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Gene expression analysis
Expression data-sets
Two gene expression data-sets were generated, a total B cell (totalB) and a negatively
selected (CD23 depletion) memory B cell set (memB; referred to as m. in figures), both from
3 healthy donors, from day-0 (resting B-cell; totalB only) on day-3 after activation with
CD40L/anti-BCR/cytokines (ABC) and then at intervals of 3h, 6h, 12h, 24h, 48h and 72h
(PB) after transition into conditions (continued IL2 and IL21 only) that support the ABC/PB
transition.  A G9A inhibited data-set (G9A_i) was generated for the totalB data with the



inclusion of the small molecule inhibitor UNC0638 at day-3, with samples taken at the same
intervals as the standard conditions.

Normalisation and analysis
Illumina GenomeStudio Gene Expression Module was employed for initial data processing
followed by the R Lumi package (v2.36.0).1  Probes not detected on three or more arrays
were removed and the remaining data variance-stabilizing transformed (VST) and quantile
normalized.  A linear model was fitted to the gene expression data using the R Limma
package (v3.40.6).2  Differentially expressed genes between the Standard/G9A_i contrasts
were gauged using the Limma empirical Bayes statistics module, adjusting for multiple
testing using Benjamini and Hochberg correction.  Probes were re-annotated using the
MyGene.info (http://mygene.info) API using all available references (e.g. NCBI Entrez,
Ensembl etc.) and any ambiguous mappings manually assigned.3  Finally, probes for each
gene were merged by taking the median value for probe sets with a Pearson correlation

0.2 and the maximum value for those with a correlation <0.2 (as used by Monti et al).4

PGCNA networks
Background
For details and validation of the Parsimonious Gene Correlation Network Analysis (PGCNA)
approach see our other work.5 Here a brief description of the method will be given.  After
informative genes are selected they are used to calculate Spearman’s rank correlations for
all gene pairs using the Python scipy.stats package.  For each gene (row) in a correlation
matrix only the 3 most correlated edges per gene are retained.  The resulting matrix M, with
entries written as M = (mij) is made symmetrical by setting mij = mji for all indices i and j so
that M = MT (its transpose).  The correlation matrices are clustered using a community
detection algorithm (Louvain v0.3 or Leidenalg v0.7.0; see PGCNA2) and the 100 best
(judged by modularity score) used for downstream analysis.6,7

Data preparation
The totalB and memB standard condition time course data were used for PGCNA network
construction.  Before probes were merged per-gene the most informative probes were
selected for the different time courses.  All probes with a 2 > 0.025 (across median values
per time point) were selected, giving 11,418 and 10,183 probes for the totalB and memB
sets respectively.  The selected probes were used to filter the complete (not merged across
donors) data-sets and finally the probes merged per gene.  This gave 9,362 and 8,431
genes for the totalB and memB data-sets.

PGCNA2 network generation
For this project the community detection method used by PGCNA (Louvain/FastUnfold)
was replaced with an improved algorithm that guarantees well-connected communities
(Leidenalg).6,7  In order to test if the Leidenalg improved the results of the PGCNA approach
it was compared to the Louvain method for the BRCA/COAD data-sets (used in the original
PGCNA paper) and the totalB and memB data-sets (used here) using a Spearman
correlation matrix reduced to 3 edges per gene (EPG).8  For the BRCA/COAD analysis the

http://mygene.info/


Louvain results were compared to 3 rounds of Leidenalg runs, whilst for the smaller
totalB/memB data-sets the Louvain results were compared to 6 rounds of Leidenalg runs.
For the Louvain method each round consisted of 10,000 iterations, whilst for Leidenalg
each round consisted of 1,000 iterations (with optimiser set to iterate until no partition
improvement).  For both Louvain/Leidenalg for each round the top 100 results (judged by
modularity score) were then analysed for biological enrichment against a signature
database (see Gene signature data) by generating Scaled cluster enrichment scores (see
original PGCNA methods for details).5  Methods Figure 1 and 2 show that in 3 of the 4
tested data-sets Leidenalg improved the biological enrichment.  The optimal Leidenalg
results were then used for downstream visualisation and analysis.  This resulted in two
networks: PGCNA-totalB (9,362 genes, 22,921 edges) and PGCNA-memB (8,431 genes,
20,524 edges).
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Methods Fig 1. BRCA/COAD.  Enrichment of gene ontology and signatures was assessed using a 
scaled cluster enrichment score (SCES) and compared between data clustered with Louvain (FastUn-
fold) or Leidenalg for parsimonious matrices with edges per gene (EPG) of 3.  Violin plots display the 
distribution along with median (blue square) and the IQR.
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Methods Fig 2. memory/Total.  Enrichment of gene ontology and signatures was assessed using a 
scaled cluster enrichment score (SCES) and compared between data clustered with Louvain (FastUn-
fold) or Leidenalg for parsimonious matrices with edges per gene (EPG) of 3.  Violin plots display the 
distribution along with median (blue square) and the IQR.
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ChIP-seq analysis

Data-sets

Alignment and peak discovery
Before aligning, reads were trimmed to remove adapters and low confidence regions using
a python script. A 4 base sliding window was run along each read, if the average Q Phred
score for a window was < 20 the read was trimmed at the window start, finally any match to
adapter sequences were trimmed.

Trimmed reads were aligned to GRCh38 (UCSC analysis set) using Bowtie2 (v2.3.5.1) with
the --very-sensitive parameter.9  The resultant SAM files were converted to BAM using
samtools (v1.9) with the quality filter set to 20 (-q 20).10  The BAM files were analysed for
peaks using GEM (v3.4), with quality filter set to 1 (-q 1) and MACS2 (v2.1.2) with quality
filter set to 0.05 (-q 0.05).11,12

File TF Condition TotalReads TotalAligned %Aligned
H929_1_IRF4 IRF4 Cell-Line 32,217,322 27,426,682 85.13
H929_1_Input - Cell-Line 31,547,003 24,791,189 78.58
U266_1_IRF4 IRF4 Cell-Line 35,388,343 19,744,836 55.79
U266_1_Input - Cell-Line 33,047,885 26,231,974 79.38
OCILY3_1_IRF4 IRF4 Cell-Line 34,319,995 26,245,026 76.47
OCILY3_1_Input - Cell-Line 35,482,443 31,100,345 87.65
OCILY3_2_IRF4 IRF4 Cell-Line 22,112,257 18,172,619 82.18
OCILY3_2_Input - Cell-Line 11,652,330 7,346,745 63.05
OCILY10_1_IRF4 IRF4 Cell-Line 30,282,459 19,520,680 64.46
OCILY10_1_Input - Cell-Line 33,739,395 28,515,619 84.52
OCILY10_2_IRF4 IRF4 Cell-Line 41,055,313 35,335,492 86.07
OCILY10_2_Input - Cell-Line 16,179,020 13,205,999 81.62
Day3BC_1_IRF4_Std IRF4 Std 14,402,873 11,928,556 82.82
Day3BC_1_Input_Std - Std 76,638,168 55,935,640 72.99
Day3BC_2_IRF4_Std IRF4 Std 14,465,135 12,004,663 82.99
Day3BC_2_Input_Std - Std 76,830,340 59,330,110 77.22
Day6PB-B_XBP1_Std XBP1 Std 26,511,959 21,722,657 81.94
Day6PB-B_Input_Std - Std 29,074,912 23,855,970 82.05
Day6PB-memB_BLIMP1_Std BLIMP1 Std 35,002,987 29,416,625 84.04
Day6PB-memB_CTCF_Std CTCF Std 36,105,839 31,556,061 87.40
Day6PB-memB_H3K27Ac_Std H3K27ac Std 54,433,687 47,458,206 87.19
Day6PB-memB_H3K4me3_Std H3K4me3 Std 53,132,933 43,282,575 81.46
Day6PB-memB_IRF4_Std IRF4 Std 34,346,524 28,691,545 83.54
Day6PB-memB_Input_Std - Std 26,944,620 14,681,441 54.49
Day6PB-memB_BLIMP1_0638 BLIMP1 UNC0638 26,740,354 22,690,984 84.86
Day6PB-memB_H3K27Ac_0638 H3K27ac UNC0638 39,826,235 34,929,002 87.70
Day6PB-memB_H3K4me3_0638 H3K4me3 UNC0638 40,544,784 33,485,297 82.59
Day6PB-memB_Input_0638 - UNC0638 21,062,154 11,530,118 54.74



The resultant BAM files were converted to BED files and read cross-correlation was
assessed using MaSC (v1.2.1).13  Reads were extended to the estimated fragment length,
and a scaled (reads per million; rpm) BED file generated. This was converted to a coverage
file using the UCSC genomeCoverageBed tool and then to a BigWig file using UCSC
bedGraphToBigWig for peak visualisation.14

Peak overlap and filtering
ChIP-seq peak overlaps were used in two contexts.  Firstly, to reduce false positive peak
discovery a high-confidence merged peak set was created by overlapping the
GEM/MACS2 peaks.  Secondly, the resultant high-confidence peaks were used to find the
overlap between the different transcription factors (TFs) creating a non-redundant set of
binding regions.  The peak centres for all data-sets were ordered per chromosome.
Starting at the beginning of each chromosome peaks were added to a cluster.  New peaks
were only added to the cluster if the distance between their centre and the cluster’s centre
was  250 bp, else a new cluster was started.  As new clusters were generated if peaks in
the earlier cluster were closer to the new cluster’s centre they were moved into the new
cluster (thus a peak can only belong to one cluster).  The minimum GEM/MACS2 -log10Q for
a peak to start a new cluster was set to  5, however, this was lowered to 1 for the addition
of peaks to existing clusters.  Note that the number of peaks in the TF overlap sets are less
than the individual peaks per TF due to the merging of some close peaks into a single peak
cluster.

For the cell-line IRF4 data, first a high-confidence set was created per sample by
overlapping the GEM/MACS2 peaks.  For the multiple myeloma (H929/U266) cell-lines the
two high-confidence sets were overlapped, while for the DLBCL (OCILY3/OCILY10) cell-
lines the 4 high-confidence sets were overlapped.

For the day 3 IRF4 samples, the GEM/MACS2 peak sets were combined per run and then a
high confidence set created by finding their overlap, generating a set of peak clusters that
have at least one GEM/MACS2 peak in both runs.

This gave the final individual high-confidence sets: BLIMP1 (n=4,323), D3.IRF4 (n=18,271),
D6.IRF4 (n=9,512) and XBP1 (n=605) along with the Union set consisting of all peaks in the
overlap of BLIMP1_D6.IRF4_XBP1 (n=12,491) and a Union.2 set consisting of all peaks in
the overlap of BLIMP1_D3.IRF4_D6.IRF4_XBP1 (n=27,649).

The full results from peak merging and overlap analysis can be found in Supplemental Table
5.

Peak annotation
Version 28 of the Gencode gene annotation data was downloaded from UCSC, the genes
were re-annotated using the HUGO Gene Nomenclature Committee annotations
(2018/06/08 version).14,15  Each peak was assigned the nearest gene (TSS) as its primary
gene.  In addition annotatePeaks.pl from the HOMER suite (v4.11.1) was used to provide
detailed peak annotations (Promoter: -1kb – 100bp, TTS: -100bp – 1kb, Exonic/Intronic: >
100bp from Promoter/TTS within gene, Intergenic: >1kb from Promoter/TTS outside
gene).16



Motif discovery
BED files were generated for the peak overlap sets, -/+ 125 bases around each peak centre
(or overlap cluster centre).  These were analysed for de novo motifs of length 8 – 14 using
findMotifsGenome.pl from the HOMER suite.

Data visualisation

Network visualisation
The optimal PGCNA-totalB/PGCNA-memB networks were converted to a list of edges and
nodes and uploaded into the Gephi package (version 0.9.2).17  Degree and Betweenness
Centrality were calculated, and the latter used to adjust node sizes.  The network layout
was generated using the ForceAtlas2 approach, and interactive HTML5 web visualizations
exported using the sigma.js library (https://github.com/oxfordinternetinstitute/gephi-
plugins/tree/sigmaexporter-plugin).  The interactive visualisations can be found at
https://mcare.link/ABCtoPB.

Heatmaps
The gene expression data and GSE results were both visualised using the Broad GENE-E
package (https://software.broadinstitute.org/GENE-E/).  For visualisation of expression
data, the timepoint median expression values were row-normalised (z-scores), while for
GSE visualisation the signature enrichment/depletion z-scores were used.  In both cases
the data was hierarchically clustered (Pearson correlations and average linkage).

ChIP-seq clustering and visualisation
The high-confidence peak sets for BLIMP1, IRF4 and XBP1 along with the Union/Union.2
set (overlap of individual high-confidence BLIMP1, D3.IRF4, D6.IRF4 and XBP1 peaks; see
supplemental Table 5) were analysed using the deepTools2 suite (v3.3.0).18  Using
bamCoverage peaks were normalised to bins per million mapped reads (BPM) and
extended to their MaSC estimated fragment length (e.g. --normalizeUsing BPM --
extendReads 140 --binSize 10).  Scores per region were calculated with computeMatrix
using a BED file reference for a ± 1000bp region (--referencePoint center -b 1000 -a 1000 --
skipZeros).  The resulting matrix was k-means clustered and then visualised using
plotHeatmap (--kmeans 6).

Graphs
All graph visualisations were generated using the R package ggplot2 (v3.2.1), with the
viridis (v0.5.1) colour-blind friendly colour scheme.19

Venn diagrams
Venn diagrams were generated using the R package VennDiagram (v1.6.20).

Motif logos
The de novo motifs generated by HOMER were converted to information scaled pdfs using
the python API for the WebLogo package (v3.6.0).20

https://github.com/oxfordinternetinstitute/gephi-plugins/tree/sigmaexporter-plugin
https://github.com/oxfordinternetinstitute/gephi-plugins/tree/sigmaexporter-plugin
https://mcare.link/abctopb
https://software.broadinstitute.org/GENE-E/


Statistical analyses
Gene signature data
A data-set of 17,904 gene signatures was created by merging signatures downloaded from
http://lymphochip.nih.gov/signaturedb/ (SignatureDB),
http://www.broadinstitute.org/gsea/msigdb/index.jsp MSigDB V6.2 (MSigDB C1–C7 and H;
excluding C5. With MIPS signatures from version 3.1 and PID signatures from version 4
added back), http://compbio.dfci.harvard.edu/genesigdb/ Gene Signature Database V4
(GeneSigDB), UniProt keywords (parsed XML from http://www.uniprot.org/downloads), and
fifteen papers.4,21,30–37,22–29  A gene ontology gene set was created using an in-house python
script.  This parses a gene association file (http://geneontology.org/page/download-go-
annotations) to link genes with ontology terms and then uses the ontology structure (.obo
file; http://purl.obolibrary.org/obo/go.obo) to propagate these terms up to the root. The
resultant gene set contained 22,782 terms. The gene-ontology and gene-signatures sets
were merged to give a final signature set of 40,686 terms.

Enrichment analysis
The gene signature enrichment (GSE) was assessed using a hypergeometric test, in which
the draw is the gene list genes, the successes are the signature genes, and the population
is the genes present on the platform.  The resultant p-values are then adjusted for multiple
testing using Benjamini and Hochberg correction.  GSE was carried out in three different
contexts: to assess the biological enrichment of the PGCNA-totalB/PGCNA-memB network
modules, to compare the TF bound genes against the PGCNA-memB network and finally to
compare the G9A_i differentially expressed genes against the PGCNA-memB network.

For the PGCNA network GSE analyses the genes per module were compared against the
40,686-signature database (background: all the genes in that network).  For analysis of TF
bound genes against the PGCNA-memB modules the peaks were assigned to the nearest
TSS ( 10kb), the resultant genes were then compared against the genes per PGCNA-
memB module (background: PGCNA-memB genes).  Finally, for the G9A_i enrichment
assessment the 72 hours differentially expressed genes (FDR < 0.05, FC > 1.2) were
compared against the genes per PGCNA-memB module (background: PGCNA-memB
genes).

Data processing
All analyses were undertaken on MARC1, part of the High Performance Computing and
Leeds Institute for Data Analytics (LIDA) facilities at the University of Leeds, UK

Data and software availability
Interactive networks and all meta-data are available at https://mcare.link/ABCtoPB.
PGCNA python scripts are available at https://github.com/medmaca/PGCNA.  All ChIP-seq
and expression data are available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142494.

http://lymphochip.nih.gov/signaturedb/
http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://compbio.dfci.harvard.edu/genesigdb/
http://www.uniprot.org/downloads
http://geneontology.org/page/download-go-annotations
http://geneontology.org/page/download-go-annotations
http://purl.obolibrary.org/obo/go.obo
https://mcare.link/abctopb
https://github.com/medmaca/PGCNA
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142494
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