
















Figure 4. The presence of basement membrane-like ECM coat correlates with lumen formation in spheroids.
(A, B) Laser confocal photomicrographs showing collagen IV (green) (A) and pan-laminin (green) (B) localization using indirect immunofluorescence inmonolayers (top
row) moruloid-(middle row) and blastuloid- (bottom row) spheroids from OVCAR3 cells counterstained for F-actin with phalloidin (red) and DNA with DAPI (white).
(C, D) Laser confocal photomicrographs showing collagen IV (green) (C) and pan-laminin (green) (D) localization using indirect immunofluorescence in patient spheroids
counterstained for F-actin with phalloidin (red) and DNA with DAPI (white). (E) Laser confocal photomicrographs stained for Collagen IV (green) and DNA (DAPI; white) in
untreated control OVCAR3 spheroids (left) and upon treatment with Collagenase IV (right). (F) Phase-contrast photomicrographs showing the morphologies of spheroids
with no treatment (control, left) and upon treatment with Collagenase IV (right). (G) Bright-field photomicrographs taken at 0, 16, and 48 h from time-lapse videography of
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Removal of spheroidal matrix using collagenase

Spheroids were cultured in 35 mm dishes by seeding 1.5 × 105 cells
for 1 wk. Collagenolysis of mature spheroids was performed using
600 U of collagenase IV (C5138; Sigma-Aldrich) in defined medium
for 24 h. FBS was used for quenching the collagenolytic activity.
Collagen-debrided spheroids were then fixed and processed for
immunocytochemistry or scanning electron microscopy, using un-
treated 1wk spheroids as control. Later, to check the effect of collagen
debridement on spheroidogenesis, time lapse imaging was per-
formed with blastuloid spheroids in the presence of collagenase
using a bright-field epifluorescence microscope (IX73; Olympus). A
detailed protocol of the time lapse microscopy is given below.

SEM

Cellular monolayers and spheroids were fixed using 2.5% glutaral-
dehyde (0875; Amresco) overnight followed by three PBS (5 min each)
washes to remove excess fixative. This was followed by five washes
with water to remove salts. Dehydration was followed using dif-
ferent grades of ethanol (30%, 50%, 70%, 90%, and 100%). Spheroids
were then put on 1 N HCl-treated coverslips and allowed to air dry
completely at RT. Cellular monolayers were directly seeded on top of
the treated coverslip. Imaging was performed using ESEM Quanta.

Adhesion assay on murine mesenteries

BALB/c femalemice (4–6 wk old) were used for adhesion experiments.
Mice were euthanized by cervical dislocation and upon surgically
dissecting the abdomen, their mesentery were strung to the lower
ends of transwell inserts (Boyden chambers without the membranes)
using surgical thread. The transwells containing mesentery were then
placed in a sterile 24-well tissue culture plate and defined medium
added into the transwell above and below the insert into wells of the
plate. Spheroids were then added onto the upper layer of the mes-
entery in the insert; making sure the media does not spill from the
insert into the well. Adhesion was studied using bright-field micros-
copy. Seeded spheroids were counted before wash (0 h) and after
wash with PBS at 6 h time point.

ECM coating for adhesion assay

Eight well chambered cover glasses (0030742036; Eppendorf) were
coated with 50 μg/ml Growth factor-reduced BM matrix (Matrigel)
(354230; Corning) or 1 mg/ml rat tail collagen I (A10483-01; Gibco)
neutralized on ice in the presence of 10× DMEM with 0.1 N NaOH
such that the final concentration of the collagen I is 1 mg/ml.

Adhesion assay

Spheroids were cultured for 1 wk in polyHEMA-coated 35mm dishes
using definedmedium. After 1 wk of culture, spheroids were treated
with type IV collagenase (17104019; Gibco) for 24 h. Collagenase
activity was quenched using 10% FBS, followed by PBS washes;
untreated spheroids were used as control. Spheroids were re-
suspended in 1 ml defined medium for the assay. 10–20 μl of both
untreated and treated spheroids suspension were put on top of
ECM-coated chamber wells and isolated mesenteries in transwells.
The number of spheroids seededwas counted, allowed to attach for
6 h by incubating them inside a humidified 37°C 5% CO2 incubator.
After 6 h of incubation, the medium was replaced with fresh PBS to
wash away unattached spheroids and the adhered ones were
counted. The percentage of adhesion was calculated by dividing the
number of spheroids attached to the substrata by the total number
of spheroids seeded.

Bright-field time lapse microscopy

Spheroids from cell lines were cultured for 24 h and 1 wk by seeding
1.5 × 105 cells in a 35 mm cell culture dish. At particular time points,
spheroids were harvested by centrifugation at 0.2g for 5 min,
resuspended and put on a drop of 4% noble agar (A5431; Sigma-
Aldrich) that was smeared on a glass-bottomed chamber well,
which after some time was flooded with defined medium. Time-
lapse imaging was subsequently performed for 48 h with 15 min
interval using a Tokai Hit stage-top incubator with image acqui-
sition through an Orca Flash LT plus camera (Hamamatsu) on an
Olympus IX73 microscope.

Confocal time lapse microscopy

We established GFP- and RFP-expressing OVCAR3 cell lines using
lentiviral transduction. Using these cell lines, we cultured spheroids
for 24 h or 1 wk on PolyHEMA-coated 35-mm dishes either indi-
vidually or in combination, as described in the results section.
Spheroids (made from mixtures of RFP- and GFP-expressing cells)
were then harvested and immobilized for time lapse microscopy on
a bed of 4% noble agar following the protocol described above.
Time lapse imaging was performed using LEICA SP8 confocal mi-
croscope for 6 h with 15 min interval. Data were analyzed using LASX
Leica software.

Mass spectrometry

25 μl samples were taken and reduced with 5 mM tris(2-
carboxyethyl) phosphine (TCEP) and further alkylated with 50 mM
iodoacetamide and then digested with Trypsin (1:50, trypsin/lysate

blastuloid OVCAR3 spheroids initiated after addition of collagenase IV (see Video S6). (G) White dotted lines in the black background highlight the changes in the
contour of lumen in (G). (three independent repeats with multiple spheroids analyzed for each repeat) Graph on the right shows change in lumen size calculated using
paired t test. Bars represent mean ± SD from a representative experiment. (H) Bright-field photomicrographs taken at 0, 6,, and 18 h from time-lapse videography of
OVCAR3 spheroids pretreated with Collagenase IV with videography initiated after the removal of Collagenase IV (see Video S7). (H) White dotted lines in the black
background highlight the changes in the contour of lumen in (H). (n = 3 independent repeats with multiple spheroids analyzed for each repeat) Graph on the right shows
change in lumen size calculated using paired t test. Bars represent mean ± SD from a representative experiment. (A, B, C, D, E, F, G, H) Scale bar for (A, B, C, D, E, F, G, H):
50 μm.
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Figure 5. Blastuloid spheroids are morphogenetically more stable than moruloid spheroids.
(A, B) Laser confocal photomicrographs of moruloid (A) and blastuloid (B) spheroids expressing GFP, which were cultured with single cells expressing RFP for 24 h and
counterstained for DNA (DAPI; white) (n = 3 independent repeats with multiple spheroids analyzed for each repeat). Graph on the right shows differences in proportion of
spheroids incorporating cells calculated using unpaired t test with Welch’s correction. Bars represent mean ± SD. (C, D) Laser confocal photomicrographs of spheroids
initially formed from separate suspensions of GFP- and RFP-expressing OVCAR3 cells and then cultured together for 24 h and counterstained for DNA (DAPI; white) (n = 3
independent repeats with multiple spheroids analyzed for each repeat). Graph on the right shows differences in proportion of spheroids exhibiting coalescence
calculated using unpaired t test with Welch’s correction. Bars represent mean ± SD. (E) Laser confocal photomicrographs of blastuloid spheroids expressing GFP,

ECM-driven organization in cancer spheroids Langthasa et al. https://doi.org/10.26508/lsa.202000942 vol 4 | no 10 | e202000942 11 of 14

https://doi.org/10.26508/lsa.202000942


ratio) for 16 h at 37°C. Digests were cleaned using a C18 silica
cartridge to remove the salt and dried using a speed vac. The dried
pellet was resuspended in buffer A (5% acetonitrile, 0.1% formic
acid). All the experiment was performed using EASY-nLC 1,000
system (Thermo Fisher Scientific) coupled to Thermo Fisher-
QExactive equipped with nanoelectrospray ion source. 1.0 μg of
the peptide mixture was resolved using 15 cm PicoFrit column (360
µm outer diameter, 75 µm inner diameter, 10 µm tip) filled with 2.0
μm of C18-resin (Dr Maeisch). The peptides were loaded with buffer
A and eluted with a 0–40% gradient of buffer B (95% acetonitrile,
0.1% formic acid) at a flow rate of 300 nl/min for 100 min. MS data
were acquired using a data-dependent top10 method dynamically
choosing the most abundant precursor ions from the survey scan.
All samples were processed, and RAW files generated were ana-
lyzed with Proteome Discoverer (v2.2) against the Uniprot HUMAN
reference proteome database. For Sequest search, the precursor
and fragment mass tolerances were set at 10 ppm and 0.5 D, re-
spectively. The protease used to generate peptides, that is, enzyme
specificity was set for trypsin/P (cleavage at the C terminus of “K/R”:
unless followed by “P”) along with maximum missed cleavages
value of two. Carbamidomethyl on cysteine as fixed modification
and oxidation of methionine and N-terminal acetylation were
considered as variable modifications for database search. Both
peptide spectrum match and protein false discovery rate were set
to 0.01 FDR. Statistical analysis was performed by using in-house R
script. Abundance value for each run (including all biological
replicates) were filtered and imputed by using normal distribution.
Log2 transformed abundance values were normalized using
Z-score. ANOVA and t test was performed based on P-value
(threshold P < 0.05) to identify the significant proteins (Supple-
mental Data 1).

Validation of differential gene expression by RT-qPCR

Quantitative real-time PCR was performed for Fn1 gene where 18S
rRNA was used as internal control for the normalization of RT qPCR
data. Total RNA was isolated using RNAiso Plus from OVCAR3
monolayer and spheroids, after which 1 μg of total RNA was reverse
transcribed to cDNA using Verso cDNA Synthesis kit as per the
manufacturer’s protocol (AB-1453; Thermo Fisher Scientific). Real-
time qPCR was performed on Applied Biosystems 7500 Real-Time
PCR System (Applied Biosystems) using a standard two-step am-
plification protocol followed by a melting curve analysis. The
amplification reaction mixture (total volume of 10 μl) contained 10
ng of cDNA, 5 μl 2× DyNAmo Flash SYBER Green master mix, and 0.25
μM of the appropriate forward and reverse primer. Cycling condi-
tion: 95°C/10 min; 40 cycles of 95°C/15 s, annealing at 60°C/30 s for
both the genes and extension at 72°C/15 s. Primer sequences of Fn1
gene and 18S rRNA gene, Fn1 forward: CAAGCCAGATGTCAGAAGC, Fn1

reverse: GGATGGTGCATCAATGGCA, 18 S forward GTAACCCGTTGA ACCCCATT,
18 S reverse CCATCCAATCGGTAGTAGCG. Relative gene expression
was calculated using the comparative Ct method, and gene ex-
pression was normalized to moruloid spheroids. Appropriate no
template and no-RT controls were included in each experiment. All
the samples were analyzed in triplicates and repeated three times
independently.

Coculture experiments

GFP- and RFP-expressing OVCAR3 cell lines were used to investigate
the stability of spheroids’ morphology. GFP-expressing OVCAR3
spheroids were cultured for 24 h or 1 wk in PolyHEMA-coated 35-mm
dishes. To it were added RFP-expressing single cells or RFP-expressing
spheroids cultured for 24 h and 1 wk time point, respectively, which
then cocultured for 24 h. Afterfixation and stainedwith DAPI, spheroids
were imaged by confocal microscopy.

Statistical analysis

All experiments were performed in duplicates ormore. All experiments
were repeated thrice independently. Prism software (GraphPad Prism
6.0) was used for the generation of graphs and analysis. For all ex-
periments, results are represented as mean ± SEM unless mentioned.
For statistical analysis, an unpaired t test with Welch’s correction was
performed in most cases unless appropriately specified in specific
experiments.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000942.
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