Nishiyama et al, 2010; Jiang et al, 2017; Filograna et
al, 2019, 2021). Remarkably, the rescue effect has been shown to occur
although the proportion of mutant mtDNA stays the same (Jiang et al,
2017; Filograna et al, 2019), thus showing that the absolute levels of
wild-type mtDNA play an important role in determining pathogenic
effects caused by heteroplasmic mtDNA mutations.

Based on the findings in mouse models, it has been suggested
that manipulation of TFAM levels and thus mtDNA copy number is a
target for disease intervention. However, increased mtDNA copy
number has also been reported to result in enlarged nucleoids,
inhibition of mitochondrial transcription and respiratory chain
dysfunction (Ylikallio et al, 2010). There are a number of limitations
in the abovementioned studies that do not allow a definite con-
clusion on whether up-regulation of mtDNA copy number by TFAM

overexpression is beneficial or detrimental in vivo. Several studies
have relied on a transgenic mouse model expressing the human
TFAM cDNA from the synthetic CAG (modified chicken β-actin
promoter with CMV-IE enhancer) promoter that causes robust
expression of the human TFAM protein in the heart, skeletal muscle,
and brain, but barely detectable expression in lung, liver and kidney
(Ikeuchi et al, 2005; Hayashi et al, 2008; Hokari et al, 2010; Ylikallio et
al, 2010; Morimoto et al, 2012). This tissue-specific expression
pattern is likely explained by a positional effect caused by the
random genomic integration of the human TFAM cDNA construct.
Another complication of this experimental system is that it is het-
erologous as the human TFAM protein, which only poorly activates
mousemtDNA transcription (Ekstrand et al, 2004), is expressed in the
mouse. As a consequence, the mutant mice display an increase in
mtDNA levels without increasing OXPHOS or mitochondrial mass
(Ekstrand et al, 2004). In contrast, TFAM can stimulate mtDNA ex-
pression in an autologous system as it has been reported that import
of human TFAM into human mitochondria stimulates mtDNA tran-
scription (Garstka et al, 2003; Maniura-Weber et al, 2004).

Here, we describe a series of mouse models with a moderate or
strong overexpression of the endogenous mouse TFAM protein and
investigate the effects on mtDNA copy number, mitochondrial gene
expression and whole animal physiology. We show that moderate
increase in TFAM is well tolerated in the mouse, whereas strong
overexpression has deleterious consequences in certain tissues.
The most severe phenotype was observed in tissues where the
mtDNA copy number remained low, which resulted in a high TFAM to
mtDNA ratio that completely abolished mitochondrial gene ex-
pression. Thus, although TFAM is essential for transcription initi-
ation, it also acts a general gene repressor of mtDNA expression in
mammalian mitochondria in vivo. Modulation of TFAM levels thus
serves as a global mechanism to regulate mitochondrial gene
expression likely by influencing nucleoid compaction.

Results

Moderately increased TFAM levels sustain normal mtDNA
expression

To study the consequences of moderately increased TFAM levels in
vivo, we generated bacterial artificial chromosome (BAC)
transgenic mice harbouring an introduced 203 kb mouse genomic
fragment containing Tfam expressed from its endogenous pro-
moter under the control of adjacent regulatory elements (Fig 1A).
Three lines of BAC-TFAM transgenic mice derived from independent
founders were maintained as heterozygotes on an inbred C57Bl/6N
background. BAC constructs are typically randomly inserted into
the mouse genome and analysis of the three different founder
lines, BAC TG 137 (Figs 1 and S1), BAC TG 188 (Fig S1), and BAC TG 91
(Fig S1) allowed us to rule out effects caused by insertional mu-
tagenesis. Western blot analyses of total tissue extracts revealed a
moderate overexpression of TFAM of 1.63-fold in the heart, 1.50-fold
in the liver, and 1.49-fold in the skeletal muscle in the BAC TG 137
line compared to control (Fig 1B). The other founder lines also
displayed an increase in TFAM protein levels in all tissues

Levels of TFAM affect mtDNA expression in vivo Bonekamp et al. https://doi.org/10.26508/lsa.202101034 vol 4 | no 11 | e202101034 2 of 17

https://doi.org/10.26508/lsa.202101034


investigated, albeit at different levels. In BAC TG 188, a similar level
of TFAM expression was observed in heart (1.78-fold), with lower
levels in liver and skeletal muscle (Fig S1A and B). In BAC TG 91, we
observed a consistent increase in TFAM levels in all tissues, the

highest levels being detected in skeletal muscle (1.68-fold). We next
investigated the relative mtDNA copy number in different tissues
using quantitative PCR (qPCR) and Southern blotting. In line with
the well-established role of TFAM as a key regulator of mtDNA copy

Figure 1. Moderate increase in TFAM levels leads to increased mtDNA copy number without effects on mitochondrial gene expression.
(A)Overview of the bacterial artificial chromosome (BAC) construct expressingmouse Tfam under its endogenous promoter. Green boxes indicate Tfam exons. A neutral
point mutation generating a PvuI restriction site was introduced to distinguish the BAC from the Tfam wild-type locus (indicated as C to G in the magnified exon).
(B)Western blot analysis of TFAM protein levels in the heart, liver, and skeletal muscle whole cell lysates of wild-type (Con) and BAC-TFAM TG 137 (+/BAC) animals. The BAC
TG 137 founder line is used in all subsequent experiments and referred to as +/BAC. Actin was used as a loading control. A representative image is shown (n = 3
independent experiments). (C) Quantification of steady-state mtDNA levels in the heart, liver, and skeletal muscle of wild-type (Con) and BAC-TFAM (+/BAC) animals. In
the case of heart and liver, mtDNA levels were quantified by qPCR using specific probes against COX1 and 18S. Quantification of skeletal muscle mtDNA levels was
performed by densitometric analysis of Southern blots. Data are expressed as means ± SEM (n = 9–12 biological replicates for heart and liver; n = 8 for skeletal muscle;
P < 0.01: **; P < 0.0001: ****, two-way ANOVAwith Sidak’s test for multiple comparisons). (D) Southern blot analysis of PstI-digestedmtDNA derived from the heart, liver, and
skeletal muscle of wild-type (Con) and BAC-TFAM (+/BAC) animals. mtDNA was quantified by radiolabeling with a specific probe against COX1, nuclear DNA was probed with
18S. A representative image is shown (n = 3 independent experiments). (E) Analysis of steady-state mitochondrial transcript levels in heart and liver of wild-type (Con)
and BAC-TFAM (+/BAC) animals by qRT-PCR. Mitochondrial mRNAs and rRNAs were quantified using specific mouse probes, β-2-microglobulin was used as a reference
gene. (n = 4–5 biological replicates). (F) Western blot analysis of steady-state levels of respiratory chain subunits in the heart, liver, and skeletal muscle mitochondrial
extracts of wild-type (Con) and BAC-TFAM (+/BAC) animals. A representative image is shown (n = 3 independent experiments). (G, H) Phenotyping/energy homeostasis
of BAC-TFAMmice aged 10 and 52 wk. Cohorts of BAC-TFAMmice (+/BAC) and wild-type litter mates (Con) were analysed by indirect calorimetry at the age of 10 and 52 wk.
Data on respiratory exchange rate (RER, [G]) and activity (sum of ambulatory and fine movement, [H]) are shown (means ± SEM, n = 5–8 biological replicates; P < 0.01: **;
P < 0.001: ***, Two-way ANOVA with Sidak’s test for multiple comparisons).
Source data are available for this figure.
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number, increased TFAM levels led to a significant increase in
mtDNA up to 1.63-fold of control in the heart, 1.45-fold in the liver,
and 1.51-fold in the skeletal muscle in BAC TG 137mice (Fig 1C and D).
The relative mtDNA copy number was similarly increased in the
other founder lines and depended on the TFAM levels (Fig S1C and
D). Because of the consistent, moderate TFAM increase observed in
the different tissues of the heterozygous BAC TG 137 line (Jiang et al,
2017; Filograna et al, 2019), we proceeded to extensively characterize
this line, henceforth denoted BAC-TFAM (+/BAC) mice.

Normally, TFAM is present in around 1,000 molecules per mtDNA
molecule or 1 TFAM molecule per 16–17 bp of mtDNA in mammalian
cells (Kukat et al, 2011). High TFAM-to-mtDNA ratios have been
shown to block mitochondrial gene expression in vitro (Farge et al,
2014). In the different tissues of BAC-TFAM mice, the TFAM-to-mtDNA
ratio was maintained at the same relative levels as in wild-type mice
(1.00 in the heart, 1.03 in the liver, and 0.98 in the skeletal muscle),
which should not affect mitochondrial gene expression.

We addressed the steady-state mtDNA transcript levels by
quantitative reverse transcription PCR (qRT-PCR) and Northern
blotting (Figs 1E and S1E and F). The mitochondrial mRNA, rRNA and
tRNA levels were not changed in heart or liver tissue of BAC-TFAM
mice (Figs 1E and S1E and F) or in the BAC TG 188 or BAC TG 91 mouse
lines (Fig S1E and F), showing that a moderate increase in TFAM
expression does not globally affect mtDNA transcription. In line with
this, Western blotting of isolated mitochondria from the heart, liver,
and skeletal muscle of BAC-TFAM mice showed no change in the
expression of OXPHOS subunits (Fig 1F). Furthermore, tandemmass tag
(TMT)–based quantitative proteomics on whole tissue lysates of the
heart, liver, and spleen of BAC-TFAM mice confirmed that a moderate
increase in TFAM protein levels does not affect the total cellular
proteome and is therefore unlikely to affect normal tissue function (Fig
S2A). Thus, moderate TFAM overexpression causes an increase in
mtDNA copy number without affecting overall mtDNA gene expression.

Moderately increased TFAM and mtDNA levels are well tolerated
in vivo

We proceeded to assess physiology in the BAC-TFAM mice at dif-
ferent ages. To this end, we measured energy homeostasis and
activity of BAC-TFAM animals and wild-type litter mates at the age of
10 and 52 wk using metabolic cages. This enabled us to investigate
their metabolic performance, spontaneous locomotor activities
and drinking and feeding behaviour. We did not observe substantial
changes in the drinking and feeding behaviour or body weight
betweenwild-type and BAC-TFAMmice of both sexes at 10 and 52 wk
of age (Fig S2B–D). The normal weight and food intake in BAC-TFAM
mice indicated that they do not suffer from stress, disease con-
ditions or metabolic changes. The measurements of O2 con-
sumption and CO2 production in metabolic cages were used to
calculate the respiratory exchange rate (Fig 1G) and the energy
expenditure (heat; Fig S2E) that both were within a normal range in
BAC-TFAM mice. We observed a significant increase in the respi-
ratory exchange rate in BAC-TFAM males aged 52 wk, which points
towards a preferred utilization of carbohydrates in those mice (Fig
1G). This increase did not correlate with a change in food intake or
increased activity, as animals did not display any substantial al-
teration in activity, given as the sum of ambulatory and fine

movements (Fig 1H) and the cumulative distance travelled (Fig S2F).
The underlying physiological difference and sex-specificity requires
further investigation. Litter sizes were within the normal range of
C57Bl6N mice for the BAC-TFAM, BAC TG 188, and BAC TG 91 mouse
lines (Fig S2G), showing that the reproductive performance and
fertility was not impaired. We thus conclude that BAC-TFAM mice are
healthy and indistinguishable from controls and that a moderate
increase in TFAM protein levels and mtDNA copy number is very well
tolerated in vivo without affecting animal physiology or metabolism.

Strong TFAM overexpression results in postnatal lethality

Next, we investigated the effects of strong TFAM overexpression on
mtDNA copy number and mitochondrial function in vivo. To this
end, we generated knock-in mice that can activate the expression
of a FLAG-tagged mouse TFAM protein under the control of the CAG
promoter in the ROSA26 locus. The ROSA26 locus is known to provide
ubiquitous expression and the CAG promoter is a commonly used
synthetic promoter driving high levels of transgene expression in
almost all cell types of transgenic animals (Niwa et al, 1991; Okabe et
al, 1997). Mice heterozygous for the CAG-TFAM allele preceded by a
loxP-flanked stop-cassette were mated to mice ubiquitously
expressing cre-recombinase (β-actin-cre) to generate mice over-
expressing mouse TFAM in all tissues, henceforth denoted CAG-TFAM
mice (Fig 2A). The litter sizes of CAG-TFAM mice were normal and the
mutantmice were born at the expected Mendelian ratios (Fig S3A). To
our surprise, we observed increased lethality of CAG-TFAMmice after
postnatal day 16 and all mice died or had to be euthanized before
postnatal day 35 (Fig 2B). CAG-TFAM mice were generally smaller and
weaker than wild-type litter mates (Fig 2C) and the heart, liver, and
kidney were smaller in comparison with wild-type animals (Fig S3B
and C). Strong TFAM overexpression thus had a profound effect on
animal well-being and we therefore investigated the underlying
cause of this detrimental effect on a tissue and cellular level.

Combined cytochrome c oxidase/succinate dehydrogenase
enzyme activity (COX/SDH) staining in heart and skeletal muscle of
CAG-TFAM mice revealed a pronounced loss of COX-reactive
skeletal muscle fibres and a smaller number of COX-negative
cardiomyocytes in the heart (Fig 2D). This finding points to a se-
vere mitochondrial dysfunction in muscle tissue. To address a
direct link between high TFAM protein levels and the resulting
mitochondrial dysfunction, we first ruled out an indirect effect
caused by a possible oversaturation of the mitochondrial protein
import system. Cytosolic accumulation of mitochondrial precursors
has been shown to be hazardous to cellular fitness and can trigger
an adaptive response to counteract this cytosolic protein stress
(Boos et al, 2019). We reasoned that saturation of the mitochondrial
import system, if present, would lead to an increase in mito-
chondrial precursor proteins in the cytosol and a global decrease in
matrix proteins. We detected a similar pattern of aconitase (ACO2)
distribution between the cytosol and mitochondria after subcel-
lular fractionation of heart and liver tissue in control and CAG-TFAM
animals (Fig S3D). Furthermore, Western blot analysis of mito-
chondrial proteins with a well-defined and prominent cleavable
mitochondrial targeting sequence showed no increase in the levels
of non-imported precursors in addition to the mature proteins in
the heart, liver, and skeletal muscle tissue extracts, even after
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prolonged exposure of blots (Fig S3E). In addition, the prominent
precursor sequences of ATP5A and NDUFA9 were not detectable by
quantitative TMT proteomics of whole tissue extracts from the heart,
liver, and skeletal muscle (Fig S3F). Our quantitative proteomics data
also showed no general defects in mitochondrial protein levels, but
rathermildly increased levels of proteins involved in the tricarboxylic
acid (TCA) cycle, lipid, and acetyl CoA metabolism, iron-sulphur
cluster synthesis, and heme synthesis (Fig S3G). We thus con-
clude that strong TFAM expression exceeding the normal
physiological range can directly shut down mitochondrial function
without affecting mitochondrial protein import.

High TFAM-to-mtDNA ratios abolish mtDNA expression in
skeletal muscle

We proceeded to analyse the underlying molecular basis for the
observed mitochondrial dysfunction in different tissues from CAG-

TFAM mice. Mitochondrial metabolism and function is different
between tissues, and mitochondria from different organs therefore
differ in their biosynthetic capacity and ultrastructural appearance
(Vafai & Mootha, 2012). Western blotting of total tissue extracts from
CAG-TFAM mice revealed that the relative TFAM expression was
increased 4.46-fold in heart and 3.84-fold in skeletal muscle in
comparison with wild-type mice (Fig 3A and B). These levels much
exceeded the TFAM levels observed in BAC-TFAM mice (Fig 1B).
Although the relative TFAM overexpression levels were comparable
in both heart and skeletal muscle in CAG-TFAM mice, the mito-
chondrial dysfunction was much more severe in skeletal muscle
than in heart (Fig 2D). Changes in the TFAM-to-mtDNA ratio affect
mitochondrial function in vitro, so we proceeded to analyse po-
tential differences inmtDNA levels between the two tissues by qPCR
and Southern blotting. We observed markedly increased mtDNA
levels in heart (6.35-fold of control), whereas the mtDNA copy
number (0.96-fold of control) was not changed in skeletal muscle

Figure 2. High TFAM overexpression leads to early postnatal mortality.
(A) Strategy to generate CAG-TFAMmice. A cDNA construct encoding a FLAG-tagged TFAM protein under the control of the CAG promoter was introduced into the ROSA26
locus by homologous recombination. CAG-TFAM mice were generated by crossing to β-actin cre animals. (B) Survival curve of CAG-TFAM mice. Litters yielding CAG-TFAM
mice (+/CAG) were observed for 40 d for development and survival compared with control litter mates (Con) (n = 12). (C) Body weight of CAG-TFAM mice (+/CAG) compared
with control litter mates (Con) at the age of 3 wk. Means ± SEM, n = 12 biological replicates; P < 0.05:*, unpaired t test. Scale bar, 1 cm. (D) COX/SDH staining of heart (upper
panel) and skeletal muscle (lower panel) of CAG-TFAM mice (+/CAG) compared with control litter mates (Con) at the age of 3 wk. Representative images are shown (n = 3
biological replicates). Scale bar, 100 μm.
Source data are available for this figure.
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despite the strong increase in TFAM protein levels (Fig 3C and D).
The relative TFAM-to-mtDNA ratio was therefore markedly in-
creased to 3.96-fold (3.84 TFAM:0.96 mtDNA) in skeletal muscle.
These findings indicate that nucleoids in skeletal muscle of CAG-
TFAM mice may be too saturated with TFAM and too compacted to
allow sufficient transcription for normal mtDNA expression. qRT-PCR
of mitochondrial steady-state transcript levels indeed confirmed a
severe depletion of mitochondrial mRNAs and rRNAs in skeletal
muscle of CAG-TFAM mice (Fig 3E). We also observed a moderate
decrease in CytB and Cox1 transcript levels in the heart, despite the
strong mtDNA copy number increase (Fig 3D). In line with this,
OXPHOS protein levels were only slightly decreased in heart mito-
chondria, whereas Western blotting of OXPHOS protein subunits in
isolated skeletal musclemitochondria revealed a strong depletion of
the mitochondrially encoded COX1 subunit of Complex IV and the
nucleus-encoded NDUFB8 subunit of Complex I. The levels of the
UQCRC2 subunit of Complex III were mildly decreased (Fig 3F).

To determine the effects of altered TFAM-to-mtDNA ratios on
mitochondrial and tissue organization, we performed transmission
electron microscopy of tissue sections from heart and skeletal
muscle (Fig 3G). In heart, we observed an altered mitochondrial
morphology with less densely packed cristae, however, the overall
organization and structure of heart tissue remained unchanged (Fig
3G, left). Cristae arrangement and nucleoid distribution were
recently shown to be intrinsically linked by a highly ordered co-
organization (Stephan et al, 2019). Thus, we investigated mito-
chondrial nucleoids in heart sections by stimulated emission
depletion (STED) microscopy in CAG-TFAM mice. The nucleoid
numbers in CAG-TFAM mice were markedly increased in line with
the observed increase in mtDNA copy number, but the nucleoids
formed extensive clusters (Fig S4A and B). This increased nucleoid
clustering was absent in cardiomyocytes of BAC-TFAM mice (Fig S4A
and B). Importantly, STED analysis demonstrated that the diameters
were very similar to nucleoid diameters in control and BAC-TFAM
mice (Fig S4C and D), consistent with our previous findings showing
that a nucleoid typically contains a single copy of mtDNA (Kukat et
al, 2011, 2015). The increased nucleoid clusteringmight thus account
for less dense packing of mitochondrial cristae observed in heart
tissue. In contrast to the heart, mitochondrial ultrastructure was
drastically changed in skeletal muscle tissue of CAG-TFAMmice, with a
strong decrease in the number of cristae and a disordered appearance
(Fig 3G, right). These changes also affected the ultrastructure of the

normally highly ordered and densely packed skeletal muscle fibres.
Our results thus show that a balanced TFAM-to-mtDNA ratio is critical
to sustain mtDNA expression and OXPHOS for normal tissue function.

Tissue-specific responses to high TFAM levels

To gainmore insight into the tissue-specific responses to high TFAM
levels, we proceeded to perform quantitative TMT-based proteo-
mics of different tissues of CAG-TFAMmice. In line with our previous
observations, we found a very severe depletion in the levels of
OXPHOS subunits of complexes I, III, and IV and mito-ribosomal
subunits in skeletal muscle, whereas the effects were milder in
heart (Fig 4A and B). Interestingly, whole tissue quantitative pro-
teomics revealed very different mitochondrial responses tomarked
TFAM overexpression (Fig S5A). A significant fraction of all mito-
chondrial proteins was down-regulated in the severely affected
skeletal muscle, whereas mitochondrial protein levels were
maintained in the less affected heart of CAG-TFAMmice (Fig S5A). In
contrast, we observed increased levels of a large fraction of all
mitochondrial proteins, concomitant with stable or even mildly
increased levels of OXPHOS proteins in liver of CAG-TFAM mice on a
whole cell level (Figs 4A and S5A). The TFAM protein levels in liver
were lower than the levels in heart or skeletal muscle (Fig 4C).
Interestingly, the LONP1 protease was among the most up-
regulated proteins in liver of CAG-TFAM mice, but it was not in-
creased in heart or skeletal muscle (Fig 4D). Other studies have
reported that LONP1 degrades excess TFAM that is not bound to
mtDNA (Matsushima et al, 2010; Lu et al, 2013). This free TFAM has
been reported to be degraded by LONP1 after being marked by site-
specific phosphorylation (Lu et al, 2013). However, despite the very
high TFAM levels in skeletal muscle of CAG-TFAMmice (Fig 3A and B)
we did not observe increased TFAM phosphorylation by Phostag gel
electrophoresis experiments (Fig S5B). A similar observation was
made in liver (Fig S5C). We cannot rule out that more sensitive
techniques may be required to detect post-translational modifi-
cations regulating only a subset of nucleoids.

Thus, in contrast to heart and skeletal muscle, liver appears to
respond to increased TFAM levels by a compensatory response
including the up-regulation of LONP1 and components of the
mitochondrial transcription machinery such as the mitochondrial
RNA polymerase (POLRMT) (Fig 4C and D).

Figure 3. High TFAM-to-mtDNA ratios abolish mtDNA expression in skeletal muscle.
(A)Western blot analysis of TFAM protein levels in heart and skeletal muscle whole cell lysates of CAG-TFAM (+/CAG)mice. Litter mates were used as controls (Con). Actin
was used as a loading control. The asterisk indicates the lower wild-type TFAM band in control mice as opposed to the overexpression of the FLAG-tagged version of TFAM
in CAG-TFAM mice. A representative image is shown (n = 2 independent experiments). (B) TFAM protein levels in heart and skeletal muscle whole cell lysates of CAG-TFAM
animals (+/CAG) and control litter mates were quantified by densitometry and are expressed as folds of control (means ± SEM, n = 4–5 biological replicates; P < 0.0001:
****, two-way ANOVA with Sidak’s test for multiple comparisons). (C) Quantification of steady-state mtDNA levels in heart and skeletal muscle of CAG-TFAM (+/CAG)
animals and control littermates (Con).mtDNA levels were quantified by qPCRusing specific probes against COX1 and 18S. Data are expressed asmeans ± SEM (n = 6–7 biological
replicates for heart; n = 3 for skeletal muscle; n.s., non-significant, P < 0.0001: ****, two-way ANOVA with Sidak’s test for multiple comparisons). (D) Southern blot analysis of
PstI-digested mtDNA derived from heart and skeletal muscle of CAG-TFAM (+/CAG) animals and control litter mates (Con). mtDNA was quantified by radiolabeling with a
specific probe against COX1, nuclear DNA was probed with 18S. A representative image is shown (n = 3 independent experiments). (E) Analysis of steady-state mitochondrial
transcript levels in heart and skeletal muscle of CAG-TFAM (+/CAG) animals and control litter mates (Con) by qRT-PCR. Mitochondrial mRNAs and tRNAs were quantified
using specific mouse probes, β-2-microglobulin was used as a reference gene. (n = 5 biological replicates, P < 0.05: *; P < 0.001:***; P < 0.0001: ****, two-way ANOVA with Sidak’s
test for multiple comparisons). (F)Western blot analysis of steady-state levels of respiratory chain subunits in heart and skeletal muscle mitochondrial extracts of CAG-TFAM
(+/CAG) animals and control littermates (Con). A representative image is shown (n = 3 independent experiments). (G) Representative images of fixed heart (left) and skeletal
muscle (right) tissue from control (con) and CAG-TFAM animals at 16 d of age analysed by transmission electron microscopy. For each genotype, six biological replicates were
analysed. Scale bars, heart: 20 (upper panels), 5 (middle), 1 μm (lower panels); skeletal muscle: 10 (upper panel), 2 (middle), and 1 μm (lower panel).
Source data are available for this figure.
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Mitochondrial gene expression is maintained in liver tissue

Next, we analysed the effects of the observed compensatory re-
sponses on mitochondrial gene expression in liver. Western

blotting of total tissue extracts from CAG-TFAM mice confirmed the
lower increase in TFAM levels in liver (2.10-fold of control, Fig 5A and
B). We observed no significant increase in mtDNA levels in liver (Fig
5C and D). The relative TFAM-to-mtDNA ratio is thus ~2.41-fold

Figure 4. Tissue-specific responses to high
TFAM levels.
(A, B, C, D) Heat map illustrating the log2 fold-
change in protein levels of OXPHOS subunits
(A), mitoribosomal subunits (B),
components of the mtDNA expression
machinery (C), and ATP-dependent
mitochondrial proteases (D) in the heart,
skeletal muscle, and liver of CAG-TFAM mice
compared to litter mates. Heat map: minimum
(−2), blue; maximum (2), red.
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higher than in controls in liver of CAG-TFAM mice and this cir-
cumstance should lead to increased nucleoid compaction and
reduced mtDNA expression in line with previous in vitro findings
(Farge et al, 2014; Kukat et al, 2015). However, the steady-state levels

of mitochondrial transcripts were normal in liver of CAG-TFAM
animals as assessed by qRT-PCR (Fig 5E). Interestingly, in organ-
ello transcription assays of isolated liver mitochondria showed a
much higher transcription level compared with wild-type

Figure 5. mtDNA expression is maintained despite high TFAM levels in liver.
(A) Western blot analysis of TFAM protein levels in liver whole cell lysates of CAG-TFAM (+/CAG) mice. Litter mates were used as controls (Con). Actin was used as a
loading control. A representative image is shown (n = 2 independent experiments). (B) TFAM protein levels in control and CAG-TFAM animals were quantified by
densitometry and are expressed as folds of control (means ± SEM, n = 4–5 biological replicates; P < 0.05: *, two-way ANOVA with Sidak’s test for multiple comparisons).
(C) Quantification of steady-state mtDNA levels in liver tissue of CAG-TFAM (+/CAG) animals and control litter mates (Con). mtDNA levels were quantified by qPCR using
specific probes against COX1 and 18S. Data are expressed as means ± SEM (n = 6–7 biological replicates). (D) Southern blot analysis of PstI-digested mtDNA derived from
heart and skeletal muscle of CAG-TFAM (+/CAG) animals and control litter mates (Con). mtDNA was quantified by radiolabeling with a specific probe against COX1, nuclear
DNA was probed with 18S. A representative image is shown (n = 3 independent experiments). (E) Analysis of steady-state mitochondrial transcript levels in liver tissue of
CAG-TFAM (+/CAG) animals and control litter mates (Con) by qRT-PCR. Data are expressed as means ± SEM (n = 5 biological replicates). (F) De novo RNA synthesis in
skeletal muscle and liver mitochondria isolated from CAG-TFAM (+/CAG) mice and control litter mates. Mitochondria were pulse labelled for 1 h. Mitochondrial HSP60 was
used as a loading control. A representative image is shown (n = 2–3 independent experiments). (G) Representative images of fixed liver tissue from control (Con) and
CAG-TFAM animals at 16 d of age analysed by transmission electronmicroscopy. For each genotype, six biological replicates were analysed. Scale bars, 20 (upper panels), 5
(middle), 2 μm (lower panels). (H)Measurement of triglyceride content. Approximately 100 mg of liver tissue was homogenized and triglycerides were quantified using the
triglycerides quantification kit (Sigma-Aldrich). Data are expressed as means ± SEM (n = 5 biological replicates; P < 0.001:***, unpaired t test).
Source data are available for this figure.
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mitochondria, whereas skeletal muscle mitochondria had very low
de novo transcription (Fig 5F), consistent with the observed sig-
nificant increase in the levels of POLRMT in liver but not in heart in
our proteomic dataset (Fig 4C). It is thus apparent that an increased
TFAM-to-mtDNA ratio and subsequent repression of mtDNA
expression can be compensated for in some tissues, like liver.
However, on an ultrastructural level we observed a marked change
in mitochondrial morphology with vesicle-like cristae appearance
accompanied by an increase in lipid droplets in the liver (Fig 5G).
Determination of triglyceride levels relative to liver protein or tissue
(Fig 5H) confirmed an accumulation of lipids after strong TFAM
overexpression. This points to a dysregulation of lipid metabolism,
potentially as a side effect to the strong induction of mitochondrial
proteases and other adaptive responses observed in liver.

To summarize, the data we present here show that a moderate
increase in TFAM protein levels of 1.5-fold will not interfere with
nucleoid morphology, mtDNA replication, mitochondrial gene ex-
pression and animal physiology. However, this moderate mtDNA
copy number increase is sufficient to ameliorate disease phenotypes
caused by heteroplasmic mtDNA mutations (Jiang et al, 2017;
Filograna et al, 2019). In contrast, strong ubiquitous TFAM over-
expression leads to postnatal lethality and mitochondrial dysfunc-
tion. The TFAM-to-mtDNA ratio in combination with tissue-specific
regulation is critical factors to determine whether mtDNA expression
will be maintained at levels sufficient to sustain OXPHOS and organ
function.

Discussion

TFAM is the major structural protein of the mammalian nucleoid,
covering mtDNA with a ratio of 1 TFAM molecule per 16–17 bp of
mtDNA (Alam et al, 2003; Kukat et al, 2011). Importantly, TFAM is
sufficient to fully compact mtDNA into nucleoids by a series of
events starting with single TFAMmolecules cooperatively binding to
mtDNA in patches (Kaufman et al, 2007; Farge et al, 2014; Kukat et al,
2015). TFAM compacts mtDNA by cross-strand binding and loop
formation, thus condensing the mammalian mtDNA with a contour
length of ~5 μm into a nucleoid structure with a diameter of ~100 nm
(Brown et al, 2011; Kukat et al, 2011). For comparison, an even higher
degree of DNA compaction is observed in the nucleus, especially in
the condensed states of mammalian chromosomes. Wrapping of
DNA around the histone octamer globally conceals nuclear pro-
moters and makes them inaccessible to the preinitiation complex,
rendering the core nucleosome a general nuclear gene repressor
(Lorch et al, 1987; Han & Grunstein, 1988). Nuclear transcription is
thus shut off by default and a complex machinery acts to specif-
ically activate gene expression, for example, by recruitment of the
transcription initiation machinery, binding of transcriptional acti-
vators, histone remodelling, and addition of posttranslational
histone modifications (Kornberg & Lorch, 2020).

In contrast to nuclear transcription, mtDNA transcription may be
constitutively active. Quantitative assessment of mtDNA tran-
scription in wild-type mouse embryonic fibroblasts has shown that
the vast majority of nucleoids are transcribed (Ramos et al, 2019).
Transcripts from mtDNA form mitochondrial RNA granules next to

almost all nucleoids as determined by FISH analyses of individual
transcripts or BrU labelling of nascent transcripts (Ramos et al,
2019). It is thus important to recognize that regulation of mito-
chondrial gene expression needs to ensure promoter-specific
initiation of mtDNA transcription. Besides its role in mtDNA com-
paction (Kaufman et al, 2007; Kukat et al, 2011, 2015), TFAM also binds
specifically to the mtDNA promoters and is critical for recruiting
POLRMT and TFB2M for initiation of transcription (Hillen et al, 2017)
(Fig 6). Although POLRMT on its own is poor at melting double-
stranded DNA (dsDNA), it can initiate transcription when binding to
single-stranded (ssDNA) in vitro (Wanrooij et al, 2008). Transient
strand-separation of mtDNA may result from mtDNA replication or
supercoiling tension, but typically, ssDNA is covered by the mito-
chondrial single-stranded binding protein (mtSSB) and therefore
not accessible to binding by POLRMT and initiation of unspecific
transcription (Fusté et al, 2010) (Fig 6). In line with this, there is a
drastic increase in unspecific transcription initiation of mtDNA in
vivo in a conditional mouse knockout model lacking mtSSB in
heart (Jiang et al, 2021). The promoter-specific initiation of mtDNA
transcription is thus dependent on both TFAM and mtSSB.

Experiments with in vitro reconstituted mitochondrial nucleoids
have shown that the TFAM-to-mtDNA ratio determines whether the
nucleoid is in an open (active) or a compacted (inactive) state
(Kaufman et al, 2007; Farge et al, 2014; Kukat et al, 2015). Variations in
local TFAM protein levels may therefore shift the equilibrium be-
tween open and inactive nucleoids and thereby control mtDNA
gene expression at the level of compaction. We show here that
TFAM can also serve as a general repressor of mtDNA gene ex-
pression in vivo. We observed a substantial decrease in mito-
chondrial gene expression in the skeletal muscle of CAG-TFAMmice
where the TFAM-to-mtDNA ratio vastly exceeds the ratio found in
normal skeletal muscle. Because of the increased TFAM protein
levels, the equilibrium likely shifts and may force the nucleoids to
adapt a hyper-packaged state which abolishes mitochondrial gene
expression (Fig 6). In heart sections of CAG-TFAMmice, we observed
an increase in the number of nucleoids consistent with the in-
creased mtDNA copy number. The nucleoids of CAG-TFAM mice
were of similar size as nucleoids of control or BAC-TFAM mice,
although they formed extensive clusters. Because of technical
challenges, we could not directly address nucleoid size by STED
microscopy of tissue sections from skeletal muscle and liver. Still,
oversaturation of the system with TFAM is likely the basis for
the observed skeletal muscle phenotype in CAG-TFAM mice. In
agreement with this model, forced expression of Abf2p, the TFAM
homologue in budding yeast, leads to eventual loss of mtDNA due
to exclusion of replication factors by excessive nucleoid compac-
tion (Zelenaya-Troitskaya et al, 1998). However, increased mtDNA
copy number under respiring growth conditions resulted in a more
balanced Abf2p-to-mtDNA ratio and more open, transcriptionally
active nucleoids in the budding yeast (Kucej et al, 2008). Here, we
observe markedly increased mtDNA levels in heart tissue of CAG-
TFAM mice after high levels of TFAM expression. This leads to a far
more balanced TFAM-to-mtDNA ratio in heart, which allows for
continued mtDNA expression. The postnatal development of car-
diomyocytes involves substantial mtDNA replication during the first
4 wk of postnatal life (Ramos et al, 2019) which may explain the
observed increase in mtDNA levels in heart. However, we observe
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milder adverse effects of TFAM overexpression in the heart and we
cannot rule out thatmore detrimental effects in heart may occur with
increasing age despite initial compensation mechanisms (Ghazal et
al, 2021). TFAM-to-mtDNA ratios also vary between the different
stages of Xenopus oocyte development (Shen & Bogenhagen, 2001),
thus TFAM-mediated repression may represent an important, con-
served mechanism that controls mtDNA expression in response to
the metabolic needs during development and for appropriate
function of differentiated tissues.

Our data indicate that regulatory mechanisms may counteract
TFAM-inducedmitochondrial gene repression in certain tissues. We
observed a marked increase in LONP1 levels in the liver of CAG-
TFAM mice. In contrast to skeletal muscle, TFAM protein levels were
lower and the TFAM-to-mtDNA ratio was more balanced in liver,
whichmay explain the near-normal mitochondrial transcript levels.
The TFAM-to-mtDNA ratio observed in liver should be sufficient to
repress mtDNA transcription according to in vitro findings (Farge et
al, 2014), but the action of LONP1 in vivomay lead to local changes in
TFAM levels that may result in decreased compaction of the nu-
cleoid at the promoter regions, which may allow recruitment of
POLRMT and TFB2M for initiation of transcription. We observed an
induction of both LONP1 and POLRMT expression in liver, whichmay
keep a larger fraction of nucleoids in an open, active state to allow
promoter-specific transcription initiation. The tissue-specific in-
duction of the LONP1 protease in liver, but not in skeletal muscle or

heart, points to the existence of cell-type-specific responses reg-
ulating TFAM levels. However, this adaptation may come with a cost
as we observed accumulation of triglycerides in the liver, which
points to dysregulation of lipid metabolism, possibly as a conse-
quence of the up-regulation of mitochondrial proteases interfering
with metabolic pathways.

Our data highlight the importance of maintaining TFAM-to-
mtDNA ratios within a certain physiological interval to allow
proper regulation of mtDNA transcription. Local changes in TFAM
levels may provide an important mechanism that controls the
switch between repression and activation of mtDNA gene ex-
pression by regulation of promoter-specific transcription initiation.
Possible treatment strategies to counteract mitochondrial dys-
function by induction mitochondrial biogenesis, for example, by
activation of PGC1α, or selective TFAM overexpression must take
into account the resulting TFAM-to-mtDNA ratios. Based on the
findings presented here, we conclude that modulation of TFAM
levels to increase mtDNA copy number by 1.5-fold provides a safe
intervention, whereas strong overexpression of TFAM may result in
excessive repression of mitochondrial gene expression, nucleoid
clustering and ultrastructural changes of mitochondria in different
tissues. We thus conclude that the TFAM-to-mtDNA ratio provides
an essential mechanism that control mtDNA gene expression in
vivo and that this ratio must be maintained or proper function
oxidative phosphorylation.

Figure 6. Regulation of mtDNA expression by TFAM levels in vivo.
An overview of the proposed regulation of mtDNA expression by TFAM-induced compaction of mitochondrial nucleoids. Open and compactedmitochondrial nucleoids
are schematically depicted as circles. The other icons are explained in the figure. This figure was generated using Biorender.com (PDB entries: 3SPA, 7KSM, 2DUD, 6ERP,
3TMM) (Ngo et al, 2011; Ringel et al, 2011; Hillen et al, 2017).

Levels of TFAM affect mtDNA expression in vivo Bonekamp et al. https://doi.org/10.26508/lsa.202101034 vol 4 | no 11 | e202101034 11 of 17

http://Biorender.com
http://www.rcsb.org/pdb/home/home.do/3SPA
http://www.rcsb.org/pdb/home/home.do/7KSM
http://www.rcsb.org/pdb/home/home.do/2DUD
http://www.rcsb.org/pdb/home/home.do/6ERP
http://www.rcsb.org/pdb/home/home.do/3TMM
https://doi.org/10.26508/lsa.202101034


Materials and Methods

Animal models and housing

We generated BAC-TFAM mice as previously described (Jiang et al,
2017). Founder mice carrying Tfam BAC DNA were identified by PvuI
restriction analysis of mouse genomic DNA. Germ line transmission
was established from different founder mice and the offspring was
kept as heterozygous stocks by breeding to C57Bl/6N mice. Three
different mouse lines (BAC TG 188, TG 137 and TG 91) corresponding
to three different founders were kept for molecular analysis.

The plasmid construction was performed as previous described
(Sterky et al, 2011). In brief, a mouse Tfam CDS sequence without a
stop codon was cloned and a flag sequence was added at its C
terminus. This sequence was cloned into the Serca plasmid
backbone containing CAG promoter-loxP-Neo-Westfal Stop
cassette-loxP sites (kind gift from T Wunderlich). The targeting
vector was linearized and electroporated into mouse embryonic
stem (ES) cells. Southern blotting was used to identify the positive
colonies from transformed ES cell lines, which were used for
blastocyst injection, and germ line transmission was obtained by
mating chimeric mice to C57BL/6N mice.

All mice used in this study had an inbred C57Bl/6N background
and were housed in standard individually ventilated cages in a 12 h
light/dark cycle in controlled environmental conditions (21°C ± 2°C,
50% + 10% relative humidity). Mice were fed a normal chow diet
(ssniff) and water ad libitum. The study was approved by the
Landesamt für Natur, Umwelt und Verbraucherschutz, Nordrhein-
Westfalen, Germany (reference numbers 84-02.04.2015.A103, 84-
02.50.15.004 and 84-02.04.2016.A420) and performed in accordance
with the recommendations and guidelines of the Federation of
European Laboratory Animal Science Associations.

Analysis of energy homeostasis

Energy homeostasis and activity of BAC-TFAM animals and age-
matched wild-type mice was measured at the age of 10 and 52 wk
using metabolic cages (Phenomaster; TSE systems). Before the
actual experiments, animals were acclimatized to the different
housing conditions in training cages for 3–4 d. Mice were housed in
metabolic cages for 3–4 d with data being collected for a time span
of 48 h. Differences in O2 and CO2 levels were measured and were
used to calculate O2 consumption, CO2 production, respiratory
exchange rate, and energy expenditure (heat). Disruption of light
beams simultaneously documented animal activity.

Isolation of total protein and mitochondria from tissues

Animals were euthanized by cervical dislocation, and isolated
tissues were cleaned and directly snap-frozen in liquid nitrogen.
Total proteins were extracted from ground tissue powder using 2×
SDS-sample buffer (100 mM Tris, pH 6.8, 4% SDS, 20% glycerol, and
200 mM DTT) supplemented with complete protease and phos-
phatase inhibitor cocktail (Roche). The protein concentration
was determined using the RCDC assay (Bio-Rad) and BSA as a
standard.

Mitochondria were isolated from mouse tissues using differ-
ential centrifugation. Briefly, fresh tissues were cut, washed with
ice-cold PBS and homogenized in standard mitochondrial isolation
buffer containing 320 mM sucrose, 10 mM Tris–HCl, and 1 mM EDTA
by using a Potter S pestle (Sartorius). The homogenate was
centrifuged at 1,000g for 10 min at 4°C. The supernatant was col-
lected and centrifuged at 10,000g for 10 min at 4°C. Resulting crude
mitochondrial pellets were resuspended in mitochondrial isolation
buffer supplemented with complete protease inhibitor cocktail
(Roche). Protein concentration was determined using the Bradford
method (Sigma-Aldrich) and BSA as a standard.

Gel electrophoresis and Western blotting

For standard gel electrophoresis, protein samples (30 μg/lane)
were mixed with 2× NuPAGE LDS sample buffer supplemented
with 200 mM DTT and resolved using commercially available 10% or
4–12% NuPAGE Bis-Tris gels and MOPS or MES buffer (Invitrogen)
including protein standards (Spectra Multicolor Broad Range;
Thermo Fisher Scientific). Proteins were transferred on nitrocel-
lulose membranes using wet tank blotting (25 mM Tris, 192 mM
glycine, and 20% methanol) at 4°C for 2 h at 400 mA or overnight at
80 mA.

For detection of TFAM phosphorylation, the tissues were lysed in
20 mM Tris–HCl, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton
X-100, and protease inhibitors. 100 μg of whole tissue lysate were
treated with or without λ phosphatase (NEB) according to the
manufacturer’s instructions. Samples were precipitated using TCA
and protein pellets were resuspended in 2× SDS sample buffer
supplemented with β-mercaptoethanol. Samples were boiled for 5
min before loading on Zn2+ Phostag gels using a neutral-pH Bis-Tris
buffering system (15 μg/lane) (Kinoshita & Kinoshita-Kikuta, 2011).
Briefly, 10% polyacrylamide Bis-Tris gels were prepared with the
addition of both Phostag acrylamide (50 μM final) and ZnCl2 (100 μM
final) and run in buffer containing 100 mMMOPS, 100 mM Tris, 5 mM
sodium bisulfite, and 0.10% SDS. Phostag gels were soaked three
times in transfer buffer containing 5 mM EDTA for 10 min to remove
Zn2+ before wet transfer overnight.

For standard and Phostag PAGE, membranes were blocked in 5%
milk-1× Tris-buffered saline-0.1% Tween 20 (TBST) for at least 1 h at
room temperature. Membranes were subsequently incubated with
primary antibodies diluted in 5% milk-TBST overnight at 4°C,
washed in TBST and incubated with HRP-conjugated secondary
antibodies for 2 h at room temperature. After washing with TBST,
immunodetection was performed by enhanced chemiluminescence
(GE Healthcare) using either photo film or the Fujifilm LAS 400 im-
aging system (Fujifilm). The following antibodies were used: rabbit
polyclonal anti-TFAM (Abcam), mouse monoclonal anti-actin
(Abcam), Total OXPHOS Rodent Western Blotting antibody cocktail
(Abcam), mouse monoclonal anti-tubulin (Sigma-Aldrich), rabbit
anti-Tubulin (Cell Signaling), rabbit anti-vinculin (Abcam), mouse
monoclonal anti-UQCRFS1/RISP (Abcam), mouse monoclonal
anti-COX5a (Invitrogen/ThermoFisher Scientific), mouse mono-
clonal anti-VDAC (Millipore), rabbit polyclonal anti-ACOT2 (Pro-
teintech), mouse monoclonal anti-cytochrome C (Abcam), rabbit
anti-HSP60 (Cell Signaling), sheep anti-mouse IgG (GE Health-
care), and donkey anti-rabbit (GE Healthcare). For densitometry of
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protein levels, intensity of protein bands was analysed using
either the MultiGauge Software (Fuji) on LAS imaging files or
ImageJ on scanned photo film.

DNA-isolation and determination of mtDNA levels by qPCR

Total DNA was extracted and purified using the Puregene Core A Kit
(QIAGEN) following the manufacturer’s instructions including RN-
Ase treatment. The purity and quantity of DNA were evaluated with
the NanoDrop 2000 (Thermo Fisher Scientific) and 5 ng/μl DNA were
analysed by qPCR. qPCRwas carried out using the Taqman 2× Universal
PCR mastermix, No Amperase UNG (Applied Biosystems), and com-
mercially available Taqman assay probes for mouse mitochondrial
(COX1, Mm04225243_g1) and nuclear DNA (18S, Hs99999901_s1).

Southern blotting

2 μg of total DNA were digested with PstI restriction enzyme
overnight at 37°C. Digested DNA was precipitated with ethanol,
resuspended in water and DNA fragments were separated over-
night by 0.6–0.8% agarose gel electrophoresis. Southern blotting to
nitrocellulose membranes (Hybond-N+; GE healthcare) was carried
out as described before (Kauppila et al, 2018). Hybridisation was
carried out using radiolabelled probes against mouse COX1 and 18S
to detect mitochondrial and nuclear DNA, respectively.

RNA-isolation, Northern blotting, cDNA synthesis, and qRT-PCR

Total RNA was isolated from snap-frozen tissue samples using
TRIzol Reagent (Thermo Fisher Scientific) following the manufac-
turer’s instructions and subsequently DNAse-treated (TURBO DNA-
free kit; Thermo Fisher Scientific). If only intended for Northern
blotting, the RNA pellet was directly resuspended in deionized
formamide. Alternatively, total RNA was isolated using the Direct-
zol RNA Miniprep Kit (ZymoResearch) including the DNAse digestion
step. Purity and quantity of RNA were evaluated with the NanoDrop
2000 (Thermo Fisher Scientific). Northern blot analysis was carried
out as previously described (Kauppila et al, 2018). Briefly, 2 μg of
RNA were separated on 1.2% paraformaldehyde-agarose gel in
MOPS running buffer and transferred to nitrocellulose membranes
(Hybond-N+) by capillary transfer. Detection of mitochondrial
mRNAs and rRNAs was carried out using 32P-dCTP-labeled probes,
mitochondrial tRNAs were detected using specific oligonucleotides
labelled with γ-32P-ATP. 18S was hybridised as a loading control.
cDNA was synthesized using the High-Capacity RNA-to-cDNA Kit
(Applied Biosystems). qRT-PCR was carried out using the Taqman 2×
Universal PCR mastermix, No Amperase UNG (Applied Biosystems)
and commercially available Taqman Assay probes for mouse mi-
tochondrial transcripts (CytB, Mm04225271_g1; ND1, Mm04225274_s1;
COX1, Mm04225243_g1; 12S, Mm04260177_s1; Life Technologies).
Transcript quantities were normalized to β-2-microglobulin used as
a reference gene transcript (Mm00437762_m1; Life Technologies).

In organello transcription

Mitochondria were isolated from fresh heart and liver tissue by
differential centrifugation (1 × 1,000g, 1 × 10,000g). For in organello

transcription experiments, freshly purified mitochondria (500 μg)
were washed three times in incubation buffer (25 mM sucrose, 75
mM sorbitol, 10 mM Tris–HCl, 10 mM K2HPO4, 100 mM KCl, 0.05 mM
EDTA, 1 mM ADP, 5 mMMgCl2, 10 mM glutamate, 2.5 mMmalate, and 1
mg/ml BSA, pH 7.4). Washedmitochondria were resuspended in 500
μl of incubation buffer and supplemented with 50 μCi of α-32P-UTP
(Hartmann Analytic). Samples were incubated at 37°C for 1 h. Af-
terwards, mitochondria were pelleted, resuspended in incubation
buffer containing 0.2 mM UTP and incubated for 10 min at 37°C.
Mitochondria were subsequently washed twice in cold wash buffer
(10% glycerol, 0.15 mMMgCl2, and 10 mM Tris–HCl, pH 6.8). An aliquot
of the mitochondria (10 μl) was taken as a loading control. Then,
RNA was extracted using TRIzol (Ambion) following the manufac-
turer’s recommendations and precipitated overnight at −20°C. The
purified RNA was loaded onto a formaldehyde–agarose gel and
blotted as a northern blot. Themembrane (Hybond-N+; GE Healthcare)
was exposed to a phosphorimager screen. Loading controls were
run on 10% NuPage gels using MOPS buffer and equal loading was
assessed by immunoblotting against HSP60.

Quantitative proteomics

Sample preparation from 10 mg of grinded tissue powder was
performed as described (Busch et al, 2019) with slight modifications:
tryptic peptides were eluted from STAGE tips with 40% acetonitrile
(ACN) 0.1% formic acid (FA). 4 μg of desalted peptides were labelled
with TMTs (TMT10plex, Cat. no 90110; Thermo Fisher Scientific) using
a 1:20 ratio of peptides to TMT reagent. All 10 samples per time point
were labelled in one TMT batch. TMT labelling was carried out
according tomanufacturer’s instruction with the following changes:
0.8 mg of TMT reagent was re-suspended with 70 μl of anhydrous
ACN, dried peptides were reconstituted in 9 μl 0.1 M Tetraethy-
lammoniumbromid (TEAB) to which 7 μl TMT reagent in ACN was
added to a final ACN concentration of 43.75%, after 60 min of in-
cubation the reaction was quenched with 2 μl 5% hydroxylamine.
Labelled peptides were pooled, dried, resuspended in 200 μl 0.1%
FA, split into two samples, and desalted using home-made C18
STAGE tips (Rappsilber et al, 2003). One of the two halves was
fractionated on a 1 × 150 mm ACQUITY column, packed with 130 Å, 1.7
μmC18 particles (Cat. no. SKU: 186006935; Waters), using an Ultimate
3000 UHPLC (Thermo Fisher Scientific). Peptides were separated at
a flow of 30 μl/min with a 96 min segmented gradient from 1% to
50% buffer B for 85 min and from 50% to 95% buffer B for 3 min,
followed by 8 min of 95% buffer B; buffer A was 5% ACN, 10 mM
ammonium bicarbonate (ABC), buffer B was 80% ACN, 10 mM ABC.
Fractions were collected every 3 min, and fractions were pooled in
two passed (1 + 17, 2 + 18 … etc.) and dried in a vacuum centrifuge
(Eppendorf). Dried fractions were resuspended in 0.1% FA sepa-
rated on a 50 cm, 75 μm Acclaim PepMap column (Cat. no 164942;
Thermo Fisher Scientific) and analysed on a Orbitrap Lumos Tribrid
mass spectrometer (Thermo Fisher Scientific) equipped with a field
asymmetric ion mobility spectrometry (FAIMS) device (Thermo
Fisher Scientific) that was operated in two compensation voltages,
−50 and −70 V. Alternatively, peptides were separated on a 25 cm,
75 μm PicoFrit column (New Objective) packed with 1.9 μm
ReproSil-Pur media (Dr. Maisch) and analysed on an Orbitrap Fusion
Tribrid mass spectrometer (Thermo Fisher Scientific). Synchronous
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precursor selection based MS3 was used for TMT reporter ion signal
measurements. Peptide separations were performed on an EASY-
nLC1200 using a 90 min linear gradient from 6 to 31% buffer; buffer
A was 0.1% FA, buffer B was 0.1% FA, 80% ACN. The analytical column
was operated at 50°C. Raw files were split based on the FAIMS
compensation voltage using FreeStyle (v. 1.6; Thermo Fisher Scientific).

Proteomics data were analysed using MaxQuant (Cox & Mann,
2008) (version 1.6.10.43). Raw proteomics data was searched against
the mouse proteome database from Uniprot, downloaded in
September 2018. The isotope purity correction factors, provided by
the manufacturer, were included in the analysis. Differential ex-
pression analysis was performed using limma (Ritchie et al, 2015) in
R (R Core Team, 2018). The raw data, database search results, and
the data analysis workflow and results were deposited to the
ProteomeXchange Consortium via the PRIDE partner repository
(Perez-Riverol et al, 2019) with the dataset identifier PXD023050.

Quantification of triglycerides

Approximately 100 mg of liver tissue was homogenized in a 1 ml
solution of 5% IGEPAL CA-630 (Sigma-Aldrich). The homogenate was
incubated at 90°C for 5 min, then cooled to room temperature. The
heating–cooling cycle was repeated to solubilize all triglycerides.
Samples were centrifuged at top speed for 2 min, and the super-
natant was collected. The samples were diluted 10-fold with water
before the quantification, then 5–30 μl of the samples were used
with the triglycerides quantification kit (Sigma-Aldrich) following
the manufacturer’s instructions.

COX/SDH staining

COX/SDH double staining was performed as previously described
(Matic et al, 2018). Briefly, fresh heart and skeletal muscle tissues
were dissected and immediately frozen in isopentane chilled with
liquid nitrogen. Tissues were further cryo-sectioned into sections
(10 μm for skeletal muscle and 7 μm for heart), mounted on slides
and left to air dry briefly. Freshly prepared buffer A (0.8 ml of 5 mM
3,39-diaminobenzidine tetrahydrochloride, 0.2 ml of 500 μM cyto-
chrome c, and 10 μl of catalase) was added to the slides. After
incubation for 60 min at 37°C, slides were washed three times by 0.1
M phosphate buffered saline, pH 7.0. Then freshly prepared buffer B
(0.8 ml 1.875 mM of nitroblue tetrazolium, 0.1 ml 1.3 M of sodium
succinate, 0.1 ml 2.0 mM phenazine methosulphate, and 10 μl of 100
mM sodium azide) was applied and incubated for 30 min at 37°C.
Slides were washed three times with 0.1 M phosphate buffered
saline, pH 7.0, dehydrated andmounted for bright-field microscopy.

Transmission electron microscopy

Liver, skeletal muscle and heart tissue were cut into small pieces
and fixed in 2.5% glutaraldehyde, 1% paraformaldehyde, and 0.1 M
phosphate buffer, pH 7.4 at room temperature for 1 h, followed by 24
h at 4°C. After the fixation, the specimens were rinsed in a buffer
containing 0.1 M sodium phosphate and subsequently post-fixed in
2% osmium tetroxide at 4°C for 2 h. The specimens were then
stepwise dehydrated in ethanol followed by acetone and finally
embedded in LX-112 (Ladd Research Industries). Ultra-thin sections

(60–80 nm) from longitudinal parts were cut and examined in a
Hitachi HT7700 (Hitachi High-Tech) at 80 kV. Equipped with a 2kx2k
Veleta CCD camera (OSIS). Digital images at a final magnification of
2,500×, 5,000×, 10,000×, 20,000×, and 40,000× were randomly ac-
quired from sections of the tissues.

gSTED analysis of nucleoids in heart tissue

Immunohistochemistry
Freshly isolated hearts were fixed in 4% PFA, cryopreserved in 30%
sucrose and frozen in optimal cutting temperature compound
(OCT). 10-μm-thick cryosections were cut and air-dried before
proceeding with fluorescent immunohistochemistry. Sections were
permeabilized in 0.5% Triton X-100/PBS and unspecific binding of
antibodies was prevented by incubation in blocking buffer (3% BSA/
PBS). The following primary antibodies in blocking buffer were then
applied overnight at +4°C: mouse IgM anti-DNA (Progen), rabbit
anti-TOM20 (Santa Cruz). After washing, the following secondary
antibodies were then applied: goat anti-mouse IgM Alexa 594, and
donkey anti-rabbit Alexa 488. Nuclei were counterstained with DAPI.

Imaging
Imaging was performed with a Leica TCS SP8 gated STED (gSTED)
microscope, with a white light laser and a 93× objective lens (HC PL
APO CS2 93× GLYC, NA 1.30). For confocal images of mitochondria
(TOM20) and DNA, Z-stacks were taken by exciting the fluorophores
at 488 and 594 nm, respectively, and Hybrid detectors collected
fluorescent signals. STED images of DNA channel were obtained
with a 775-nm depletion laser. 2D confocal and gSTED images were
acquired sequentially with the optical zoom set to obtain a voxel
size of 17 × 17 nm. Excitation was provided at 594 nm and Hybrid
detectors collected signal. Gating between 0.3 and 6 ns was applied.
Performance of the microscope and optimal depletion laser power
were tested as previously described (Nicholls et al, 2018).

Image processing

Raw images were first deconvolved with the Huygens software.
Image panels were created with Photoshop (Adobe); no digital manip-
ulation was applied, except for adjustment of brightness and contrast.

Data Availability

All relevant data generated and analysed are included in the article.
For the proteomic data, the raw data, database search results, and the
data analysis workflow and results were deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD023050. Source data are provided with this article.
Further requests should be directed to the corresponding authors.
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