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Figure 6. TRAIL-induced increase in translation is linked to apoptotic resistance.

(A) Dot plots showing apoptotic induction (percentage of live, viable cells, in black) in Hela C9 cells with combination therapy of cycloheximide (protein synthesis
inhibitor) and TRAIL (SQ shown in green). (B) Dot plots showing puromycin levels that track single-cell translation rate in viable Hela C9 cells with combination therapy of
cycloheximide and TRAIL. (C) Dot plots showing phosphorylated S6 and NFkB in non-apoptotic Hela C9 cells across combination inhibitor treatments with puromycin
levels in color overlay. (D) Histograms of puromycin levels in non-apoptotic cells across cell lines. (E) Summary schematic of paper showing role of signaling diversity

and translation in resistance to TRAIL-induced apoptosis.

suggesting TRAIL treatment was inducing an increase in translation
through the noncanonical signaling response (Fig 6B and C). We see
that the resistant cells have distinct low and high translating pop-
ulations that correspondingly have low and high signaling markers
across combination therapies suggesting a likely feedback loop be-
tween translation and these key signaling proteins (Figs 6C and S7E).

Furthermore, particularly in cell lines more sensitive to TRAIL (i.e.,
Jurkat and Hela C9), translation rates are much more increased in
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the non-apoptotic cells after TRAIL treatment (Fig 6D). These data
illustrate how translation could be producing protein survival
factors that further increase translation to produce a positive
feedback loop that keeps cells in the noncanonical response and
evading TRAIL-induced apoptosis. Overall, we examine TRAIL re-
sponse in 10 different cell lines and show how TRAIL-induced
signaling diversity and translation correspond to resistance to
TRAIL-induced apoptosis (Fig 6E).
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Discussion

Here, we highlight the role of variation and protein synthesis in the
noncanonical signaling response to TRAIL and how it relates to escape
from TRAIL-induced apoptosis (Fig 6E). We demonstrate that despite
uniform activation across TRAIL-responsive cell lines, the frequency of
cells resistant to apoptosis was highly variable. Moreover, resistant
signaling states are not present before TRAIL treatment and are,
therefore, not selected for. Instead, TRAIL induces different signaling
states across cell lines and the overall change diversity upon treat-
ment correlates with apoptotic resistance at the population level. By
constricting the diversity of achievable TRAIL-induced signaling states
with kinase inhibitors, we could also concomitantly decrease re-
sistance and increase progression to apoptosis. This was directly
associated with de novo protein synthesis in response to TRAIL that we
demonstrated was required for apoptotic escape.

The mechanisms by which cancer cells successfully evade the
action of cell death-inducing therapies ultimately lead to most
cancer fatalities. The traditional understanding of resistance is
where genetic aberrations confer a selective advantage on a subset
of the population is insufficient to explain resistance (Cohen et al,
2008; Lee et al, 2012). Here, we add to the role of nongenetic
mechanisms in driving resistance and the probability of multiple
disparate mechanisms of resistance acting concurrently to confer
resistance (Frank & Rosner, 2012). Integrating information on var-
ious sources of resistance will help us better model resistance to
drugs such as TRAIL which is plagued by unexplainable clinical
inefficacy. To date, resistance to TRAIL therapy is still debated in
part because of the engagement of multiple canonical and non-
canonical signaling pathways downstream of TRAIL. The complex
interplay between these and the resulting heterogeneity in cellular
and patient responses confounds this understanding further.

With this in mind, previous studies have taken clonal, single-cell
approaches to establishing a more systemic resistance mechanism.
For instance, preexisting variation in essential apoptotic proteins in
individual cells due to stochasticity has been previously implicated in
TRAIL resistance (Spencer et al, 2009). This supports the view that
nongenetic resistance to TRAIL is driven by the Darwinian selection of
preexisting cellular features such as protein levels. However, there is a
growing body of literature that characterizes a Lamarckian induction
of cellular features that allow a cell to become resistant upon ex-
posure to the drug (Pisco et al, 2013; Fallahi-Sichani et al, 2017; Shaffer
et al, 2017). Here, we were able to show for the first time that acquired,
nongenetic mechanisms such as induction of survival signaling and
variation in it upon TRAIL exposure allows different cell line models to
variably persist and achieve a stable, TRAIL resistant state. This was
uniquely possible through our utilization of highly multiplexed single-
cell signaling assays to characterize the apoptotic response to TRAIL
using mass cytometry (Bendall et al, 2011).

Variation in signaling is known to confer robustness at the
population level and allow differential responses to the same
stimuli (Schaefer et al, 2014). Therefore, it is logical to consider that
the more diverse the signaling states present in a population, the
more robust it is to environmental stimuli. We see this with in-
creased induction of variation in signaling correlating with in-
creased resistance to TRAIL at the population level. By changing the
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diversity of signaling states of response using kinase inhibitors, we
showed that cells were concomitantly less robust and more sensitive
toward TRAIL. We quantified high-dimensional heterogeneity in sig-
naling states using Shannon diversity index, and we purport that we can
use this index as a combination therapy design tool (Huang et al, 2017).

Given the crucial role of induced variation in TRAIL resistance,
what might underlie and drive this diversity? We show that higher
levels of de novo translation in TRAIL-resistant cells is directly
associated with the variable TRAIL-induced signaling state. Thus,
the requirement of translation for TRAIL resistance combined with
the associated signaling variability implicates translation induced
by TRAIL as a key contributor to the diversity in resistant states. A
potential link between the population-level behavior in fractional
TRAIL killing, and intracellular control of translation could be that
viable population density might be influencing intracellular sig-
naling pathways that promote translation. The relationship be-
tween cell density and drug resistance has been previously
researched in other drugs, where the Hippo-yes-associated protein
1 pathway has been characterized as a molecular link (Pernicova
et al, 2014; Gujral & Kirschner, 2017; von Manstein & Groner, 2017).
Contact inhibition in TRAIL resistance and its link to translation is
yet unexplored and might better inform models of TRAIL resistance.

Apart from translation, epigenetic heterogeneity is also likely
driving differential signaling states. The epigenome controls chro-
matin accessibility to transcription machinery and subsequently in-
fluences protein synthesis and final cell state. The link between the
chromatin accessibility profile and cell state is known, and therefore,
preexisting variation in chromatin state could explain the variation in
TRAIL-induced cell states (Lara-Astiaso et al, 2014). Poised chromatin
states have been shown to lead to drug-tolerant reversible states with
more prolonged exposure permanently altering the epigenome to
allow for more stable resistance (Sharma et al, 2010; Brown et al, 2014).
Single-cell technologies that capture chromatin accessibility profiles
such as single-cell Assay for Transposase-Accessible Chromatin using
sequencing could help explore the influence of epigenomic variability
on the heterogeneity of resistance to cancer drug such as TRAIL
(Buenrostro et al, 2015; Litzenburger et al, 2017). Still, our data indicate
that this state cannot be selected for in the short term, suggesting that
this epigenetically TRAIL-resistant state, if it exists, is part of a con-
tinuum of states whose abundance is cell type specific. Future work
could investigate for common themes in regulatory epigenetic ele-
ments downstream of TRAIL-induced signaling.

Altogether, we applied a single cell, high-dimensional systems
biology approach to study TRAIL resistance which led to us iden-
tifying diversity of signaling states as a new, conserved nongenetic
mechanism of resistance to TRAIL. This nongenetic resistance study
encourages further work to identify and understand its funda-
mental drivers and explore its role in other drugs and cell death
inducing ligands beyond TRAIL.

Materials and Methods

Cell culture

Hela C9, Ntera2, and MDAMB231 cells were cultured in DMEM con-
taining 10% FBS and 1% penicillin/streptomycin (Gibco). NCIH460,
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Jurkats, REH, U937, HEL, and HCC827 cells were cultured in RPMI
containing 10% FBS, 5 mM L-glutamine and 1% penicillin/streptomycin
(Gibco). HCT116 cells were cultured in McCoy's media containing 10%
FBS and 1% penicillin/streptomycin (Gibco). The cells were treated
with TRAIL when they were at 60-70% confluency to exclude density-
dependent effects on resistance to TRAIL-induced apoptosis.

Mass cytometry experiments

The cells were treated with SuperKiller TRAIL (Enzo Life Sciences; 50
ng/ml) for indicated times. In all experiments involving pertur-
bagens, the cells were pretreated either with DMSO or with the
following perturbagens 1h before application of TRAIL: JNK Inhibitor
| (EMD Millipore; 2 uM), Ku-0063794 (Selleck Chemicals; 1 pM),
SB203580 (Cell Signaling Technology; 20 uM), and GDC-0941 (Selleck
Chemicals; 2.5 uM).

The cells were treated with 10 uM 1dU (Sigma-Aldrich) (Behbehani
et al, 2012) and 10 uM puromycin (Kimmey et al, in press) for 30 min
before harvesting. IdU is used to label dividing cells in the S phase as
DNA replication occurs (Behbehani et al, 2012). Puromycin is used as
label to tag nascent peptides in ribosomes for a single-cell translation
rate tracking technique, which quantifies the level of puromycin per
cell using a metal isotope-tagged monoclonal antibody to puromycin
on mass cytometry (Kimmey et al, 2019).

To halt survival and apoptotic signaling, the cells were fixed with
formaldehyde (PFA; Electron Microscopy Sciences) added directly
to growth media at a final concentration of 1.6% for 10 min at room
temperature and washed twice with staining media (PBS with 0.5%
BSA, 0.02% sodium azide) to remove residual PFA. Cells were
permeabilized with methanol for 10 min at 4°C, then optionally
stored at -80°C for later use. The cells were then washed twice in
cell staining media to remove remaining methanol and stained for
intracellular proteins for 30 min at room temperature. Staining
cocktails are listed in Table S1. The cells were washed with CSM and
stained with 1 ml of 2000x Ir DNA intercalator (diluted 1:5,000 in PBS
with 1.6% PFA; DVS Sciences) for 20 min at room temperature or
overnight at 4°C. Before CyTOF analysis, the cells were washed once
with CSM and then twice with ddH,0.

Clonogenic assays

Clonogenic assays were carried out in triplicate. Cells growing in log
phase were plated in six-well plates at the following densities: Hela
cells—2,000 cells/well, HCT116 cells—10,000 cells/well, and
NCIH460—1,000 cells/well under standard cell culture conditions.
TRAIL or DMSO was added to the culture media 24 h after plating at
the concentrations listed above, the plates were incubated in cell
culture incubators for 1 h and TRAIL 50 ng/ml was added, and the
plates were incubated in cell culture incubators for 24 h. The plates
were then washed two times with 37° medium and the medium was
refreshed. The cells were then cultured until each colony contained
at least 50 cells. Colonies were stained with crystal violet and
counted using a light box. For serial passage experiments, HelLa C9
cells were plated out in 25-cm? flasks at 4 x 10° cells and treated in
parallel with clonogenic assays under identical conditions. Cells
from flasks plates were then passaged two times over 10 d, plated
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for clonogenic assays, re-treated with the same conditions, and
analyzed.

TRAIL receptor (DR4) flow cytometry experiments

Endogenous cell lines were grown to 60% confluency and harvested
before fixing with 1.6% PFA for 10 min. Fixed cells were stained with 4
pg/ml of TRAIL receptor 1 primary antibody (Catalog number AF347
from R&D systems) and anti-goat secondary antibody conjugated
to Alexa 488 (ab150129; Abcam) for 30 min each at room temper-
ature. Titration data and unstained and secondary stained controls
are shown in Fig S1.

Mass cytometry analysis data preprocessing

To make all samples maximally comparable, data were acquired
using internal metal isotope bead standards as previously de-
scribed (Finck et al, 2013). Cell events were acquired at ~300 events
per second on a CyTOF (DVS Sciences) using instrument settings
previously described (Finck et al, 2013). Each sample was individually
normalized to the internal bead standards before analysis. To remove
post-apoptotic cells and debris, the cells were gated based on cell
length and DNA content (Bendall et al, 2011). Mass cytometry dot plots,
histograms, and heat maps were created either on www.cytobank.org
or R with signal strength displayed on an arcsinh scale (the inverse
hyperbolic sine) (Chen & Kotecha, 2014).

ViSNE analysis

All VISNE analyses were performed on Cytobank with equal sub-
sampling of 20 K non-apoptotic cells per sample across the time
course with standard settings of 1,000 iterations, perplexity of 30,
and 6 of 0.5 (Amir et al, 2013; Chen & Kotecha, 2014).

Wanderlust analysis

Non-apoptotic HelLa C9 cells after 0-8 h of TRAIL treatment were
equally subsampled to 5 K cells from each sample and concate-
nated into one CSV file before building a linear trajectory based on
the signaling markers using the Wanderlust implementation on
MATLAB (Bendall et al, 2014a). The first derivative of output signaling
changes was visualized along the calculated trajectory. The output
CSV file had an extra column with a wanderlust score between 0 and
1for every non-apoptotic cell from the pooled time course. The cells
were binned according to their wanderlust score and visualized as a
histogram on R.

Signaling diversity calculation

The non-apoptotic cell populations of interest were gated on
Cytobank and exported into R. 10 K cells from each file was sub-
sampled and arcsinh transformed. 14 markers were selected
(shown in Table S1) and the counts were scaled between 0 and 1.
Shannon diversity index was then calculated over the data matrix
using the Euclidean distance metric. The median diversity index per
sample was then correlated to the calculated SQ of each cell line
using Pearson correlation.

https://doi.org/10.26508/1sa.201900554 vol 2 | no 6 | e201900554 13 of 16


http://www.cytobank.org
https://doi.org/10.26508/lsa.201900554

<4< o . o
s2ep» Life Science Alliance

Statistical work and visualizations in R

geplot2 package was used for visualizing data with dot plots and
boxplots. Correlation between markers on arcsinh-transformed
data values was carried out using Spearman correlation with the
DCGA package. Heat maps were made with heatmap.2 function from
the gplots package. Mutual information (DREMI) scores and plots
were created using the scprep stats toolkit (Krishnaswamy and
Spitzer, 2014).

Data availability

All live cell gated data in FCS files are publicly available on
flowrepository.org with the following IDs: FR-FCM-Z276, FR-FCM-
7277, FR-FCM-Z278, FR-FCM-Z279, FR-FCM-Z27A, FR-FCM-Z27B, FR-
FCM-Z27C, FR-FCM-Z27D and FR-FCM-Z27E.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900554.
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