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Figure 6. Reconstitution of t-LINC complex in vegetative yeast cells.

(A) Induction of t-LINC complex formation in mitosis with ectopic Csmé. Time-lapse fluorescence microscopy showing the localization of Mps3-GFP (green). Tubs-
mApple (red) marks the spindle pole body (SPB). Arrows pointing to the Mps3 patch formed in the developing daughter cell when Csm4 was produced. Projected images
from 12 z-sections are shown. Time zero refers to the onset of SPB separation. Schematic diagrams of c-LINC and t-LINC complexes are shown to the right. (B) Reconstituted
t-LINC complex tethers telomeres. Time-lapse fluorescence microscopy was performed as above. Rap1-GFP (green) marks the telomeres; Tub4-mApple (red) marks the
SPB. Projected images from 12 z-sections are shown. Time zero refers to the onset of SPB separation. Note that in the presence of Csm4, Rap1-GFP formed a patch in the
developing daughter cell. INM, inner nuclear membrane; M, mother cell; ONM, outer nuclear membrane.
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LTQ Orbitrap Velos mass spectrometer was used for mass spec-
trometry as per the method described previously (Li et al, 2015).

Protein extraction and Western blotting

For meiotic yeast cells, proteins were extracted with the tri-
chloroacetic acid (TCA) method as described previously (Jin et al,
2009). In brief, 3-5 ml of yeast cells was collected, resuspended in
2.5% ice-cold TCA, and incubated at 4°C for 10 min. Cell pellets were
stored at -80°C before use, and proteins were extracted in the RIPA
buffer by bead beating with a mini bead-beater homogenizer for 90
s at 4°C before standard SDS-PAGE and Western blotting.

For mitotic experiments, yeast aliquots were withdrawn at the
indicated times for protein extraction by precipitation in the
presence of 20 mM NaOH and standard SDS-PAGE and Western
blotting protocols were followed (Koch et al, 2019).

Proteins tagged with HA (Mps2-3HA and 3HA-Mps2) were de-
tected by an anti-HA mouse monoclonal antibody (1:1,000 dilution,
12CA5; Sigma-Aldrich). Similarly, V5-tagged proteins (V5-Csms,
Mps2-V5, and Mps3-V5) were detected by an anti-V5 mouse
monoclonal antibody (1:1,000 dilution, Cat. no. 66007-1-Ig; Pro-
teintech), and TAP-tagged proteins (TAP-Csmé, TAP-Mps2, and TAP-
Mps3) were detected by an anti-TAP rabbit antibody (1:10,000, Cat.
no. CAB1001; Thermo Fisher Scientific). The level of Pgkl was de-
tected by a Pgkl antibody (1:10,000, Cat. no. PA5-28612; Thermo
Fisher Scientific) and was used as a loading control. Horseradish
peroxidase-conjugated secondary antibodies, goat antimouse, and
goat antirabbit (Cat. no. 1706516 and 1705046; Bio-Rad) were used to
probe the proteins of interest by an ECL kit (Cat. no. 1705060; Bio-
Rad). Two ECL-based Western blot detection methods were used,
X-ray film (Figs 1-5) and the ChemiDoc MP Imaging System (Cat. no.
17001402; Bio-Rad) (Fig S3).

Live-cell fluorescence microscopy

Live-cell fluorescence microscopy was conducted on a DeltaVision
imaging system (GE Healthcare Life Sciences) with a 63x objective
lens (NA = 1.40) on an inverted microscope (IX-71; Olympus) and with
xenon arc lamp illumination. Microscopic images were acquired
with a CoolSNAP HQ2 CCD camera (Photometrics). Before micros-
copy, yeast cells were prepared as described previously (Li et al,
2015). Briefly, the yeast cells were prepared on a concave micro-
scope slide (~0.8 mm deep) filled with an agarose pad with 2%
potassium acetate. The concave slide was then sealed with a cover
slip and scoped for the desired time duration. The microscope
stage was enclosed in an environmental chamber set at 30°C.
For time-lapse microscopy, optical sections were set at 0.5-pum-
thickness with 12 z-sections. Ultrahigh signal-to-background coated
custom filter sets were used. For GFP, the excitation spectrum was
at 470/40 nm, emission spectrum at 525/50 nm; for RFP, excitation
was at 572/35 nm and emission at 632/60 nm. To minimize photo
toxicity to the cells and photo bleaching to fluorophores, we
used neutral density filters to limit excitation light to 32% or less
of the normal equipment output for time-lapse microscopy.
Images were deconvolved with SoftWoRx (GE Healthcare Life
Sciences); projected images or single optical sections were used
for display.
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Figure 7. Model for t-LINC complex in budding yeast.
Three copies of each of Csm4, Mps2, and Mps3 are proposed to form a t-LINC
nonamer. INM, inner nuclear membrane; ONM, outer nuclear membrane.

To determine meiotic cell progression, aliquots of yeast cells were
collected at indicated times and prepared for fluorescence micros-
copy. Tub4-mApple serves as an SPB marker. At least 100 cells were
counted at each time point to determine the rate of SPB separation.

In experiments testing the dependence of actin filaments,
latrunculin B (final concentration of 100 uM) (Koszul et al, 2008) was
added to the cell culture before microscopy. The same volume of
DMSO was added in the control group.

To determine the nuclear roundness factor in cells staged at
prophase |, the median section of the nucleus from the z-stacks was
measured by freehand tracing in Image). The formula 4 x area/(r x
major_axis"2) is used to calculate the roundness factor.

Nuclear spread and immunofluorescence

Surface nuclear spreads were performed as described previously
(Jin et al, 2009). In brief, yeast cells enriched at prophase | (~5 h after
induction of meiosis) were spheroplasted by lyticase treatment.
Spheroplasts were then fixed and poured onto a glass slide. The
slide was then rinsed with PhotoFlo 200 and air-dried, followed by
PBS buffer with 3% BSA to block for 2 h at room temperature. Anti-V5
antibody (R960-25; Thermo Fisher Scientific) was used to detect
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V5-Csm4 and Ndj1-V5; anti-HA antibody (12CAS5; Roche/Sigma-Aldrich)
was used to detect Mps2-3HA. Rec8-GFP was detected by an anti-GFP
mouse monoclonal antibody (ab209; Abcam). Secondary antibodies
(FITC-conjugated goat antirabbit, rhodamine-conjugated goat anti-
mouse, and Cy3-conjugated goat antirat; Jackson ImmunoResearch
Laboratories) were used at a dilution of 1:500. Mounting medium with
DAPI was added before microscopy. Images were acquired with an
epifluorescence microscope (Axio Imager M1; Zeiss) with a 100x
objective lens (NA = 1.40) at room temperature.

Gene conversion assay

Yeast cells were induced to undergo synchronous meiosis, and
aliquots were withdrawn at the indicated times. Serially diluted
yeast cells were plated on YPD plates to determine cell viability and
on SC arginine-dropout and SC histidine-dropout plates to de-
termine gene conversion rate at the ARG4 and HIS4 loci. The rate of
gene conversion was calculated by the ratio of the colony-forming
units on SC dropout plates over those on YPD plates.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000824.
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