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overview
This document is written to provide supplementary information for the paper entitled ‘Chromosome Instability Induced by a Single Defined 
Sister Chromatid Fusion’ by K. Kagaya, N. Noma-Takayasu, I. Yamamoto, S. Tashiro, F. Ishikawa, M. T. Hayashi. The codes and data are 
available from the figshare repository (https://doi.org/10.6084/m9.figshare.7929266).

The reasons why we chose the approach (Bayesian model evaluation with WAIC) are three folds:

1. to consider a hierarchical structure (lineage tree),
2. to compare the hierarchical model with non-hierarchical model,
3. to minimize the generalization error (maximum likelihood estimation is worse than Bayes).

The approach is based on the mathematically rigorous theory (Watanabe, 2018, Mathematical Theory of Bayesian Statistics; http://watanabe-
www.math.dis.titech.ac.jp/users/swatanab/waicwbic_e.html (http://watanabe-www.math.dis.titech.ac.jp/users/swatanab/waicwbic_e.html)).

The framework and procedure we took here may not be a conventional and familiar one for the biological community. However, our approach is
beginning to be accepted in the papers (Wakita, Kagaya and Aonuma, 2020 J Royal Soc Interface; Harada, Hayashi and Kagaya, 2020 PeerJ).

Currently, WAIC is the best estimator of the generalization error of the statistical models. For the non-regular models including the generalized
linear models (GLMMs), WAIC is more powerful than AIC based on maximum likelihood method.

AIC and WAIC are the estimators of the generalization error: the discrepancy in the unknown true distribution that generates data q(x) and the
predictive distribution that built using a set of realized data p(x|Data) (see the discussion of the paper, Harada, Hayashi and Kagaya, 2020
PeerJ).

To build p(x|Data), AIC is based on the maximum likelihood method. AIC has been often used for GLM. However, if we want to compare GLM
with GLMM, WAIC based on the Bayesian method is better than AIC. GLMM has been widely used because it is appropriate for the clustered
or grouped data (Lord, et al., 2020; Arts, et al., 2015).

Our live cell data has tree structure, so we took into account the structure in the models and used WAIC to evaluate the models from the
predictive point of view (Akaike, 1974; Sakamoto, Ishiguro & Kitagawa, 1986; Watanabe, 2018).

Here we walk through the two parts of the statistical inferences:

1. probability of micronucleus(MN) formation (9 models)

model_name intercept WAIC dWAIC(nat/sample) dWAIC(bit/sample) distribution distribution2

model_1_1r hierarchical_b SCF RNF SIS2-
3

Stage 0.1349479 0.04442622 0.064093485 bernoulli “normal(b0,
bs)”

model_1_2r b SCF RNF SIS2-
4

Stage 0.09097437 0.00045269 0.000653094 bernoulli

model_1_3r hierarchical_b SCF 0.09479229 0.00427061 0.006161188 bernoulli “normal(b0,
bs)”

model_1_4r b SCF 0.09052168 0 0 bernoulli

model_1_5r hierarchical_b 0.1215877 0.03106602 0.044818792 bernoulli “normal(b0,
bs)”

model_1_6r b 0.1039501 0.01342842 0.019373114 bernoulli

model_1_3r_st hierarchical_b SCF 0.1029526 0.01243092 0.017934026 bernoulli “student_t(4,
b0, bs)”

model_1_4r_st2 hierarchical_b SCF 0.1315296 0.04100792 0.059161921 bernoulli “student_t(2,
b0, bs)”

model_1_4r_st3 hierarchical_b SCF 0.225825 0.13530332 0.195201423 bernoulli “student_t(1,
b0, bs)”

2. impact of the MN formation to the duration of interphase (12 models)

model_name intercept WAIC dWAIC(nat/sample) dWAIC(bit/sample) distribution

https://doi.org/10.6084/m9.figshare.7929266
http://watanabe-www.math.dis.titech.ac.jp/users/swatanab/waicwbic_e.html
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model_2_1r hierarchical
b

Micro SCF RNF SIS2-
3

Stage 1.693953 0.112680 0.16 “log-normal,
normal”

model_2_2r b Micro SCF RNF SIS2-
3

Stage 1.581273 0.000000 0.00 log-normal

model_2_3r hierarchical
b

SCF RNF SIS2-
3

Stage 1.714071 0.132798 0.19 “log-normal,
normal”

model_2_4r b SCF RNF SIS2-
3

Stage 1.596227 0.014954 0.02 log-normal

model_2_5r hierarchical
b

1.798636 0.217363 0.31 “log-normal,
normal”

model_2_6r b 1.676252 0.094979 0.14 log-normal

model_2_e1 b Micro SCF RNF SIS2-
3

Stage 14.984710 13.403437 19.34 exponential

model_2_g1 b Micro SCF RNF SIS2-
3

Stage 1.677251 0.095978 0.14 gamma

model_2_1r_st hierarchical
b

Micro SCF RNF SIS2-
3

Stage 1.629536 0.048263 0.07 “log-normal,
student_t 4”

model_2_2r_st2 hierarchical
b

Micro SCF RNF SIS2-
3

Stage 1.650141 0.068868 0.10 “log-normal,
student_t 6”

model_2_2r_st3 hierarchical
b

Micro SCF RNF SIS2-
3

Stage 1.662289 0.081016 0.12 “log-normal,
student_t 8”

model_2_2r_st4 hierarchical
b

Micro SCF RNF SIS2-
3

Stage 1.633246 0.051973 0.07 “log-normal,
student_t 2”

Also, we use the Kolmogorov-Sminorv statistic to measure the difference of pairs of posterior distributions.

plots
plot of non-censored data
We have a lot of censored interphase duration data (see the lineage tree plots). First, we visualize the non-censored data:
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The total number of the cells is 4424. We have many non-censored data for no_MN and N+X condition (at the bottom).

plot of censored data
Next, let’s visualize the censored data:

The number of the censored data is 2561. The symbol ‘+’ represents the timing whose observation was censored (time_censored). In other
words, the interphase duration of the cell holds: time_censored < interphase_duration < infinity.

combined plot
Let’s combine the non-censored and censored plots:
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We will construct the models of the probability of the MN formation and the interphase duration using the data.

micronuclei formation probability
The probability  of micronucleus formation can be modeled as a parameter for the Bernoulli distribution:

where  and .

The probability  can be defined using the inverse logistic function with the linear predictor:

where

The parameters  can be defined as a random variable subjected to normal distribution with the other parameters, 
and :

where

If we define the  as shown above, we can predict the effect and uncertainty of the lineage individuality as  and  based on our
definition.

Thus, here  is the data (observable variables). The parameters
(unobservable variables) are .

One point we should be careful about is that our focus of prediction is about a new cell of a new lineage tree. Therefore, to compare the GLMM
with GLM from the predictive point of view, we must marginalize the intermediate parameter (  is the case) when constructing the predictive
distribution. The parameters  for each lineage are marginalized out by the numerical integration defined in the function block of the Stan
code. The detailed discussion of this part is described in another paper (Harada, Hayashi and Kagaya, 2020).

q[n]

Micronuc[n] ∼ Bernoulli(q[n]), n = 1, . . . , ,Ncell

q[n] ∈ [0, 1] Micronuc[n] ∈ {0, 1}
q[n]

q[n] = InvLogit(b[LineageID[n]] + scf ∗ SCF[n] + rnf ∗ RNF[n] + sis2_3 ∗ SIS2_3[n] + stg ∗ Stage[n]),
n = 1, . . . , ,Ncell

InvLogit(α) = .1
1 + exp(−α)

b[l], l = 1, . . . Nlineage b0
bs

b[l] ∼ Normal(b0, bs), l = 1, . . . , ,Nlineage

Normal(y|μ, σ) = exp(− ).1
 σ2π‾‾‾√

1
2 ( )y − μ

σ
2

b[l] b0 bs

= {Micronu , LineageI , SC , RN , SIS2_ , Stage }Xn cn Dn Fn Fn 3n Nn
W = {b0, bs, , scf , rnf , sis2_3, stg}bl

b[l]
b[l]
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posterior distributions of the coefficient parameters
We are interested in the quantities  when conditioned by the observed variables: p(w|Data). Let’s visualize the distribution through the lens of
model 1_1r:

Note that the parameter  only does not overlap the zero line.

The WAIC for the model 1_1r: 0.1349479.

Next, we remove the assumption of the bias term . So, we just use a  to all lineages.

The posterior plot of the parameters with the model 1_2r:

Also, through the lens of this model 1_2, only  is significantly larger than zero.

W

scf

b[Lineage[ID]] b

scf
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The WAIC of the model 1_2r:0.0909744.

mean posterior probability of MN formation with model 1_2
We compute the expected posterior probabilities of MN formation for each experimental conditions:

WAIC for model_1_3r is: 0.0947923.

The posterior distribution of the  with the model 1_3r: 

WAIC for the model fit_1_4r is: 0.0905217.

The posterior distribution of the  with model 1_4r:

##      [,1] [,2]
## [1,] "rnf_stageN"    "0.010809550419459"  
## [2,] "rng_stage0"    "0.0100493826150542" 
## [3,] "sis2_3_stageN" "0.0139014788428874" 
## [4,] "sis2_3_stage0" "0.0133707605494688" 
## [5,] "scf_stageN"    "0.108068664741875"  
## [6,] "scf_stage0"    "0.101683697325042"  
## [7,] "ctrl48" "0.00815191623595166"

scf

scf
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The posterior predictive distribution with the model 1_4r conditioned by if fusion occurred:

WAIC for the model 1_5r is: 0.1215877.

WAIC for the model 1_6r is: 0.1039501.

We examine the different distribution for the . We tried student t distributions with different degrees of freedom.

WAIC for the model 1_3r_st is: 0.1029526.

WAIC for the model 1_3r_st2 is: 0.1315296.

WAIC for the model 1_3r_st2 is: 0.225825.

b[l]
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interphase duration
The random variable interphase duration is considered to be subject to log-normal distribution in model 2_1.

where

The  is assigned for each experimental cell group based on the assumption that the instability of the cell cycle is different
among the groups.

The parameter  is linked with the linear predictor as follows:

To infer the causal relationship between some random variables in this type of linear model as the value of the coefficient parameter, we have
to close the ‘backdoor’ which receive flow from upstream confounding factors (Pearl et al., 2016, ‘Causal Inference in Statistics’). In other
words, we have to condition out the confounding factors to remove the bias. It should be noted that this is another qualitative assessment of
the model in addition to the quantitative assessment by WAIC. It is worthy that we interpret the results through the model where this bias is
considered even if the WAIC is not a minimum.

Here we focus on the relationship of the random variable  with the . The  is an observational variable, so to
infer the degree of causality to , we have to add the other possibly upstream explanatory variables (scf, rnf, sis2_3, stg). At least
we have to add  based on the results of the previous section.

modeling of censored data
To model the censored data, we used the log-normal complementary cumulative distribution function of Y (Int_duration in our case) given
location mu and scale sigma (e.g., see model_2_1r.stan). From the plot shown above, just removing the censored data will generate huge bias
to the inference if we do not deal with those data.

results of other models 2_1r ~
WAIC for the model fit_2_1r is: 1.6939534.

The plot of the posterior distribution on the model 2_2r:

IntDuration[n] ∼ LogNormal(mu[n], sigma[ExID[n]]), n = 1, . . . , Ncell

LogNormal(y|μ, σ) =  exp(− ) .1
 σ2π‾‾‾√

1
y

1
2 ( )log y − μ

σ

2

sigma[ExID[n]]

mu[n]
mu[n] = micro ∗ Micronuc[n] + scf ∗ SCF[n] + rnf ∗ RNF[n] +

sis2_3 ∗ SIS23[n] +
stg ∗ Stage[n] + b[Lineage[n]],

n = 1, . . . , Ncell

Micronuc IntDuration Micronuc
IntDuration

scf
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WAIC for the model fit_2_2r is: 1.5812734.

The predictive distribution of the interphase duration with the model 2_2, which performed best among the models:

Let’s compare the IQR:
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The MN formation prolongs the interquartile range. Thus, the instability of cell cycle appears to increase through MN formation.

model2_1, student_t distribution for individual difference of a lineage tree
WAIC for the model 2_1r_st: 1.6295357.

WAIC for the model 2_1r_st2: 1.6501412.

WAIC for the model 2_1r_st3: 1.6622888.

WAIC for the model 2_1r_st4: 1.6332459.

measuring KS distance of distributions generated from model 2_2
We compute KS distances of the predictive distributions to examine the discrepancies of three pair of the distributions.

comparison of 1+X SIS2_3_fusion_MN & SIS2_3_fusion_no_MN:

comparison of N+X SIS2_3_fusion_MN & SIS2_3_fusion_no_MN

comparison of N+X SIS2_3_ctrl_mCit_MN & SIS2_3_SIS2_3_ctrl_mCit

## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  ms2_2$pInt_5_MN
## D = 0.5402, p-value < 2.2e-16
## alternative hypothesis: two-sided

## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  ms2_2$pInt_6_MN
## D = 0.4659, p-value < 2.2e-16
## alternative hypothesis: two-sided
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In either case, the discrepancies were found to be extremely large in the distances.

WAICs for other models:

WAIC for the model 2_3r is: 1.7140714.

WAIC for the model 2_4r is: 1.5962267.

WAIC for the model 2_5r is: 1.7986364.

WAIC for the model 2_6r is: 1.6762522.

WAIC for the model 2_e1 is: 14.9847064.

WAIC for the model 2_g1 is: 1.6772514.

The exponential and gamma distributions were found to be worse than the log-normal distribution.
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session info (R, package versions etc.)

## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  ms2_2$pInt_1_MN
## D = 0.64685, p-value < 2.2e-16
## alternative hypothesis: two-sided
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12 / 12 ページfile:///Users/kagaya/Dropbox/Projects/Hayashi_Kagaya/dataset/Manu…MBO/revision/Hayashi_Kagaya_revise_modeling/stat_modeling_r1.html

## R version 3.6.3 (2020-02-29)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Catalina 10.15.6
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/ja_JP.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] KSgeneral_1.0.0      ggridges_0.5.2 dummies_1.5.6
##  [4] rstan_2.21.2 StanHeaders_2.21.0-6 forcats_0.5.0
##  [7] stringr_1.4.0 dplyr_1.0.2 purrr_0.3.4
## [10] readr_1.3.1 tidyr_1.1.2 tibble_3.0.3
## [13] ggplot2_3.3.2 tidyverse_1.3.0     
## 
## loaded via a namespace (and not attached):
##  [1] httr_1.4.2         jsonlite_1.7.1     modelr_0.1.8 RcppParallel_5.0.2
##  [5] assertthat_0.2.1   stats4_3.6.3 blob_1.2.1 cellranger_1.1.0  
##  [9] yaml_2.2.1 pillar_1.4.6 backports_1.1.10   glue_1.4.2
## [13] digest_0.6.25      rvest_0.3.6 colorspace_1.4-1   htmltools_0.5.0   
## [17] plyr_1.8.6 pkgconfig_2.0.3    broom_0.7.0 haven_2.3.1
## [21] scales_1.1.1 processx_3.4.4     generics_0.0.2     farver_2.0.3      
## [25] ellipsis_0.3.1     withr_2.2.0 dgof_1.2 cli_2.0.2
## [29] magrittr_1.5 crayon_1.3.4 readxl_1.3.1 evaluate_0.14     
## [33] ps_1.3.4 fs_1.5.0 fansi_0.4.1 MASS_7.3-53
## [37] xml2_1.3.2 pkgbuild_1.1.0     tools_3.6.3 loo_2.3.1
## [41] prettyunits_1.1.1  hms_0.5.3 lifecycle_0.2.0    matrixStats_0.56.0
## [45] V8_3.2.0 munsell_0.5.0      reprex_0.3.0 callr_3.4.4
## [49] compiler_3.6.3     rlang_0.4.7 grid_3.6.3 rstudioapi_0.11   
## [53] labeling_0.3 rmarkdown_2.3      gtable_0.3.0 codetools_0.2-16  
## [57] inline_0.3.16      DBI_1.1.0 curl_4.3 R6_2.4.1
## [61] gridExtra_2.3      lubridate_1.7.9    knitr_1.29 stringi_1.5.3     
## [65] parallel_3.6.3     Rcpp_1.0.5 vctrs_0.3.4 dbplyr_1.4.4      
## [69] tidyselect_1.1.0   xfun_0.17




