
















which, to our knowledge, represents the longest reported lifespan
for mutant mice homozygous for this severe Npc1 allele. In the
murine model, a single injection of AAV at weaning yielded survival
benefits comparable to 2-hydroxypropyl-β-cyclodextrin, a promising
NPC therapeuticwhichhas advanced through aPhase 3 clinical trial (Ory
et al, 2017). This cyclodextrin is a small cyclic sugar molecule that re-
quires invasive delivery via the intrathecal route, lifelongdosing, andhas
significant ototoxicity as a frequent side effect (Ory et al, 2017). Therefore,
a single administration of gene therapy, if it had long lasting effects,
could represent an important new therapy that might bemore effective,
and perhaps synergize with other treatments. Combination AAV and
cyclodextrin studies are underway, andmight helpdefineanew regimen
to treat patients, one that hopefully would offer considerable im-
provement over current investigational or off-label treatments.

The gene therapy studies presented here are consistent with
previous conditional and transgenic animal experiments that
suggest greater CNS correction can lead to enhanced disease
amelioration (Ko et al, 2005; Elrick et al, 2010; Yu et al, 2011). First,
gene therapy–treated Npc1m1N/m1N mice with the longest survival
had the highest NPC1 copy number in cerebrum and cerebellum,
indicative of greater CNS transduction. Slower deterioration of
motor coordination and disease phenotype, as demonstrated by
the balance beam and phenotypic screening behavioral assays, was
also noted in the mice with higher vector GC numbers. Importantly,
AAV-PHP.B-NPC1–treated Npc1m1N/m1N mice displayed an even
slower progression of disease than did AAV9-NPC1–treated
Npc1m1N/m1N mice. Finally, maintenance of greater body weight
was most apparent in the AAV-PHP.B-NPC1–treated Npc1m1N/m1N

Figure 6. Differential impact of adeno-associated virus (AAV)9-NPC1and AAV-PHP.B-NPC1vectors on liver pathology.
(A, B, C, D, E, F, G, H) Cholesterol accumulation (visualized by Filipin labeling: white in top row, blue in middle row) is pronounced in both hepatocytes and Kupffer cells
(CD68+ green in middle row) of saline and AAV-PHP.B-NPC1–treated Npc1m1N/m1N mice (B, D, respectively). (A, B, C, D) Insets (A, B, C, D) provide an overview of pathology.
(C, G, K) Groups of corrected hepatocytes, though not Kupffer cells, are visible in the AAV9-NPC1–treated Npc1m1N/m1N mice (arrows in C, G, K) consistent with moderate
pathology reduction. (I. J, K, L) Hematoxylin and eosin staining support the mildly reduced pathology found in AAV9-NPC1–treated Npc1m1N/m1Nmice (K) as compared to
saline or AAV-PHP.B-NPC1 treatments (J, L). (A, E, I) Normal Npc1+/+ liver is shown in (A, E, I) for comparison. Scale bars = 200 μm (insets only, top row) or 100 μm (all other
panels).
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mice. All aforementioned improvements were exhibited in the
treatment group displaying the highest NPC1 copy number in
brain: AAV-PHP.B-NPC1. Although the results were variable, they
consistently supported the observation that higher vector copy
numbers in the brain correlated with greater improvement.

The extraneuronal disease of NPC1 is clinically significant, with
hepatosplenomegaly and persistent liver disease, and even liver
failure, documented in NPC1 patients (Kelly et al, 1993; Vanier, 2010;
Patterson et al, 2013; Geberhiwot et al, 2018). However, whereas
Npc1m1N/m1N mice treated with AAV9-NPC1 showed mild improve-
ment in liver pathology, all other phenotypic measures were re-
duced compared with the more CNS-trophic AAV-PHP.B vector,
highlighting the fact that correction of the CNS, broadly, at a very
low level, drives phenotypic correction. Thus, our gene therapy
experiments may serve to provide an alternative estimate to the
mouse chimera mixing studies, which documented the need for
~30% wild-type cells, to achieve phenotypic correction in Npc1 mice
(Ko et al, 2005). Although we are uncertain as to the exact percent
and cell type of CNS transduction achieved herein, the reported
studies (Fig 1) and Western blotting (Fig 4) suggest it is <30%, and
could perhaps inform the selection of a serotype, dose, and route of
delivery for future human translation.

The influence of allelic variance at the Ly6a locus on treatment
efficacy of the AAV-PHP.B vector is well exemplified in our study
cohort. The protein encoded by Ly6a is expressed at the BBB, and
transduction efficiency of AAV-PHP.B correlates with two different
haplotypes across the Ly6a locus, which are present in various
inbred strains of mice. These haplotypes include coding SNPs that
may affect Ly6a function as well as upstream SNPs that may affect
Ly6a protein expression at the BBB (Hordeaux et al, 2019; Huang et
al, 2019; Batista et al, 2020). The Npc1m1N/m1N colony used in our
studies harbors both permissive and restrictive genotypes that
correlate with the effects seen in the outcomemeasures presented.
In comparison, limited sampling from the Jackson Laboratory
colony revealed only the restrictive genotype (Pavan, unpublished
observation). Differences noted in published studies between
Npc1m1N/m1N mice in distinct facilities, particularly in terms of av-
erage survival without therapeutic intervention, might be caused by
genetic admixture and/or fixation of modifier alleles, and high-
lights the importance of exploring strain effects in murine models
that are used to generate preclinical enabling data. Recent studies
showed reduced efficacy of AAV-PHP.B in nonhuman primates that
is likely attributable to the absence of LY6A in primates (Hordeaux
et al, 2018; Matsuzaki et al, 2018; Liguore et al, 2019), suggesting that
novel viral variants may not be readily transferred between species
but instead would need to be generated in a species-specific
manner. As such, translation from model organism to human
must be considered and investigated. For many gene therapy
studies, especially those using novel engineered capsids, nonhu-
man primate studies and relevant human culture models may be
needed to validate and optimize a gene therapy vector for delivery
to patients with NPC disease and related disorders. Advances in the
identification of novel serotypes that cross the BBB in humans, and
capsid engineering to derive CNS trophic variants (Castle et al, 2016;
Hudry et al, 2018; Sullivan et al, 2018; Hanlon et al, 2019; Havlik et al,
2020) should help improve vectors, as recent studies highlight (Gray
et al, 2013; Frederick et al, 2020; Yoon et al, 2020).

In summary, our studies confirm that achieving even moderate
transduction of the CNS using an AAV9-NPC1 vector can have
profound effects on disease course, but that much greater cor-
rection can be demonstrated with a neurotrophic AAV-PHP.B vector,
suggesting that eventual clinical translation may be best accom-
plished using a capsid that has similar properties in humans.

Materials and Methods

Vector construction and production

The transgene EF1a(s)-NPC1 was previously described (Chandler et
al, 2017) and the analogous GFP reporter was prepared by replacing
NPC1 with eGFP to make EF1a(s)-GFP. All therapeutic and control
vectors were produced by the Beckman Institute CLOVER Center
under direction of Dr V Gradinaru in the Division of Biology and
Biological Engineering at the California Institutes of Technology as
previously described (Deverman et al, 2016), and serotyped as AAV9
or AAV-PHP.B.

Animals

Animal work in these studies was performed according to the
animal care and use protocols approved by the National Institutes
of Health. Heterozygous mice from the BALB/cNctr-Npc1m1N/J strain
were crossed to generate homozygous Npc1m1N/m1N mutants and
Npc1+/+ control littermates. Mice were weighed once per week and
then more frequently as disease progressed. Euthanasia was
performed when end stage disease progression was reached, as
determined by the presence of at least two of the following signs:
30% loss of maximum weight, reluctance to move about cage,
repeated falling to side during forward ambulation, and palpebral
closure/eyes appearing dull rather than bright.

Study design (based on guidelines in Percie du Sert et al [2020])

This study compared Npc1m1N/m1N mice administered either vehicle
(saline) or gene therapy vector (AAV9 or AAV-PHP.B) with reporter
construct (GFP) or NPC1. Npc1+/+ mice included as a control group
for behavioral, survival, and pathology analyses did not receive
saline, whereas a subset of Npc1+/+ mice received either the AAV9-
GFP or AAV9-NPC1 for biodistrubution and gene copy number
analyses. The Npc1m1N/m1N colony has been maintained in-house
for 5+ yr but originated from the Jackson Laboratory (Stock #003092,
BALB/cNctr-Npc1m1N/J). Each mouse was a single experimental unit
and the sample size was based on previously published work from
our group. A total of 82 mice were used in these studies (Table S2).
No explicit criteria were set a priori for inclusion/exclusion criteria
and no mice or data points were excluded from study or analyses.
Group sample size for each analysis is stated in text, figure legend,
or figure. Randomization was employed by using multiple cohorts
and mice within each treatment group were included in every
cohort to minimize confounders. In addition, order of mice in
behavioral tests varied with each testing date and all animals were
group housed. Researchers were not blinded to treatment at time
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of injections. However, behavioral analyses were carried out in a
blinded fashion such that colored tails were used to denote in-
dividual mice within cages and only the cage number and tail color
were available to the evaluator during testing. Main outcome
measures, provided throughout text, included survival, behavioral
phenotype, pathology, and gene copy number. Statistical test se-
lection was based on particular data set and accounted for nor-
malized (or not) data.

Behavior testing

Two behavioral assays were used to determine the effect of gene
therapy on motor performance: phenotype score and balance
beam. Mice were tested beginning at 6 wk of age and then every 3 wk
thereafter until euthanasia or unable to complete the task. The
phenotype score evaluates six individual domains associated with
the disease phenotype seen in Npc1m1N/m1N mice: gait, kyphosis,
ledge test, and hind limb clasps from a cerebellar ataxia score
(Guyenet et al, 2010) plus grooming and tremor (Alam et al, 2016).
Each domain is given a score of 0–3 with a higher score indicating
greater disease progression and the composite score of all domains
is presented in results. The balance beam assay is a quantitative
approach for assessing loss of motor function (Gulinello et al,
2010; Arteaga-Bracho et al, 2016). The number of hind limb foot
slips is counted as mice traverse a four-foot long, round wooden
beam (diameter = 18 or 24 mm). A more progressed disease state
correlates to a higher number of slips.

Administration of vector

Npc1m1N/m1Nmice received a 50 μl retro-orbital injection at weaning
(24–27 d) of one of the following: 1.43 × 1012 GC of AAV-PHP.B-EF1a(s)-
NPC1 (n = 13), 1.84 × 1012 GC of AAV9-EF1a(s)-NPC1 (n = 12), 1.21 × 1012

GC of AAV-PHP.B-EF1a(s)-GFP (n = 2), or 1.21 × 1012 GC of AAV9-EF1a(s)-
GFP (n = 2). Control Npc1m1N/m1N mice received a 50-μl retro-orbital
injection of 0.9% saline at weaning (24–27 d).

Tissue collection and homogenization

Euthanasia for tissue collection was initiated with an intraperito-
neal injection of Avertin (lethal dose of 0.04 ml/gm). When mice
were insensate, the chest cavity was opened to allow a transcardiac
perfusion of 0.9% saline. One half of the brain and a piece of liver
were then collected and flash frozen in liquid nitrogen, with long-
term storage at −80°C. Subsequently, mice were re-perfused with
4% paraformaldehyde before collecting remaining organs for post-
fixation overnight in 4% paraformaldehyde. Fixed tissues were
rinsed and stored in PBS at 4°C.

Tissue homogenization was achieved using a Benchmark Sci-
entific BeadBug homogenizer and UltraPure H2O (11005-060; IPM
Scientific). Frozen tissues were placed in tubes prefilled with 3 mm
glass beads and homogenized 3 × 30 s at a speed of 400. Ho-
mogenate was immediately aliquoted into three separate tubes for
DNA (ddPCR), metabolomics, and protein (Western blot; WB). RIPA
buffer with proteinase inhibitor cocktail (20-201; Millipore) was
added to WB samples and then homogenates were spun down at

14,534g for 20 min at 4°C. Supernatant was collected and stored at
−80°C.

Western blotting

Protein levels from cerebrum and liver WB homogenates were
quantified using the BCA Protein Assay kit from Pierce (23227). Equal
amounts of protein (80 μg for liver and 120 μg for cerebrum) were
run on 4–12% Bis-Tris SDS-polyacrylamide gels (NW04120BOX;
Thermo Fisher Scientific) to achieve separation of protein bands.
After transferring to a nitrocellulose membrane (IB301002; Life
Technologies) and blocking for 1 h in TBS-Tween + LI-COR Odyssey
Blocking Buffer (927-40000), samples were incubated overnight
with two antibodies: rabbit anti-NPC1 (ab 134113; 1:1,000; Abcam) and
the loading control mouse anti-α-tubulin (T9026; 1:1,000; Millipore).
The Odyssey donkey anti-rabbit 680 (926-68073; 1:5,000; LI-COR
Biosciences) and the Odyssey donkey anti-mouse 800 (926-32212;
1:5,000; LI-COR Biosciences) were used as secondary antibodies.
The LI-COR Odyssey Imaging System was used to capture results.

Immunohistochemistry

Brain and liver tissue from each treatment group at 9-wk-old and
end stage were used for immunohistochemical staining. 24–48 h
before sectioning of GFP biodistribution samples, tissues were
transferred to a 30% sucrose solution where they remained until
sinking. Using a cryostat, brain and liver were sectioned para-
sagittally at a 30 μm thickness and free-floating sections were
collected and washed in PBS containing 0.25% Triton X-100 (PBSt).
After a 1-h block at room temperature in PBSt/normal goat serum
(NGS, S26-M; Sigma-Aldrich), primary antibodies were diluted in
PBSt/NGS and sections incubated overnight. Subsequent to
washing in PBSt, appropriate secondary antibodies were diluted in
PBSt/NGS and incubated with sections for 30 min at room tem-
perature. Refer to Table S2 for antibodies and dilutions. Filipin
complex from Streptomyces filipinensis (F9765; 0.025 g/ml; Sigma-
Aldrich) was diluted in PBSt to stain tissue for cholesterol accu-
mulation. ProLong Gold mounting medium with or without DAPI
(P36930 or P36935; Life Technologies) was used to coverslip slides
after sections were mounted. H&E staining was performed by
Histoserv, Inc..

Quantification of CD68+ and IBA1+ area

Percent CD68+ area relative to total area in liver tissue sections
was performed according the methods previously described
(Rodriguez-Gil et al, 2020). Percent IBA1+ area relative to total area
in cerebellar tissue sections was performed in a similar manner
with the use of a β version of Image-Pro v 10.5 software (Media
Cybernetics, Inc.).

Copy number analysis by ddPCR

ddPCR was performed as previously described (Lissa et al, 2018)
with the following modifications: NPC1 and GAPDH primers were
obtained from Bio-Rad (unique Assay IDs dCNS361140976 with 6-
FAM and dMmuCNS133125454 with HEX, respectively). From sample
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homogenates, 50 ng of DNA from cerebrum or cerebellum or 10 ng
of DNA from liver was used to quantify gene copy number. PCR
cycling conditions were identical with the exception of 60°C for
annealing and extension. Droplet signal was read as being either
positive or negative for NPC1 and/or GAPDH. Any samples with
fewer than 10,000 positive droplets were excluded and the sam-
ple(s) re-run to obtain an accurate read.

Ly6a genotype analysis

Genomic DNA was amplified with primers and probes using a real-
time SNP genotyping assay (Custom Taqman Assay Design Tool;
Thermo Fisher Scientific) for SNPs rs32279213 and rs213983347, as
follows: rs32279213 F: GCAGATGGGTAAGCAAAGATTGTTC, R: GTCCCTG
CATAAGAAGTGAGTCA, FAM:TTCTTGCAGGTTCTCA,VIC: TTTCTTGCAGATT
CTCA, rs213983347: F: AGGTGCTGCCTCCATTGG, R: CTAAGGTCAACGTGA
AGACTTCCT, FAM: TCTGCAATGCAGCAGT, VIC: CCTCTGCAATGTAGCAGT, a
universal 2x Taqman Master Mix (Thermo Fisher Scientific) and an
ABI 7500 instrument for thermocycling and detection. For the
genome-wide scan of two Npc1m1N/m1N mice, data were assessed at
the DartMouseTM Speed Congenic Core Facility at the Geisel School
of Medicine at Dartmouth, using a custom panel of 5,307 SNPs dis-
tributed throughout the mouse genome. Raw SNP data were ana-
lyzed using DartMouse’s SNaP-MapTM and Map-SynthTM software.

Lipidomics

Lipidomic analyses on cerebral, cerebellar, and liver homogenates
were carried out as previously described (Praggastis et al, 2015;
Davidson et al, 2019).

Image capture and analysis

Fluorescent images were captured on an inverted Zeiss Axio
Observer.Z1 using an AxioCam MRm and ZEN 2.5 software. Bright-
field images were captured on an inverted Zeiss Axio Observer.D1
using an AxioCamHRc and ZEN 2011 software. Adobe Photoshop
2020 version 21.1.2 was used to resize and adjust brightness and
contrast, such that all images within a staining run and/or figure
were modified in an identical manner.

Statistical analysis

Statistical analyses were done using GraphPad Prism version 8.0.0
for Windows or Mac (GraphPad Software, San Diego, California, USA,
www.graphpad.com). The following statistical tests were used:
Mantel–Cox log rank test (Fig 2A); Kruskal–Wallis test with Dunn’s
multiple comparisons test (Figs 2C and S7); Welch’s ANOVA test with
Dunnett’s multiple comparisons test (Fig 2D); two-way ANOVA with
Tukey’s multiple comparisons test (Figs 2E and S3); unpaired t test
(Figs 3A–C and S4); and Spearman’s correlation coefficient test
(Figs 3D–F and S2). For data sets, normality was evaluated if
possible, and if not, a non-parametric test was used. Otherwise,
the appropriate statistical test was then selected for further
analysis. All data is presented as mean ± SD unless otherwise
indicated.

Study approval

All animal works were performed according to National Institutes of
Health–approved animal care and use protocols.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202101040.
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