Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data

Jovan Tanevski12,‡, Thin Nguyen3,∗, Buu Truong4,∗, Nikos Karaiskos5, Mehmet Eren Ahsen6,7, Xinyu Zhang8, Chang Shu8,27, Ke Xu8, Xiaoyu Liang8, Ying Hu9, Hoang VV Pham4, Li Xiaomei4, Thuc D Le4, Adi L Tarca10, Gaurav Bhatti11,12, Roberto Romero11,12, Nestoras Karathanasis13, Phillipe Loher13, Yang Chen14, Zhengqing Ouyang15, Disheng Mao16, Yuping Zhang16, Maryam Zand17, Jianhua Ruan17, Christoph Hafemeister18, Peng Qiu19,20, Duc Tran21, Tin Nguyen21, Attila Gabor1, Thomas Yu22, Justin Guinney22, Enrico Gläub3, Roland Krause24, Peter Banda26,∗, DREAM SCTC Consortium†, Gustavo Stolovitzky25, Nikolaus Rajewsky5,†, Julio Saez-Rodriguez1,26,‡, Pablo Meyer25,‡

Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial information increases coverage while providing spatial location. However, methods to perform such mapping have not yet been benchmarked. To fill this gap, we organized the DREAM Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from the Drosophila embryo from scRNAseq data, leveraging as silver standard, genes with in situ hybridization data from the Berkeley Drosophila Transcription Network Project reference atlas. The 34 participating teams used diverse algorithms for gene selection and location prediction, while being able to correctly localize clusters of cells. Selection of predictor genes was essential for this task. Predictor genes showed a relatively high expression entropy, high spatial clustering and included prominent developmental genes such as gap and pair-rule genes and tissue markers. Application of the top 10 methods to a zebra fish embryo dataset yielded similar performance and statistical properties of the selected genes than in the Drosophila data. This suggests that methods developed in this challenge are able to extract generalizable properties of genes that are useful to accurately reconstruct the spatial arrangement of cells in tissues.

DOI 10.26508/lsa.202000867 | Received 31 July 2020 | Revised 26 August 2020 | Accepted 31 August 2020 | Published online 25 September 2020

Introduction

The recent advances in single-cell sequencing technologies have revolutionized the biological sciences. In particular, single-cell RNA-sequencing (scRNAseq) methods allow for transcriptome profiling in a highly parallel manner, resulting in the quantification of thousands of genes across thousands of cells of the same tissue. However, with a few exceptions (1, 2, 3, 4, 5, 6 Preprints), current high-throughput scRNAseq methods share the drawback of losing during the cell dissociation step the information about the spatial arrangement of the cells in the tissue.

© 2020 Tanevski et al. https://doi.org/10.26508/lsa.202000867 vol 3 | no 11 | e202000867 1 of 13
One way of regaining spatial information computationally is to appropriately combine the scRNA dataset at hand with a reference database, or atlas, containing spatial expression patterns for several genes across the tissue. This approach was pursued in a few studies (7, 8, 9, 10, 11). Achim et al (7) identified the location of 139 cells using 72 reference genes with spatial information from whole mount in situ hybridization of a marine annelid and Satija et al (8) developed the Seurat algorithm to predict position of 851 zebra fish cells based on their scRNAseq data and spatial information from in situ hybridizations of 47 genes in ZFIN collection (12). In both cases, cell positional predictions stabilized after the inclusion of 30 reference genes. Karaiskos et al (11) reconstructed the early Drosophila embryo at single-cell resolution and although the authors were successful in their reconstruction, their work did not lead to a predictive algorithm and mainly focused on maximizing the correlation between scRNAseq data and the expression patterns from in situ hybridizations of 84 mapped genes in the Berkeley Drosophila Transcription Network Project (BDTNP). In this project, in situ hybridization data were collected resulting in a quantitative high-resolution gene expression reference atlas (13). Indeed, Karaiskos et al (11) showed that the combinatorial expression of these 84 BDTNP markers sufficed to uniquely classify almost every cell to a position within the embryo.

In the absence of a reference database, it is also possible to regain spatial information computationally solely from the transcriptomics data by leveraging general knowledge about statistical properties of spatially mapped genes against the statistical properties of the scRNA dataset (1, 14). Bageritz et al (1) were able to reconstruct the expression map of a Drosophila wing disc using scRNAseq data by correlation analysis. They exploited the coexpression of non-mapping genes to a few mapped genes with known expression patterns, to predict the spatial expression of 824 genes (1). Nitzan et al (14) assumed that cells that are physically close to each other tend to share similar transcription profiles and used the distance between mapping genes in the expression space and cells in the physical space to predict the possible locations of cells based on the distribution of distances between genes in the expression space. Following this approach, they were able to successfully reconstruct the locations of cells of the Drosophila, zebra fish embryos, and mammalian tissues from scRNAseq data (14).

Although these approaches are important steps to reconstruct the position of a cell in a tissue from their RNAseq expression, their high performance is conditioned on the selection of informative genes with spatially resolved expression and a global assessment is needed to evaluate the methods used and the number and nature of the best genes required for correctly assigning a location to each cell. With this in mind and to catalyze the development of new methods to predict the location of cells from scRNAseq data, we organized the DREAM Single-cell transcriptomics challenge, which ran from September through November 2018. We set up the challenge with three goals in mind. First, we wanted to foster the development of prediction algorithms, we provided information about gene determinants of different tissues such as neuroectoderm, dorsal ectoderm, mesoderm, yolk, and pole cells. We also provided (when available) the regulatory relationship—positive or negative—between the 84 genes in the in situ hybridizations and the rest of the genes. We asked participants to provide an ordered list of 10 most probable locations in the embryo predicted for each of the 1,297 cells using the expression patterns from (i) 60 genes of the 84 in subchallenge 1, (ii) 40 genes out of the 84 in subchallenge 2, and (iii) 20 genes of the 84 in subchallenge 3. The predictions were compared against the best available ground truth location—a silver standard—determined by calculating the maximum correlation using all 84 in situ (11).

DREAM challenges are a platform for crowdsourcing collaborative competitions (15) where a rigorous evaluation of each submitted solution allows for the comparison of their performance. The quality and reproducibility of each provided solution are also ensured. A distinctive feature of this single-cell transcriptomics challenge was the public availability of the entire dataset and the ground truth locations produced by DistMap, a method using the in situ hybridizations available at BDTNP (13), published together with the data (11). We took three actions to mitigate the issue of not having a blinded ground truth. First, for the purpose of predictor gene selection, we allowed the use of scRNAseq data and biological information from other databases but prohibited the use of in situ data. Second, to assess the quality of predictions, we devised three scores (detailed in the Materials and Methods section) that were not disclosed to the participants during the challenge. The scores measured not only the accuracy of the predicted location of the cell but also how well the gene expression in the cell at the predicted location correlates with the expression from the reference atlas, the variance of the predicted locations for each cell, and how well the gene-wise spatial patterns were reconstructed. Finally, we devised a post-challenge cross-validation (CV) scheme to evaluate further soundness and robustness of the methods.

The challenge was organized in two rounds, a leaderboard round and a final round. During the leaderboard round, the participants...
were able to obtain scores for five submitted solutions before submitting a single solution in the final round. We received submissions from 40 teams in the leaderboard round and 34 submissions in the final round. Of the 34 teams that made submissions in the final round, 29 followed up with public write-ups of their approaches and source code. For subchallenges 1 and 3 we were able to determine a clear best performer, but for subchallenge 2, there were two top ranked teams with statistically indistinguishable difference in performance (see Figs S1–S3).

As stated, given that the ground truth for this challenge was publicly available, we decided to invite the top 10 performing teams and a wisdom of the crowds (WOC) solution, based on results from a post-challenge cross-validated selection and prediction performance measured with three complementary scoring metrics. The boxplots show the distribution of ranks for each team on the 10 test folds. The rank for each fold is calculated as the average of the ranking on each scoring metric.

Results overview

When participants had to use 60 or 40 genes for their predictions, in the *Drosophila* subchallenge 1 and 2, respectively, the ranking of the best performing teams in the CV scenario did not change significantly compared with the challenge (Fig 1B cf. Figs S1 and S2). This was not the case in subchallenge 3 as no particular team from the top 10 significantly outperformed the others when using 20 genes for their predictions (Fig S3). Also, the results from the CV show that the approaches generalize well as for all teams the gene selection is performed consistently across the folds (Fig S4) and the SD of the scores is small (Table S1).

For each subchallenge, we combined the gene selection and location predictions from the top 10 participants into a WOC solution (see details below) that performed better compared with the individual solutions (Fig 1B). For comparison, the scores obtained by the best performing teams and the WOC solution are shown in Table 1.

Regarding the approaches used to solve the challenge, there was more diversity in the methods for gene selection than for location prediction. For the latter, the most used one was unsupervised or supervised feature importance estimation and ranking. For example, in a supervised feature importance estimation approach, a Random Forest (BCBU, OmicsEngineering) or a neural network (DeepCMC, NAD) were trained to predict the coordinates of each cell, given the transcriptomics data as input and using either all genes or the genes with available in situ hybridization.
Predicting cells position from single-cell transcriptomics
Tanevski et al.

Table 1. Best mean score for metrics s1, s2, and s3 achieved by the teams (Thin Nguyen, WhatATeam, and OmicsEngineering) and the WOC solution.

<table>
<thead>
<tr>
<th>Subchallenge</th>
<th>Teams</th>
<th>WOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subchallenge 1</td>
<td>0.76 (±0.04)</td>
<td>0.73 (±0.04)</td>
</tr>
<tr>
<td>Subchallenge 2</td>
<td>0.69 (±0.03)</td>
<td>0.70 (±0.05)</td>
</tr>
<tr>
<td>Subchallenge 3</td>
<td>0.65 (±0.05)</td>
<td>0.68 (±0.03)</td>
</tr>
<tr>
<td>s2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subchallenge 1</td>
<td>2.52 (±0.28)</td>
<td>2.16 (±0.20)</td>
</tr>
<tr>
<td>Subchallenge 2</td>
<td>1.16 (±0.12)</td>
<td>1.84 (±0.26)</td>
</tr>
<tr>
<td>Subchallenge 3</td>
<td>0.88 (±0.13)</td>
<td>1.42 (±0.16)</td>
</tr>
<tr>
<td>s3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subchallenge 1</td>
<td>0.59 (±0.01)</td>
<td>0.62 (±0.01)</td>
</tr>
<tr>
<td>Subchallenge 2</td>
<td>0.67 (±0.02)</td>
<td>0.65 (±0.01)</td>
</tr>
<tr>
<td>Subchallenge 3</td>
<td>0.79 (±0.02)</td>
<td>0.71 (±0.01)</td>
</tr>
</tbody>
</table>

The SD of scores across folds is in parenthesis. s1 measures how well the expression of the cell at the predicted location correlates to the expression from the reference atlas and includes the variance of the predicted locations for each cell, s2 measures the accuracy of the predicted location, and s3 measures how well the gene-wise spatial patterns were reconstructed. For more details on the scoring metrics, see the Materials and Methods section.

measurements. There were examples of unsupervised feature importance estimation and ranking by expression-based clustering (NAD, Christoph Hafemeister, MLB), or a greedy feature selection based on predictability of expression from other genes (WhatATeam). A small number of teams (WhatATeam and NAD) used background knowledge about location specific marker genes, or the expected number of location clusters, to inform the gene selection.

Two types of approaches were taken to predict cell location, the most frequent one being a similarity-based prediction, such as the maximum Matthews correlation coefficient (MCC) between the binarized transcriptomics and the in situ that was proposed by Karaiskos et al (11) and used to obtain the silver standard. Another well performing approach was combining the predictions of a machine learning model and MCC. In this scheme, models were trained to predict either the coordinates of each cell or the binarized values of the selected in situ, given transcriptomics data as input. The predictions were then made by selecting the location bins that corresponded to the nearest neighbors of the predicted values. The high ranking of the teams that used these two classes of approaches show that the selection of genes for which in situ measurements are available is essential (See summary of methods in Tables S2 and S3 as well as links to the write-ups and the code provided by each team Table S4). In addition, given the high diversity of approaches to gene selection, we focused our analysis on better understanding the properties of frequently selected genes to provide recommendations for future experimental designs.

To confirm that the Drosophila findings were robust, we included in our analysis an additional dataset consisting of scRNAseq measurements of 851 cells from a zebrafish embryo previously considered by Satija et al (8) together with spatial information for 64 locations from in situ hybridizations of 47 landmark genes from the ZFIN collection (12). As ground truth for predicting the position of the zebrafish embryo cells, we used the location predictions produced by applying DistMap, choosing a threshold for scRNAseq expression to maximize the MCC with all 47 in situ genes. The method proposed by Satija et al (8) can also be used to produce ground truth locations, but for consistency with the challenge we decided to use DistMap. Note that we compared the predicted locations and the redundancy that arises from trying to place 851 cells in 64 different locations when using DistMap and Seurat. The results in Fig S5 show notably that on average DistMap and Seurat agree for 5 of 10 positions for a cell, with only 46 cells showing no agreement between the methods when assigning 64 possible locations. This represents a high level of overall agreement and enhances the confidence in the silver standard. We tasked once again the top 10 teams to select 20 and 40 genes to place correctly the zebrafish cells in a 10-fold CV scheme. Team ranks varied on this additional dataset (Figs S6 and S7), but the scores achieved were of the same order as in Drosophila (Tables S1 and S5), and we found that the selected genes had similar statistical properties (Fig S8 and Tables 2 and S6).

Combining selected genes

The selection of a smaller subset of in situ used for cell location prediction was the hallmark that differentiated the subchallenges. As it is combinatorially unfeasible to evaluate all sets of 20, 40, or 60 genes from the 84 available, the top 10 ranked teams selected genes mostly based on feature ranking algorithms using normalized transcriptomics data (for more details see Table S3). For prediction robustness and biological relevance purposes, one would expect that genes would be consistently identified across the folds of the 10-fold CV scheme. All the more as the correlation of scRNAseq expression for all pairs of 84 mapped genes across cells was low (Fig S9). Indeed, for all subchallenges, the 10 methods led to a significant and consistent selection of genes across folds, even as we measured higher variance and lower similarity as the number of selected genes decreased (see Fig S4). The consistency of gene selection across folds was also confirmed by the results from the analysis of the zebrafish embryo (see Fig S10).

For each subchallenge, we counted the number of times that the genes were selected by all teams in all folds and observed that a high proportion of genes are consistently selected across subchallenges (Fig 2A and B). 40% of the top 20, 67% of the top 40, and 81% of the top 60 most frequently selected genes are the same for all three subchallenges (Fig 2B). The ranks assigned to all genes in the three subchallenges were also highly correlated. Namely, the rank correlations range from 0.69 between subchallenges 1/3, to 0.83 between subchallenges 1/2 and 2/3, also shown when measured using the Jaccard similarity of the sets of top-k most frequently selected genes for pairs of subchallenges (Fig 2C). The lists of most frequently selected 60, 40, and 20 genes in subchallenges 1, 2, and 3, respectively, are available in the Supplemental Data 1 (Table S7). To validate the predictive power of the most frequently selected genes, we established the cell locations using DistMap and found that using those genes gave significantly better results than a random selection of genes (Fig 2D and see below WOC section for more details). We conclude that the gene selection is not only consistent by team across folds, but also across teams and subchallenges.
Properties of frequently selected genes

We conjectured that the most frequently selected genes should carry enough information content collectively to uniquely encode a cell’s location. Furthermore, genes should also contain location specific information, that is, their expression should cluster well in space.

To quantify these features, we calculated the entropy and the join count statistic for spatial autocorrelation of the in situ genes (see the Materials and Methods section for description). We observed that most of the in situ genes have relatively high entropy as observed by the high density in the upper part of the plots and show high spatial clustering, that is, show values of the join count test statistic lower than zero (see Fig 3A).

To test our conjectures of high entropy and spatial correlation, we tested the significance for the shift of the values between the most frequently selected genes and the non-selected genes from all in situ genes. We observed for all subchallenges a significant value shift for the autocorrelation statistic as evaluated by a one sided Mann–Whitney U test (see bottom of Fig 3A). Although we see a decrease of the statistical significance of the mean value shift for the distribution of entropy values of the selected subsets of genes, the shift is significant for all subchallenges. At the same time, we observed that the tail of the distribution shortens.

We then analyzed the differentially expressed genes for each of the nine clusters in all subchallenges. In particular, we focused on the frequently selected mapped genes to discover representative genes identifying each cluster. The results from the one-versus-all clusters differential expression analysis for each subchallenge are presented in Figs S12–S14. We find that for each subchallenge, 81, 82, and 77 from the 84 mapped genes are significantly differentially expressed in at least one of the clusters, respectively (Fig 4). To assign genes to each cluster identity, we first selected the top three
differentially expressed genes in each cluster and in each subchallenge. We obtained a representative set of 23, 22, and 13 mapped genes for each subchallenge, which shows that the participants selected a diverse set of most differentially expressed genes representative of various spatial locations. The intersection of these sets contains 11 genes from which 10 are among the top 20 most selected genes (Fig 4 bottom, Figs S15 and S16 for remaining genes for each subchallenge). Thus, in conclusion, participants’ preferred genes are also mostly differentially expressed between clusters of the scRNAseq data.

Next, we aimed to discover other statistical properties of the transcriptomics data that might inform future experimental designs when selecting target genes for in situ hybridization. We associated their statistical properties, such as variance of gene expression \(\sigma^2 \), the coefficient of variation \(\frac{\sigma}{\mu} \) across cells, the number of cells with expression 0 and the entropy of binarized expression \(H_{\text{bin}} \), to those in the in situ that were found to be indicative of good performance, that is, entropy \(H \) and the value of the joint count statistic \(Z \). We calculated these statistical features across cells for the subset of 84 genes from the transcriptomics data for which we also have in situ measurements, and then calculated the correlation across genes for each of these metrics and the measured spatial properties of interest (see Table 2).

Although the selection of highly variable genes was one of the approaches used by some of the top 10 teams, the variance for each gene in the scRNAseq expression was less correlated than other properties to the entropy of the corresponding in situ measurements of that gene. We observed that the positive correlation of the entropy to the variance of each gene becomes negative when calculated against their coefficient of variation. This negative correlation can have two sources, the genes with high entropy may have low SD or high mean expression. Because the entropy is positively correlated with the variance of expression, we can conclude that the negative correlation is a result of highly expressed genes. This makes sense as a known drawback of scRNAseq is a high number of dropout events for lowly expressed genes (18). An observation that is further supported by the negative correlation of the entropy and the number of cells with zero expression. Finally, the highest correlation of in situ entropy was to the entropy of the binarized expression. Regarding the spatial autocorrelation, all statistical features of the transcriptomics were only slightly positively correlated to the join count statistic except for the entropy of binarized expression which had negative correlation.

We confirmed the results from the correlation of the properties of the in situ to the statistical properties of the gene expression in
the transcriptomics on the zebrafish dataset (see Table S6). Taken together, our findings suggest that high expression, differential expression, high entropy, and spatial clustering of the binarized expression are indicative of informative mapping genes and should guide future experimental designs.

Combining location predictions

A recurrent observation across DREAM challenges is that an ensemble of individual predictions usually performs better and is more robust than any individual method (19, 20). This phenomenon, also common in other contexts, is denoted as the wisdom of the crowds (WOC) (15). In a typical challenge, individual methods output a single probability reflecting the likelihood of occurrence of an event. The WOC prediction is then constructed in an unsupervised manner by averaging the predictions of individual methods. In the single-cell transcriptomics challenge, we leveraged the diversity of the top performing methods for location prediction only (Table S2) to construct a WOC ensemble prediction. The WOC location prediction approach does not take the genes used by the teams to make the predictions into account. However, after the WOC predictions are generated and to score them, we used the most frequently selected genes for every subchallenge (see below). Given that in the scRNAseq prediction challenge, participants had to submit 10 positions per cell, we developed a novel method based on k-means clustering to generate the WOC predictions. Fig 5 displays a diagram of the k-means approach, where, for each single cell, we first used k-means clustering to group the locations predicted by the individual teams (21) using the Euclidean distance between the locations as the metric. To find the optimal k, we used the elbow method, that is, we chose a k that saturates the sum of squares between clusters (22). Note that each cluster consists of a group of locations and each location is predicted by one or more teams. Hence, for each cluster, we calculated the average frequency that its constituent locations are predicted by individual teams. We then picked the cluster with the highest average frequency and ranked each location in this cluster based on how frequently it was predicted by individual methods. For each cell, the final prediction of the proposed WOC method consisted of the top 10 locations based on the above ranking. The k-means approach is based on the intuition that a single cell belongs to one location, and its expression is mostly similar to that of cells in locations surrounding it. The results show that the proposed WOC solution performed better than the individual solutions (Fig 1B). In particular, as shown in Table 1, the superior performance of the WOC approach can be attributed to improvements in scores s_1 and s_2, that is, the correlation of expression of the cells at their predicted locations with the reference atlas, the accuracy, and low variance of the predicted most probable locations to the ground truth location for each cell.

Table 2. Correlations of transcriptomics to in situ properties of the genes where both measurements are available.

<table>
<thead>
<tr>
<th>In situ</th>
<th>scRNASeq</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^2, variance of a gene across cells; CV, coefficient of variation; 0, number of cells with zero expression; h_b, entropy of binarized expression; H, entropy; Z, join count test statistic.</td>
<td>σ^2</td>
</tr>
<tr>
<td>CV</td>
<td>-0.69</td>
</tr>
<tr>
<td>h_b</td>
<td>-0.64</td>
</tr>
<tr>
<td>Z</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Table 2. Correlations of transcriptomics to in situ properties of the genes where both measurements are available.
Validation of frequently selected genes

We defined a simple procedure to obtain a WOC gene selection for each of the subchallenges. It consisted of selecting the most frequently selected genes for each subchallenge (different colored bars in Fig 2A). To validate the predictive performance of the WOC gene selection independent from the participant's location prediction methods, we predicted the cell locations using DistMap, the method used to generate the ground truth locations for each cell for the challenge. We scored the predictions using the same scoring metrics as for the challenge, estimating the significance of the scores through generated null distributions of scores for each subchallenge. The null distribution of the scores was generated by scoring the DistMap location prediction using 100 different sets of randomly selected genes. For each subchallenge and each score, we estimated the empirical distribution function and then calculated the percentile of the values of the scores obtained with the WOC gene selection.

The null distributions and the values of the scores obtained with the WOC gene selection are shown in Fig 2D. All values of the scores for subchallenge 1 fall in the 99th percentile. For subchallenge 2, s1 and s2 fall into the 92nd percentile and s2 in the 100th percentile. For subchallenge 3, all scores fall in the 100th percentile. Overall, the performance of DistMap with the WOC selected genes performs significantly better than a random selection of genes. The actual values of the scores are on par with those achieved by the top 10 teams in the challenge.

Discussion

In this article, we report the results of a crowdsourcing effort organized as a DREAM challenge (15) to predict the spatial arrangement of cells in a tissue from their scRNAseq data. Analysis of the top performing methods provided many unbiased insights such as the usage of either similarity-based approaches or machine learning models to predict cell location. The latter, in accordance with current literature (8, 11, 14), were shown to be preferable. We do not think this is due to bias induced by the fact that the silver standard was generated using a similarity-based approach.

Indeed, we showed for the zebra fish dataset that the silver standard is robust to the usage of Seurat (Fig S5), a different method to generate the cells' positions. Also, the good performance and robustness of nonlinear machine learning methods (Table S1) is proof that the association between the expression of mapped genes and a cell's position is not due to a simple gradient of expression in space. Consequently, we conjecture that a combination of these two approaches would be most preferable for predicting cells' unknown locations. Namely, similarity-based approaches can be used to make position assignments for a subset of cells with high similarity of gene expression to a spatially resolved reference. Then, machine learning approaches take advantage of this information to predict the positions of the remaining cells.

Given that for all approaches, the selection of informative genes with spatially resolved expression is essential, the main finding of this study is how to select these genes based on their cell-to-cell expression variability in the *Drosophila* and zebra fish embryos to best predict a cell's localization. The most selected genes had a relatively high entropy, hence high variance and high expression values while also showing high spatial clustering. The smaller the number of selected genes, that is, going from 60 to 40 and to 20, the more these features became apparent (Figs 3 and S8). The observed advantage of genes with high overall expression in cells might lead...
to less dropout counts in the scRNAseq data, a known disadvantage of the technology, leading to more accuracy in the cell placement. However, we also found that most in situ genes were differentially expressed across cell clusters in the scRNAseq data and top three differentially expressed genes have notable overlap across challenges (see Figs 4 and S15). For Drosophila, the nine prominently spatially distinct cell clusters previously identified (11) are preserved when considering the most frequently selected 60 or 40 genes and for 40 genes in zebra fish. However, for both organisms, the number of clusters is reduced when considering only the most frequently selected 20 genes. This finding is in line with the conclusions of Howe et al (12), where in a related task of location prediction, the performance stabilized after the inclusion of 30 genes. Finally, the WOC gene selection and the k-means clustered prediction, the performance stabilized after the inclusion of 30 genes and for 40 genes in zebra fish but also explains the biological and statistical properties of the genes selected for the predictions, including that spatially auto-correlated genes are the most informative (1, 14). However, we think that the approach defined here could be used or adapted when performing similar cell-placing tasks in other organisms, including human tissues. In fact, for all organisms studied, selecting the appropriate marker genes for optimal cartography has been shown to have a large effect on the performance (14). Given the importance of spatial arrangements for disease development and treatment, we foresee an application of these methods to medical questions as well.

Materials and Methods

Scoring

We scored the submissions for the three subchallenges using three metrics $s_1, s_2,$ and s_3 measured how well the expression of the cell at the predicted location correlates to the expression from the reference atlas and included the variance of the predicted locations for each cell, whereas s_2 measured the accuracy of the predicted location and s_3 measured how well the gene-wise spatial patterns were reconstructed.

Let c represent the index of a cell, given in the transcriptomics data in the challenge where $1 \leq c \leq 1,297$. Each cell c is located in a bin $i_c \in \{1, 2, 3, 039\}$ at a position with coordinates (x_c, y_c, z_c). Each cell is associated with a binarized expression profile $t_c = (t_{c,1}, t_{c,2}, \ldots, t_{c,fc})$, where $1 \leq E \leq 8,924$, and a corresponding binarized in situ profile $f_c = (f_{c,1}, f_{c,2}, \ldots, f_{c,fc})$, where the maximum possible value of K for which we have in situ information is $K = 84$. For different subchallenges, we consider $K \in \{20, 40, 60\}$. Using K selected genes, the participants were asked to provide an ordered list of 10 most probable locations for each cell. We represent with the mapping function $A(c, i, K)$ the value of the predicted i-th most probable location for cell c using K in situ.

For the first scoring metric s_1, we calculated the weighted average of the MCC between the in situ profile of the ground truth cell location $f_{c, i}$ and the in situ profile of the most probable predicted location for that cell.

$$s_1 = \sum_{i \in 1 \ldots K} \frac{P_{c}(i, A)}{\sum_{i \in 1 \ldots K} P_{c}(i, A)} \cdot \text{MCC}(A(c, i, K), f_{c, i}),$$

where N is the total number of cells with predicted locations.
The MCC, or ϕ coefficient, is calculated from the contingency table obtained by correlating two binary vectors. The MCC is weighted by the inverse of the distance of the predicted most probable locations to the ground truth location $p_{t}(c)$. The weights are calculated as $p_{t}(c, A) = d_{G}(c, A)$, where $d_{G}(c, A) = \frac{1}{N} \sum_{i=1}^{N} ||r(A(c, i, K)) - r(e_{c})||$, $d_{G}(c, A)$ is the value of $d(c, A)$ using the ground truth most probable locations assigned with $K = 84$ using DistMap, and $||.||_2$ is the Euclidean norm.

The second metric s_2 is simply the average inverse distance of the predicted most probable locations to the ground truth location.

$$s_2 = \frac{1}{N} \sum_{i=1}^{N} p_{t}(c, A).$$

Finally, the third metric s_3 measures the accuracy of reconstructed gene-wise spatial patterns.

$$s_3 = \sum_{s=1}^{K} \frac{\text{MCC}(t_{s}, f_{s})}{\sum_{s=1}^{K} \text{MCC}(t_{s}, f_{s})} \text{MCC}(t_{s}, f_{s})_{e} \neq 0,$$

where $\text{MCC}(t_{s}, f_{s})_{e}$ denotes that the MCC is calculated cell wise for each gene.

For 287 of the 1,297 cells, the ground truth location predictions were ambiguous, that is, the MCC scores were identical for multiple locations. These cells were removed both from the ground truth and the submissions before calculating the scores.

The teams were ranked according to each score independently. The final assigned rank r_i for team t was calculated as the average rank across scores. Teams were ranked based on the performance as measured by the three scores on 1,000 bootstrap replicates of the submitted solutions. The three scores were calculated for each bootstrap. The teams were then ranked according to each score. These ranks were then averaged to obtain a final rank for each team on that bootstrap. The winner for each subchallenge was the team that achieved the lowest ranks. We calculated the Bayes factor of the 1,000 bootstrapped ranks of teams T_1 and T_2 was calculated as follows:

$$BF(T_1, T_2) = \frac{\sum_{i=1}^{1000} 1(r(T_1)_i < r(T_2)_i)}{\sum_{i=1}^{1000} 1(r(T_1)_i > r(T_2)_i)},$$

where $r(T_1)_i$ is the rank of team T_1 on the i-th bootstrap, $r(T_2)_i$ is the rank of team T_2 on the i-th bootstrap, and 1 is the indicator function.

Entropy and spatial autocorrelation

The entropy of a binarized in situ measurements of gene G was calculated as follows:

$$H(G) = -p \log p - (1 - p) \log (1 - p),$$

where p is the probability of gene G to have value 1. In other words, p is the fraction of cells where G is expressed.

The join count test statistic is a measure of a spatial autocorrelation of a binary variable. We will refer to the binary expression 1 and 0 as black (B) and white (W). Let n_G be the number of bins where G is expressed ($G = B$), and $n_W = n - n_G$ the number of bins where G is not expressed ($G = W$). Two neighboring spatial bins can form join of type $I \in \{WW, BB, BW\}$.

We are interested in the distribution of BW joins. If a gene has a lower number of BW joins that the expected number of BW, then the gene is positively spatially auto-correlated, that is, the gene is highly clustered. Contrarily, higher number of BW joins points toward negative spatial correlation, that is, dispersion.

Following Cliff and Ord (27) and Sokal and Oden (28), the expected count of BW joins is as follows:

$$E[BW] = \frac{1}{2} \sum_{i,j} n_B n_W,$$

where the spatial connectivity matrix w is defined as follows:

$$w_{ij} = \begin{cases} 1 & \text{if } i \neq j \text{ and } j \text{is in the list of 10 nearest neighbors of } i \\ 0 & \text{otherwise} \end{cases}$$

The variance of BW joins is as follows:

$$\sigma^2_{BW} = E[BW^2] - E[BW]^2.$$

where the term $E[BW^2]$ is calculated as follows:

$$E[BW^2] = \frac{1}{4} \left(\frac{2x_1 n_B n_W}{n^2} + \frac{(x_1 - 2x_2) n_B n_W (n_B + n_W - 2)}{n^3} + 4(x_1^2 + x_2 - x_3) n_B^2 n_W^2 \right),$$

where $x_1 = \sum_i w_{ij}$, $x_2 = \frac{1}{2} \sum_i (w_{ij} - 1)^2$, $x_3 = \sum_i \left(\sum_i w_{ij} + \sum_i w_{ij} \right)^2$.

Note that the connectivity matrix w can also be asymmetric because it is defined by the nearest neighbor function.

Finally, the observed BW counts are follows:

$$BW = \frac{1}{2} \sum_{i,j} w_{ij} (G_i - G_j)^2.$$

The join count test statistic is then defined as follows:

$$Z(BW) = \frac{BW - E[BW]}{\sigma_{BW}},$$

which is assumed to be asymptotically normally distributed under the null hypothesis of no spatial autocorrelation. Negative values of the Z statistic represent positive spatial autocorrelation, or clustering, of gene G. Positive values of the Z statistic represent negative spatial autocorrelation, or dispersion, of gene G.

Implementation details

The challenge scoring was implemented and run in R version 3.5, the post-analysis was performed with R version 3.6 and the core tidyverse packages. We used the publicly available implementation of DistMap (https://github.com/rajewsky-lab/distmap). MCC calculated with R package mccr (0.4.4). t-SNE embedding and visualization produced with R package Rtsne (0.15). DBSCAN clustering with R
package dbscan (1.1-4). We used t-SNE aiming for high accuracy ($\theta = 0.01$), then clustered the t-SNE embedded data using density-based spatial clustering of applications with noise (DBSCAN) (29). DBSCAN determines the number of clusters in the data automatically based on the density of points in space. The minimum number of cells in a local neighborhood was set to 10 and the parameter $\varepsilon = 3.5$ was selected by determining the elbow point in a plot of sorted distances of each cell to its 10th nearest neighbor.

Code availability

Data description

Reference database
The reference database comes from the BDTNP. The in situ expression of 84 genes (columns) is quantified across the 3,039 Drosophila embryonic locations (rows) for raw data and for binarized data. The 84 genes were binarized by manually choosing thresholds for each gene.

Spatial coordinates
One half of Drosophila embryo has 3,039 cells places as x, y, and z (columns) for a total of 3,039 embryo locations (rows) and a total of 3,039 3 coordinates.

scRNAseq
The scRNAseq data are provided as a matrix with 8,924 genes as rows and 1,297 cells as columns. In the raw version of the matrix, the entries are the raw unique gene counts (quantified by using unique molecular identifiers). The normalized version is obtained by dividing each entry by the total number of unique molecular identifiers for that cell, adding a pseudocount and taking the logarithm of that. All entries are finally multiplied by a constant. For a given gene, and only considering the Drop-seq cells expressing it, we computed a quantile value above (below) which the gene would be designated ON (OFF). We sampled a series of quantile values and each time the gene correlation matrix based on this binarized version of normalized data versus the binarized BDTNP atlas was computed and compared by calculating the mean square root error between the elements of the lower triangular matrices. Eventually, the quantile value 0.23 was selected, as it was found to minimize the distance between the two correlation matrices. The short sequences for each of the 1,297 cells in the raw and normalized data are the cell barcodes.

Materials and correspondence

Requests for data, resources, and or reagents should be directed to Pablo Meyer (pmeyerr@us.ibm.com).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.202000867.

Acknowledgements

This research was funded in part by PROACTIVE 2017 "From Single-Cell to Multi-Cells Information Systems Analysis" (C92F17003530005 Department of Information Engineering, University of Padova) for BD Camillo; National Institutes of Health grant number U54CA21729 for J Ruan; Indian Council of Medical Research—Junior Research Fellowship for S Ahmad and X Wang was funded by the National Natural Science Foundation of China (No. 61702421 and No. 61772426). P Meyer thanks KV for help editing.

Author Contributions

J Tanevski: conceptualization, data curation, software, investigation, methodology, and writing—original draft.
T Nguyen: software, formal analysis, and writing—review and editing.
B Truong: software, formal analysis, methodology, and writing—review and editing.
N Karaiskos: conceptualization, data curation, formal analysis, and writing—review and editing.
M E Ahsen: data curation, software, formal analysis, and writing—review and editing.
X Zhang: software, formal analysis, methodology, and writing—review and editing.
C Shu: software, formal analysis, methodology, and writing—review and editing.
K Xu: software, formal analysis, methodology, and writing—review and editing.
X Liang: software, formal analysis, methodology, and writing—review and editing.
Y Hu: software, formal analysis, methodology, and writing—review and editing.
HW Pham: software, formal analysis, methodology, and writing—review and editing.
L Xiaomi: software, formal analysis, methodology, and writing—review and editing.
TD Le: software, formal analysis, methodology, and writing—review and editing.
AL Tarca: software, formal analysis, and methodology.
G Bhatti: software, formal analysis, methodology, and writing—review and editing.
R Romero: software, formal analysis, methodology, and writing—review and editing.
N Karathanasis: software, formal analysis, and methodology.
P Loher: software, formal analysis, methodology, and writing—review and editing.
Y Chen: software, formal analysis, methodology, and writing—review and editing.
Z Ouyang: software, formal analysis, methodology, and writing—review and editing.
D Mao: software, formal analysis, methodology, and writing—review and editing.
Y Zhang: software, formal analysis, methodology, and writing—review and editing.
M Zand: software, formal analysis, methodology, and writing—review and editing.
J Ruan: software, formal analysis, methodology, and writing—review and editing.
Predicting cells position from single-cell transcriptomics

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

License: This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).