




















Figure 7. MAPK pathway mutations may predict patient outcomes with immune checkpoint inhibitors independent of tumor mutational burden (TMB).
(A)MAPK pathway mutations (10 genes) are associated with good clinical outcome from an independent cohort of Samstein et al (2019) in advanced or metastatic pan-
cancer patients (N = 1,662) treated with PD1/PD-L1 or CTLA4 inhibitors. (B) A pie chart showing 34% patients with somatic MAPK pathway mutations in both TMB-high and
TMB-low groups of patients in the pan-cancer dataset. High-TMBwas previously defined as top 20% cutoff (i.e., TMB value ≥10.3 for head and neck squamous cell carcinoma
[HNSCC]), whereas low-TMB represented the remaining 80% of patients (i.e., TMB value < 10.3 for HNSCC) per original publication by Samstein et al (2019). (C) Overall
survival (OS) curves of four subgroups of patients: TMB-high with MAPKmutations, TMB-high with MAPK-WT, TMB-low with MAPKmutations, and TMB-low with MAPK-WT in
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HRAS and MAPK1 hotspot mutations and potentially others, have
remarkable tumoral ErbB3-suppression (first identified in TCGA
data and validated in HNSCC tumors). Mechanistically, our findings
identified a previously undescribed mechanism of p-ErbB3 regu-
lation by MAPK pathway-mutants. Such a negative regulation of
p-ErbB3 by ERK activity is uniquely found in MAPK-mutant, but not
in MAPK-WT HNSCC. Most importantly, MAPK-mutant HNSCC tumors
are the only tumors having significant “CD8+ T-cell–inflamed”
and inherently immunoactive tumor microenvironment (versus six
other pathway-mutant tumors), with constitutive cytolysis. The
ability of MAPK mutations to drive a CD8+ T-cell–inflamed status in
vivo with marked apoptosis is proven in immunocompetent HNSCC
models. As low tumoral phospho-ErbB3 levels and elevated CD8+

T-cell infiltrations are recently established events indicative of
good patient survivals in HNSCC (Takikita et al, 2011; de Ruiter et al,
2017), our study first defined somatic MAPK pathway mutations as
novel genomic events governing two outcome-favoring features in
HNSCC. We further showed that the ErbB3-suppressive and CD8+

T-cell–inflamed tumor microenvironments of MAPK pathway
mutant HNSCC tumors are likely two independent molecular
characteristics of MAPK-mutated HNSCC patients with remarkably
improved outcomes.

Our findings not only enrich our understanding of the immune
uniqueness of MAPK-mutated HNSCC tumors in patients but also
highlights the potential clinical utility of MAPK pathway mutations
in identifying HNSCC patients with CD8+ T-cell–inflamed tumors,
independent of TMB, for likely beneficial PD1/PD-L1 inhibitor
treatments. This positive prognosticity of MAPK pathway mutations
may potentially be beneficial to pan-cancer, as shown in two in-
dependent immunotherapy cohorts. In conclusion, our study un-
covers novel clinical, biological, and immunological understanding
of MAPK pathway mutations in HNSCC, which may have important
clinical impacts on HNSCC management as prognostic biomarkers
and as predictive biomarkers for potential immunotherapy
benefits.

Materials and Methods

Pathway component definitions and databases used

The MAPK pathway was defined as H/K/N-RAS, A/B-RAF, RAF1,
MAP2K1/2 (MEK1/2), MAPK1/3(ERK2/1), RPS6KA1, SHC1/2/3/4, GRB2,
and Erk1/2-specific DUSP3/5/6/7/9. The PI3K pathway was defined
as AKT1/2/3, PIK3CA/B/D/G/2A/2B/2G, PIK3AP1, PIK3IP1, PDK1,MTOR,
TSC1, TSC2, PTEN, RICTOR, RPTOR, RHEB, and PIK3R1/2/3/4/5/6.
The NF-κB pathway was defined as TAB1/2/3, MAP3K7/14, CHUK,

IKBKB, IKBKG, NFKBIA, NFKBIE, REL, RELA/B, NFKB1/2, LTBR, TNF,
TNFAIP3, TNFSF11/13B, TNFRSF1A/8/11A/13C, BTRC, CYLD, NLRC5,
TRADD, CD40, CD40LG, LTA, TRAF2/3/5/6, IL1B, and IL1R1. The JAK/
STAT pathway was defined as JAK1/2/3, STAT1/2/3/4/5A/5B/6,
PTPN11, IL6, IL6R, IL6ST, and SOCS3. The Notch pathway was defined
as DLL1/3/4, JAG1/2, NOTCH1/2/3/4, NUMB, DTX1/3L, NEDD4, MAML1,
RBPJ, POFUT1, HES1/5, and HEY1/2/L. The WNT pathway was defined
as WNT1/3A/5A/5B/7A, CTNNB1, HNF1A, FZD1/2/3/7/8/9/10, AXIN1,
LEF1, LOXL2, DVL2/3, NKD1/2, TAB1/2, GSK3B, CSNK1A1, NLK, and
LRP5/6. The TGF-β/Smad pathway was defined as SMAD1/2/3/4/5/
6/7/9, TGFB1/2/3, TGFBR1/2, INHBA/B/C/E, NODAL, ACVR1/1B/1C/
2A/2B, BMP2/4/7, BMPR1A/B/2, AMHR2, LTBP1, BAMBI, ZFYVE9,
SMURF1/2, and LIMK1. All TCGA whole-exome sequencing data and
clinical data of TCGA are downloaded from the www.cbioportal.org
(Cerami et al, 2012; Gao et al, 2013) on 28 November, 2018. Whole-
exome sequencing, RNA-seq, and clinical survival data are available
for 510, 522, and 527 (397 for disease-free) HNSCC cases, respectively.
Protein quantitative expression levels were downloaded from TCPA
level 4 data on 21 June, 2018 (Li et al, 2013, 2017a). Kaplan–Meier
survival curves are plotted with GraphPad Prism 5 (USA), with
calculated log-rank test P-values. The favorable/unfavorable OS
indicated in Fig 1B and E are defined by log-rank P-value (P < 0.05)
generated from Kaplan–Meier curves as in Fig 1C and D. In Fig 1B,
patients are stratified by the specified status, for example, MAPK
pathway mut versus MAPK pathway WT, PI3K pathway mut versus
PI3K pathway WT, HPV(+) versus HPV(−), etc. Then, the OS advan-
tages are being analyzed with Kaplan–Meier survival analyses. Only
those patient groups with log-rank P-value < 0.05 (significant)
would we consider them having favorable/unfavorable OS. CCLE-
proteomic database was downloaded from DepMap portal (http://
www.depmap.org) as published by the CCLE study (Ghandi et al,
2019), and immunotherapy clinical database and targeted se-
quencing database were downloaded from the studies by Samstein
et al (2019) and Miao et al (2018).

Cell cultures and drug treatment

FaDu cells and HSC-4 cells were purchased from ATCC and JCRB,
respectively. Cell lines around passages 10–25 were used (within
6 mo of purchase, which were mycoplasma free when purchased).
The Platinum-A (PLAT-A) retrovirus packaging cell line was pur-
chased from Cell Biolabs. The HSC-6 cell line was a generous gift
from Dr J Inazawa (Tokyo Medical and Dental University, Japan), and
SCC VII mouse HNSCC cell line was kindly provided by Dr Sven
Branduau (University Hospital Essen, Germany). Pt-25 primary
cultures were prepared from a female recurrent HNSCC patient. For
GDC-0994 treatment, the cells were plated at ~30% confluency for

the Samstein study. (D) Kaplan–Meier OS curves for MAPK pathway-mutated HNSCC patients versus MAPK pathway WT patients (MSS ICI pan-cancer cohort; N = 249).
(E) Kaplan–Meier OS curves for MAPK pathway-mutated HNSCC patients versus MAPK pathway WT patients (study by Samstein et al (2019); HNSCC Ooal subsite cohort; N =
47). (F) Table of Fisher’s exact test showing association of HNSCC subtypes with the immune class as defined by Chen et al (2019). (G) In HNSCC patients with distant
metastases (lung, liver, heart, brain, and bone), MAPK pathway mutations are associated with better OS upon PD1/PD-L1 inhibitor treatment (P = 0.0489; based on
databases from Samstein et al (2019)). (H, I) The corresponding oncoprints showing no significant overlap between (H) patients with MAPK pathway mutations and high
tumor mutational burden in this HNSCC-oral cancer cohort (TMB score 20% cutoff within HNSCC histology [N = 139] in the study by Samstein et al (2019)) and (I) no
significant overlap for patients with MAPK pathway mutations and high tumor mutational burden in this HNSCC distant metastasis cohort (TMB score 20% cutoff within
HNSCC histology).
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overnight and then subjected to either vehicle or 0.5 μM of GDC-0994
for 30min. The cells were thenwashedwith 1× PBS, andprotein lysates
were prepared for Western blot analyses.

Retroviral introduction of pathway genes/mutants into HNSCC
models

The retroviral Plat-A amphotropic expression system (Cell Biolabs,
Inc.) was used for ectopic expression of genes and mutants into
HNSCC cells. In brief, the desired genes/mutants cloned into the
pMXs-puro retroviral expression vector backbone were transfected
into PLAT-A cells using Lipofectamine 3000 (Thermo Fisher Sci-
entific) for the generation of retroviruses. Retroviruses were filtered
through a 0.45-μmmixed cellulose ester membrane filter to remove
cell debris and subsequently used for infection of FaDu cells or SCC
VII cells for 48–72 h at 37°C, 5% CO2. Retroviruses were removed from
the infection medium at postinfection, and cells were then cultured
in their respective culture media. Gene expression were then
validated by Western blotting. For mouse HNSCC tumor cell inoc-
ulation (SCC VII, originally derived from C3He mouse background
[Suit et al, 1985]), 2–3 million cells expressing each gene or the
respective mutant were subcutaneously injected into females of
the C3H/He sub-strain (C3HeB/FeJLe-a) mouse strain for tumor
establishment with a 26G Hamilton syringe. Tumors were harvested
at the designated days for tumor collection. All animal experiments
were approved by the University Animal Experimentation Ethics
Committee of the Chinese University of Hong Kong.

Western blotting

Cells were washed with cold 1× PBS and lysed with the NP40 lysis
buffer (1% Nonidet-P40, 150 mM NaCl, 1 mM EDTA, 10 mM sodium
phosphate buffer, and protease phosphatase inhibitor). Cell lysates
were centrifuged, and the supernatant was quantified with Protein
Assay Dye Reagent (Bio-Rad). 50 µg of protein lysates were mixed
with a 4× protein loading dye and then separated by SDS–PAGE.
Separated proteins were transferred to nitrocellulose membrane,
which was then blocked with 5% nonfat dry milk (in TBST; 150 mM
NaCl, 50 mM Tris, and 0.1% Tween 20, pH 7.4) and probed with
primary antibody at 4°C overnight. Primary antibodies include AKT
(#9272), pi-AKT (#9271), ARAF(#4432), pi-ARAF(S299) (#4431), BRAF
(#2696), pi-BRAF(S445) (#2696), pi-ErbB3 (#2842), ErbB3 (#12708),
MAPK (#9102), pi-MAPK (#9101), pi-MEK1/2 (#9154), and RSK1 (#8408),
all from Cell Signaling Technology, USA. Anti-β-actin (sc-69879)
antibody was from Santa Cruz. Anti-MEK1/2 (YT2714) and anti-N/
H/K-RAS (YT2960) antibodies were from ImmunoWay. The probed
membrane was then washed three times with 1× TBST, followed by a
1–2-h incubation with the respective secondary antibody (Goat
anti-Mouse [ab97230; Abcam] and HRP-Goat anti-Rabbit [65-6120;
Invitrogen]), followed by 3× washings with 1× TBST. ECL detection
solution was then applied onto the membrane for the development
of chemiluminescence, which was captured by autoradiography.

TIMER analysis for immune infiltrates

We adopted the methodology of TIMER analysis for immune in-
filtration level estimation (Li et al, 2016, 2017b). The infiltration level

of six immune cell types (B cell, CD8+ T-cell, CD4+ T-cell, mac-
rophage, neutrophil, and dendritic cell) in 512 TCGA-HNSCC
head and neck squamous carcinoma tumor samples are
extracted from the TIMER Web site (https://cistrome.shinyapps.io/
timer/_w_20aca96c/immuneEstimation.txt) and grouped accord-
ing to the mutational information downloaded from cBioPortal
(https://www.cbioportal.org/study/summary?id=hnsc_tcga). The
Wilcoxon rank sum test was performed to calculate the statistical
significance between two groups in the TIMER plots.

RNA-seq and GSEA

TCGA HNSCC RNA-seq data were downloaded from the NCI Genomic
Data Commons portal (https://portal.gdc.cancer.gov/repository?
facetTab=files&filters=%7B%22op%22%3A%22and%22%2C%22content
%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B
%22field%22%3A%22cases.project.project_id%22%2C%22value%22%
3A%5B%22TCGA-HNSC%22%5D%7D%7D%2C%7B%22op%22%3A%22in
%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category
%22%2C%22value%22%3A%5B%22Transcriptome%20Profiling%22%
5D%7D%7D%5D%7D&searchTableTab=files) (Grossman et al, 2016)
using GDCRNATools (R package). Differential gene expression analysis
between MAPK-mutated and MAPK-WT samples was performed using
the method of DESeq2. Pearson correlation coefficients among 130
DEGs were calculated for the plotting of the correlation heatmap with
pheatmap (R package) using the wardD clustering method. GSEA was
run with the clusterProfiler (R package).

Cytolytic score, T-effector signature score, and antitumor IFN-γ
score calculations

Cytolytic score (CYT) was calculated by the geometric mean of the
TPM of GZMA and PRF1 as previous described by Rooney et al (2015)
(offset 0.01) (Rooney et al, 2015). Similarly, based on the T-effector
signature gene list, T-effector (T-eff) score was calculated as the
geometric mean of the TPM of GZMA, GZMB, PRF1, IFN-γ, EOMES, and
CD8A (offset 0.01) ((Bolen et al, 2017)). Antitumor IFN-γ score was the
weighted arithmetic mean of the TPM of 18 IFN-γ expanded immune
gene signatures as previously described by (Ayers et al, 2017). These
include CD3D, IDO1, CIITA, CD3E, CCL5, GZMK, CD2, HLA-DRA, CXCL13,
IL2RG, NKG7, HLA-E, CXCR6, LAG3, TAGAP, CXCL10, STAT1, and GZMB.

Tumor samples and targeted sequencing

Tumor tissues and blood samples were collected from patients
under written informed consents according to clinical research
approvals by the Institutional Review Board of the University of
Hong Kong/Hospital Authority Hong Kong East Cluster Research
Ethics Committee (for Queen Mary Hospital), the Joint Chinese
University of Hong Kong–New Territories East Cluster Clinical Re-
search Ethics Committee (for Prince of Wales Hospital), Hong Kong
SAR, and the Research Ethics Committee, Kowloon West Cluster (for
Yan Chai Hospital), Hong Kong SAR. Genomic DNA from samples
were extracted with the DNeasy Blood & Tissue Kit (QIAGEN), followed
by quantification and targeted sequencing by next-generation
sequencing using the IonS5 platform (Thermo Fisher Scientific).
All samples were sequenced with a mean depth of >500× using a
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custom-designed gene panel on major MAPK pathway genes. The
custom gene panel consisted of amplicons that covered all exons of
MAP2K1 andMAPK1. It also captured selection regions of ARAF, BRAF,
HRAS, KRAS, and MAP2K2 to cover all well-known hotspot sites. The
sequenced locations for these partially sequenced genes are listed
in the following table, and variants were called by the Ion Reporter
Software (Thermo Fisher Scientific).

Immunohistochemistry and TUNEL assay

Patient tumors were freshly fixed with 10% formalin and dehy-
drated in a serial manner in ethanol. The formalin fixed and paraffin
embedded tumor samples were then sectioned and dewaxed and
rehydrated in xylene, 100% ethanol, 70% ethanol, and running
tap water. Antigen retrieval was performed at 95°C for 20 min in
citrate buffer (10 μM citrate acid and 0.05% Tween 20, pH 6.0). The
VECTASTAIN Elite ABC Universal PLUS Kit Peroxidase (Horse Anti-
Mouse/Rabbit IgG) (Cat. no. PK-8200) was used for immunohisto-
chemical staining. Endogenous peroxidase activity was quenched
by BLOXALL Blocking Solution, followed by blocking in 2.5% Normal
Horse Serum for 20 min at room temperature. CD8 mouse anti-
human antibody (Cat. no. Ab17147, 1:500; Abcam), CD11c rabbit an-
tihuman antibody (Cat. no. Ab52632, 1:500; Abcam), and neutrophil
elastase rabbit antihuman antibody (Cat. no. Ab68672, 1:500; Abcam)
and phospho-HER3/ErbB3(Tyr1289) (21D3) rabbit antihuman anti-
body (#4791, 1:100; Cell Signaling Technology) were used as primary
antibodies to stain patient tumors for overnight incubation at 4°C.
CD8 rabbit antimouse antibody (Cat. no. 203035, 1:750; Abcam) and
cytokeratin mouse antibody (Cat. no. M3515, 1:500; DAKO) were used.
The secondary antibody (prediluted biotinylated horse antimouse/

rabbit IgG secondary antibody) was added for 1-h incubation at
room temperature. For signal amplification and detection, the
slides were incubated with VECTASTAIN Elite ABC reagent for 30 min
and ImmPACT DAB EqV solutions for 30 s. After counterstaining with
hematoxylin for 1 min, clearing, and mounting, pictures were taken
under a light microscope. The Roche In Situ Cell Death Detection Kit,
Fluorescein (Cat. no. 11684795910) was applied for TUNEL assay. Pro-
teinase K solution (Mat No. 1014023; QIAGEN) was used to pretreat the
rehydrated sections. Then the TUNEL reactionmixturewas incubated on
the section in dark at 37°C for 1 h in dark. The section wasmounted with
VECTASHIELD vibrance antifade mounting medium (Cat. no. H-1800).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900545.
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