
















occurring in the first postnatal month. Sam68 has a predominant
nuclear localization in the cell and is strongly expressed in motor
neurons (Pagliarini et al, 2015). Our work now shows that Sam68
controls alternative splicing of target transcripts encoding for
synaptic proteins in the spinal cord and suggest that dysregulation
of this splicing program underlies the defect in muscle innervation
and motor neuron survival observed in Sam68−/− mice.

Sam68−/− mice are smaller and display reduced body weight
compared with wild-type littermates (Richard et al, 2005; Lukong &
Richard, 2008). In addition, we found that Sam68−/− mice display a
specific reduction in muscle mass because of reduced size of
muscles fibers, whereas their total number was not affected. Notably,
this difference dramatically increased from 4 to 12 wk, after the
occurrence of a substantial loss of the motor neurons in the spinal
cord of Sam68−/− mice. Loss of motor neurons may result from
improper formation of NMJs. In line with this notion, we observed that
ablation of Sam68 affects the NMJs structure, with knockout muscles

displaying a higher number of smaller plates than wild type. Changes
in NMJ abundance and morphology can be associated with muscle
defects. Juvenile rodents have normally a greater NMJ density than
adult animals, occupying ~50% of the surface area and 70% of the
length, width, circumference, and gutter depth compared with adult
muscles (Marques et al, 2000; Ma et al, 2002; Shi et al, 2012; Scurry
et al, 2016). Although Sam68−/− mice display a larger NMJ density per
area than wild-type littermates, the general morphology of NMJs in
Sam68 KO mice displayed a regular pretzel-like structure, excluding
significant defects in muscle growth and indicating the establish-
ment of an atrophic phenotype. Indeed, reduced NMJ size can be also
observed in case of muscle atrophy (Scurry et al, 2016). Moreover,
the induction of muscle atrophy in Sam68−/− mice was supported by
the up-regulation of atrophy-related genes and the reduction in the
number of motor neurons, which can promote muscle atrophy and
functionalmuscle defects. In addition, cytofluorimetric analysis revealed
higher percentage of FAPs in the Sam68−/−muscle, as recently reported

Figure 6. Sam682 /2 muscles display alteration in structural composition.
(A) RT-qPCR analysis showing the levels of MchI, MhcIIa, MhcIIb, and MhcIIx transcripts in tibialis anterior muscle of 30-d-old control or Sam68−/− mice normalized for
the levels of the housekeeping gene CypA (n = 3; means ± SEM); P-value was determined by t test (*P < 0.05). (B) Immunostaining for slow myosin heavy chain (slMHC;
green), laminin (red), and Hoechst (blue) of cross section from 30-d-old mice; scale bar: 50 μM; magnification: 10× and 20×. (C) Quantification of slMHC-positive muscle
fibers in tibialis anterior muscle from 30-d-old mice (n = 3; means ± SEM); P-value was determined by t test (*P < 0.05).
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in mouse models of neurodegeneration-mediated muscle atrophy
(Madaro et al, 2018). These observations support the hypothesis of a
denervation-induced condition and suggest that lack of proper neu-
romuscular connection impairs maturation of the junction and even-
tually leads to motor neuron degeneration. Thus, impairment of the
functional interplay between nerve and muscle can contribute to limit
the force-generating capacity of Sam68−/− muscles.

Discrimination between muscle atrophy versus lack of growth of
muscle fibers is relatively difficult if only the muscle phenotype is
considered. Nevertheless, we addressed this issue by performing

various morphological, morphometric, and molecular analyses.
Based on our data, we suggest that ablation of Sam68 expression
interferes with a series of homeostatic mechanisms, leading to
muscle atrophy. In particular, the denervated phenotype, as indi-
cated by a significant proportion of NMJ/bungarotoxin positive
element that do not colocalize with the pre-synaptic nerve terminal
(synaptophysin), and the reduced number of motor neurons could
trigger muscle atrophy, which is promoted by a significant up-
regulation of the master-regulatory atrophy genes and, in turn,
contributes to the reduced size of Sam68−/− muscle fibers.

Figure 7. Sam68 deficiency affects muscle performance.
(A, B) Maximum force and specific maximum force (F/CSA) (B) measured for extensor digitorum longus (EDL) and soleus in isometric conditions. Individual data points
represent means ± SEM (n = 8); P-value was determined by t test (**P < 0.01, ***P < 0.001). (C) Speed of force production (dF/dT) measured for EDL and soleus. Individual
data points represent means ± SEM; P-value was determined by t test (*P < 0.05). (D)Mechanical power (F*vmax) and specific power measured for EDL and soleus in isotonic
conditions. Individual data points represent means ± SEM (n = 8); two-way ANOVA (*P < 0.05).
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Muscle atrophy associated with motor neuron degeneration is
often paralleled by alteration in fiber-type composition (Frey et al,
2000; Hegedus et al, 2008; Rocchi et al, 2016). Our data document a
strong increase in the expression of type I MHC, a feature of slow-
twitch fibers (Castorena et al, 2011), in Sam68−/− TA and EDLmuscles
and suggest a perturbation in fiber type distribution, which might
affect their mechanical properties. In fact, Sam68−/−muscles exhibit
a delay in the speed of force production, suggesting that altered
Sam68 might confer vulnerability in different muscle groups.
Similar mechanical defects were also described in a wobbler mouse
model, which also displays a shift from MHC type II toward type I
isoforms (Toursel et al, 2000; Agbulut et al, 2004). Furthermore, loss
of force generating capacity, muscle atrophy, and MHC transition
toward a slow-twitch type has also been reported for the SOD1G93A
mouse, a model of amyotrophic lateral sclerosis primary motor
neuropathy (Duchen & Strich, 1968; Toursel et al, 2000; Agbulut et al,
2004). These observations suggest that Sam68−/− mice develop a
muscular phenotype similar to that observed upon denervation-
induced defects in the motor units.

Sam68 is well known for its role in the regulation of alternative
splicing (Frisone et al, 2015). Several studies have identified Sam68
target genes that are involved in synaptic transmission, metabolism,
and apoptosis (Paronetto et al, 2007, 2011; Iijima et al, 2011; La Rosa et al,
2016; Farini et al, 2020), which may underlie the motor neuron defects
observed in our study. Changes in the splicing outcomeof the tomosyn-
2 gene (Stxbp5l) are particularly relevant for the phenotype. Tomosyn-2
regulates acetylcholine (ACh) secretion at the motor endplate and
contributes to overall motor performance (Geerts et al, 2015). Thus, this
protein supports themotor unit and enhances synaptic strength during
sustained activity to avoid synaptic fatigue upon repetitive stimulation.
In this regard, Tomosyn-2−/−mice showed impairedmotor performance
accompanied by synaptic changes at the NMJ, including enhanced
spontaneous acetylcholine release frequency and faster depression of
muscle motor endplate potentials during repetitive stimulation (Geerts
et al, 2015). Sam68 deficiency affects also the alternative splicing of the
AS4 cassette exon in Nrxn1, which is involved in determination of post-
synaptic contact (Südhof, 2017). Neurexins are essential for Ca2+-trig-
gered neurotransmitter release and Nrxn1-3 knockout mouse models
showed impaired neurotransmitter release due to reduction in the
synaptic Ca2+ channel (Missler et al, 2003). These observations suggest
that neurexins organize presynaptic terminals by functionally coupling
Ca2+ channels to the presynaptic machinery (Missler et al, 2003). These
reported findings could partially explain the defects observed in
Sam68−/− NMJs. Moreover, we found that Sam68 regulates the alter-
native splicing of the Gria2 gene in the spinal cord. GRIA2 is a glutamate
receptor subunit that controls theCa2+ permeability. Four genes (Gria1-4)
encode heteromeric receptors with high affinity for AMPA. Their ex-
pression levels, splicing, and mRNA editing lead to differences in Ca2+

permeability and gating between cells (Geiger et al, 1995; Jia et al, 1996).
Mice defective for either Gria2 mRNA expression or its editing exhibit
detrimental phenotypes in synaptic function, development, and be-
havior (Isaac et al, 2007) and disruption of Gria2 function is associated
with neurological disorders such as cerebral ischemia, amyotrophic
lateral sclerosis, pain, and epilepsy (Cull-Candy et al, 2006). Notably,
Sam68−/− mice display an increase in Gria2 intron 11 retention, which
is likely associated with a reduction in the functional receptor (Farini
et al, 2020). In addition, we found that Sam68 is required for the

regulation of a set of alternative splicing events encoding post-
synaptic proteins in the spinal cord, including collybistin (Arhgef9),
gephyrin (Gphn), and densin-180 (Lrrc7). Collectively, the splicing
dysregulation of these synaptic genes could explain the impaired
integrity of NMJs observed in Sam68−/− mice.

The motor neuron environment determines fiber type compo-
sition andmuscle performance. Sam68 alsomodulates the alternative
splicing of the ATP-sensitive K(+)-channels (KATP) SUR2, encoded by
theAbcc9 gene. This intron retention events lead to a shorter transcript
likely targeted to the NMDmachinery. A high expression/activity of the
sarco-KATP channel is observed in fast-twitch muscles, characterized
by elevated muscle strength, whereas a low expression/activity is
observed in the slow-twitch muscles characterized by reduced
strength and frailty (Tricarico et al, 2016). Thus, the observed switch in
fiber composition in Sam68−/− muscles could reflect changes in the
expression/activity of sarco-KATP channels. The sarco-KATP channels
also play a role in the muscle fatigue. Down-regulation of the KATP
subunits of fast-twitch fibers is found in conditions characterized by
weakness, frailty and atrophy (Noma, 1983). Muscle fatigue is the
decline in force production during prolonged and repetitive stimu-
lation and sarco-KATP channels play a role in reducing resting tension
during fatigue (Gong et al, 2000, 2003).

In conclusion, our study highlights an unprecedented link be-
tween Sam68 and the integrity of the motor unit and identifies
Sam68 as a novel regulator of skeletal muscle properties. In spite of
their well-documented impact on several differentiation processes,
few RBPs have been studied in skeletal muscle so far. Thus, elu-
cidating the role played by specific RBPs in the development and
function of skeletal muscles will likely provide insights into the
etiology and pathology of neuromuscular diseases.

Materials and Methods

Mice strain

C57/BL6 Sam68 KO mice were generated by replacing exon 4 and
part of exon 5 with a neomycin-resistant gene cassette as previ-
ously characterized (Richard et al, 2005). Breeding, maintenance,
and animal procedures were conducted as described in the project
authorized by Ministry of Health (protocol number 510/2017-PR), in
accordance with institutional guidelines of the Interdepartmental
Service Centre–Station for Animal Technology, University of Tor
Vergata, and Fondazione Santa Lucia and in accordance with na-
tional and international laws and policies (Directive 2010/63/EU of
the European Parliament and of the Council, Italian Legislative
Decree 26/2014). Male animals at 4 and 12 wk of age were used for
the experiments.

Flow cytometry analysis of FAPs cells

Hind limb muscles from wild-type mice and Sam68−/− mice were
minced and digested in PBS (Sigma-Aldrich) containing 0.1% BSA,
300 μg/ml Collagenase A (Roche), 0.24 U/ml Dispase I (Roche), 2 μg/
ml DNase I (Roche), 50 μM CaCl2, and 1 mM MgCl2 for 60 min at 37°C
under constant agitation. Digested muscle cells were stained with
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primary antibodies (1:50) CD31-eFluor450 (eBioscience), CD45-
eFluor450 (eBioscience), Ter119-eFluor450 (eBioscience), Sca-1-
FITC (BD Pharmingen), and (1:500) α7integrin-APC (AbLab) for 30
min at RT. Cells were finally washed and resuspended in PBS, 0.1%
sodium azide, and 0.2% FBS. Flow cytometry was performed with a
MoFlo High Speed Cell Sorter (Beckman Coulter) and analysis using
FlowJo-10 software. FAP cells were identified as Ter119−/CD45−/
CD31−/α7-integrin-/Sca-1+ cells.

Isolation of total RNA and conventional and quantitative PCR

Total RNA was extracted by using TRIzol reagent (Life Technologies)
according to the manufacturer’s instructions. RNA was subjected to
DNAse digestion (QIAGEN), and the first-strand cDNA was obtained
from 1 μg of RNA using random primers and M-MLV reverse tran-
scriptase (Promega). Synthesized cDNA from total RNA was used for
conventional PCR (GoTaq G2; Promega) and quantitative PCR (SYBR
Green Master Mix for Light-Cycler 480; Roche), according to the
manufacturer’s instructions. Primers used for qPCR and PCR ana-
lyses are listed in Table S1.

For miRNA expression analysis, the TaqManmethod was used. 20
ng of total RNA was reverse-transcribed using TaqMan miRNA
Reverse Transcription Kit (4366596; Applied Biosystems) following
the manufacturer’s instructions. Then 1.5 μl of each miR-specific
cDNA was submitted to PCR amplification by using TaqMan uni-
versal PCR master mix II (4440044; Applied Biosystems). The fol-
lowing TaqMan miRNA assays were used as probes: hsa-miR-23a
(000399) and U6 snRNA (001973). Cyclophilin A, Gapdh, 18S, or U6
snRNA were used as internal controls.

Protein extraction and Western blot analyses

Protein extracts were prepared using radio-immuno-precipitation
assay buffer supplemented with 1 mM dithiothreitol, 10 mM β-
glycerophosphate, 1 mM Na3VO4, 10 mM NaF, and protease inhibitor
cocktail (Sigma-Aldrich). The protein extracts were incubated on ice
for 10 min and then centrifuged for 10 min at 12,000g at 4°C. Protein
quantification was performed by Quick Start Bradford Protein Assay
(Bio-Rad). Cell extracts were diluted in Laemmli buffer and boiled for
5 min at 95°C. Extracted proteins (30–50 μg) were separated on 10%
SDS–PAGE gels and transferred to Hybond-P membranes (GE
Healthcare). Membranes were saturated with 5% non-fat dry milk in
PBS containing 0.1% Tween-20 for 1 h at RT and incubated with the
following antibodies overnight at 4°C: rabbit anti-Sam68 1:1,000,
rabbit anti-MuRF1 1:200, rabbit anti–atrogin-1 1:200, mouse anti-
GAPDH 1:1,000, and mouse anti-β ACTIN 1:1,000 (all from Santa
Cruz). Secondary antimouse or antirabbit IgGs conjugated to
horseradish peroxidase (Amersham) were incubated with the
membranes for 1 h at RT at a 1:10,000 dilution in PBS containing 0.1%
Tween-20. Immunostained bands were detected by a chemilumi-
nescent method (Thermo Fisher Scientific). Densitometric analysis
was obtained by ImageJ software.

Histology and immunohistochemistry

TA muscles from 4- to 12-wk-old wild-type and Sam68−/− mice were
conserved in tissue-freezing medium and snap-frozen in liquid

nitrogen–cooled isopentane. For morphometric analysis, trans-
versal cryostat sections were stained with hematoxylin and eosin
(H&E) according to the standard protocols. Images were obtained
using Axioplan microscope (Carl Zeiss Microimaging, Inc.) and
processed using Axiovision software (V 4.8.2.0). A minimum of two
muscle sections, arbitrarily chosen from the middle region of each
muscle (n = 3 per group), were analyzed with ImageJ software
(v.1.51j8; National Institutes of Health) to quantify the total number
of fibers per muscle section. The CSA of single myofibers was
quantified by analyzing a minimum of six muscle sections, arbi-
trarily chosen from the entire muscle (n = 3 per group). Immu-
nofluorescence analysis were performed on TA muscles from
wild-type and Sam68−/− mice at 4 wk of age. 12-μm-thick cryo-
stat sections were immunostained using Anti-Laminin (L9393; Sigma-
Aldrich), Monoclonal Anti-Myosin Slow (M8421; Sigma-Aldrich), and
appropriate fluorescent secondary antibodies (A-11011; A-11001;
Invitrogen). Hoechst staining was used to visualize nuclei. Three
transversal sections from the middle region of each muscle were
photomicrographed (n = 3 mice/genotype); images were obtained
using Axio Imager A2 microscope (Carl Zeiss Microimaging, Inc.)
and processed by ZEN2 software (Blue edition). The percentage of
slow myosin–positive (SlMHC+) fibers was calculated by [SlMHC+]/
[Total Fibers] per tissue section.

For Sam68 immunofluorescence analyses, frozen sections (6 μm
thick) were immunostained using Anti-Sam68 (SC-333; Santa Cruz)
and Anti-Laminin (ALX-804-190-C100) primary antibodies and ap-
propriate fluorescent secondary antibodies (A-11034; A-11007;
Invitrogen). Nuclei were detected by Hoechst staining.

For NMJ analysis, the TA muscle was dissected and fixed in 4%
PFA at 4°C for 180min. Small bundles of muscle fibers were isolated
under a dissecting microscope and immunostained with mouse
antineurofilament (1:200; SMI-312; BioLegend) and rabbit anti-
synaptophysin (1:200; Thermo Fisher Scientific). Neurofilaments
were visualized with TRITC AP donkey antimouse IgG (1:200; Jackson
ImmunoResearch Laboratories, Inc.), and synaptic vesicles were
visualized with Cy5 AP donkey antirabbit IgG (1:400; Jackson
ImmunoResearch Laboratories, Inc.) secondary antibody. AChRs
were labeled with Alexa Fluor 488–conjugated α-bungarotoxin (10
nM; Molecular Probes). Z-stack images were obtained at sequential
focal planes 3 μm apart using a confocal microscope (Laser
Scanning TCS SP2; Leica). NMJs were analyzed in terms of number
per field and area of the individual endplate using LAS AF Lite
software (Leica). For each genotype, a minimum of 65 optical
sections and 300 endplates were evaluated from randomly selected
visual fields. Blind acquisition and analysis were performed using
coded slides from three animals for each genotype. Representative
images are flattened projections of Z-stack images.

For ChAT and Neurotrace double-staining, mice were anaes-
thetized with Rompun (20 mg/ml, 0.5 ml/kg, i.p.; Bayer) and Zoletil
(100 mg/ml, 0.5 ml/kg; Virbac) and perfused transcardially with 50
ml saline followed by 50ml of 4% paraformaldehyde in PB (0.1 M, pH
7.4). Spinal cords were removed and post-fixed in paraformalde-
hyde at 4°C and then immersed in 30% sucrose solution at 4°C until
sinking. Coronal sections of the lumbar spinal cord (L1–L5) were cut
with a cryostat at 30-μm thickness. The selected sections were
processed with the primary anti-ChAT antibody in PB containing
Triton 0.3% overnight. After three washes in PB, the sections were
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immunostainedusingAnti-ChAT (AB144P;Millipore), NeuroTrace (N21482;
Thermo Fisher Scientific), and appropriate fluorescent secondary anti-
bodies donkey antigoat IgG (A32814; Thermo Fisher Scientific).

Motor neuron count in lumbar spinal cord

Spinal cords were obtained as previously described (see Histology and
immunohistochemistry section). Coronal sections of the lumbar spinal
cord (L1–L5) were cut with a cryostat at 30-μm thickness, and every
seventh section was stained with Nissl substance (n = 3 animal/group;
n = 6 slices/animal). OneNissl-stained section every two andone every
six were used at P8 and P30, respectively. Motoneurons were clearly
recognized for their large size, for their intensely Nissl-stained cyto-
plasm, and for their prominent nucleolus (Guo et al, 2013). An optical
fractionator stereological design (West et al, 1991) was used to obtain
impartial estimates of the total number of motor neurons using the
Stereo Investigator system (Stereo Investigator software, version 4.04;
MicroBrightField). A stack of MAC 5000 controller modules (Ludl
Electronic Products) was configured to interface with amicroscope (BX
50; Olympus) with a motorized stage and a color digital camera (HV-
C20; Hitachi) with a Pentium II PC workstation. A 3D optical dissector
counting probe (x, y, and z dimensions of 30 × 30 × 10 μm, respectively)
was applied to a systematic random sample of motor neurons in the
lumbar spinal cord. The region of interest was outlined using the 10×
objective, whereas the 100× oil immersion objective was used for
marking individual motor neurons. The total cell number was esti-
mated according to the formula:

N = SQ × 1
ssf

× 1
asf

× 1
tsf

where SQ is the number of neurons counted in all optically sampled
fields of the area of interest, ssf is the section sampling fraction, asf is
the area sampling fraction, and tsf is the thickness sampling fraction.

Histological analysis of sciatic nerve

For the histological analysis, 8-μm nerve cryosections were ana-
lyzed. Cryosections and cultured cells were fixed in 100% acetone
for 1 min at RT. Nerve sections were then blocked for 1 h with a
solution containing 4% BSA in PBS. Neurofilament (NF-L) staining
was performed by an antigen retrieval protocol. Primary antibodies
(neurofilament and laminin) immunostaining was performed O/N
at 4°C and then the antibody binding specificity was revealed using
secondary antibodies coupled to Alexa Fluor 488 or 594 (Invitrogen).
Sections were incubated with DAPI in PBS for 5 min for nuclear
staining, washed in PBS, and mounted with mounting medium or
glycerol (3:1 in PBS). The primary antibodies used for immunoflu-
orescences are rabbit anti-laminin (#L9393, 1:400; Sigma-Aldrich)
and mouse anti-neurofilament (#sc-20012, 1:100; Santa Cruz). The
figures reported are representative of all the examined fields.

Laser-capture microdissection

Spinal cords were obtained from P45 male mice, included in OCT
compound (VWR), frozen in powdered dry ice, and stored at −80°C.
10 μm frozen sections cut on a cryostat (Leica CM1850) were

mounted on PET membrane of 1.4-μm frame slides (Leica) previ-
ously cleaned with RNase (Molecular Bio Products) and UV-treated
for 45min under sterile hood. Modified cresyl violet staining for RNA
research (0.5 g cresyl violet into 50ml 100% ethanol) was performed
to visualize the neural structure. The selected area was micro-
dissected with a laser-microdissection system (Leica LMD6) and
recovered in RNAlater reagent (QIAGEN). Total RNA was extracted
from the dissected specimen using an RNAeasy Micro Kit (QIAGEN)
and quantified with Agilent Bioanalyzer 2100 using RNA600 picoKit.
cDNA was reverse-transcribed using SuperScript-IV VILO master
mix with EZ DNase (Invitrogen).

Strength test
EDL and soleus muscles were excised from the animal and kept
immersed in a Krebs–Ringer bicarbonate buffer (K4002; Sigma-
Aldrich) solution added with potassium phosphate (1.2 mM),
magnesium sulfate (0.57 mM), calcium chloride (2.00 mM), and
Hepes (10.0 mM) and gassed with a mixture of 95% O2 and 5% CO2 at
RT. Muscles were mounted vertically in a temperature-controlled
(30°C) chamber. One end of the muscle was linked to a fixed clamp,
whereas the other end was connected to the lever arm of an Aurora
Scientific Instruments 300B actuator/transducer system, using a
nylon thread. The isolated muscle was electrically stimulated by
means of two platinum electrodes, located 2 mm from each side of
the muscle, with 200 mA controlled current pulses. Both muscles
were stimulated with a single pulse to measure the contraction
kinetics, whereas for the other tests, the muscle was stimulated
with pulse trains at tetanic frequency; 180 Hz for EDL and 80 Hz for
soleus, respectively (Del Prete et al, 2008).

Hanging-wire test

Neuromuscular strength was tested by the hanging-wire test. Each
mouse was placed on a wire lid of a conventional housing cage and
the lid was turned upside down. The latency from the beginning of
the test until the mouse stood with at least two limbs on the lid was
timed. The animals had three attempts to stand for a maximum of
180 s per trial, and the longest latency was recorded (Oliván et al,
2015).

Statistical analyses

All data are expressed as the mean ± SEM as indicated in the figure
legends. Two-tailed t test and one-way or two-way ANOVA were
performed using Prism 5 software (GraphPad Software).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900637.
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