








RNAi reduction of TbPex3 transcript in both PCF and BSF cells
resulted in a largely diffuse immunofluorescence signal for glycosomal
aldolase (Fig 4B, +Tet), indicative of its mislocalization to the cytosol,
which contrasted with the generally punctate appearance of aldolase
in uninduced PCF and BSF cells (Fig 4B, −Tet). Increasing numbers of
aberrant glycosome structures, glycosome fragmentation, and
mislocalization of glycosomal aldolase to the cytosol observed
by immunofluorescence microscopy paralleled the progressive
reduction of the TbPex3 transcript over time (Fig S1), consistent
with a role for TbPex3 in glycosome biogenesis. The compart-
mentalization of glycosomal matrix proteins was also assessed
biochemically by differential digitonin permeabilization of
uninduced and induced cultures of PCF cells (Fig 4C). Digitonin

selectively permeabilizes the plasma membrane, therefore
preferentially liberating cytosolic proteins rather than proteins
enclosed by an organellar membrane to a supernatant fraction
after centrifugation. The cytosolic protein tubulin was released
to the supernatant at the lowest concentrations of digitonin in
both uninduced (−Tet) and induced (+Tet) PCF cells. In contrast,
the glycosomal matrix enzymes aldolase and GAPDH were re-
leased at lower concentrations of digitonin in RNAi-induced PCF
cells (+Tet, 0.02 mg digitonin per mg protein) versus uninduced
cells (−Tet, 0.16 mg digitonin per mg protein).

Glycosomes were also visualized by EM of uninduced and RNAi-
induced PCF and BSF cells (Fig 4D). In electron micrographs, glyco-
somes appear as round, electron-dense organelles of essentially
uniform size that are surrounded by a single unit membrane (Banerjee
et al, 2005; de Souza, 2008). Quantitative analysis of EM images
revealed ~13-fold and 7-fold reductions in the number of glycosomes
per cell volume in RNAi-inducedPCF cells and BSF cells, respectively, in
comparison with their corresponding controls (Fig 4D and Table 1). On
average, glycosomes were larger by 35 or 48% in RNAi-induced BSF
cells andPCF cells, respectively, than in their corresponding uninduced
cells (Table 1), which is indicative of a glycosome assembly defect and
suggestive of a redirection of matrix proteins to existing glycosomes.
Collectively, our data show that Pex3 is essential for the maintenance
of the glycosomal compartment in T. brucei.

We investigated the effect of reducing TbPex3 abundance by
RNAi on the viability of PCF and BSF cells (Fig 4E). Uninduced (−Tet)
and RNAi-induced (+Tet) PCF cells grew similarly for 8 d from the
start of RNAi. Between days 8 and 9, the viability of RNAi-induced
PCF cells fell precipitously, and no viable RNAi-induced PCF cells
were seen 9 d after the start of RNAi. In contrast, uninduced PCF
cells continued their growth unabated. RNAi-induced BSF cells grew
essentially like uninduced BSF cells for 4 d, when again the viability
of RNAi-induced BSF cells fell precipitously so that essentially all
RNAi-induced cells were dead 5 d after the start of RNAi (Fig 4 E).
Again, uninduced BSF cells continued their unabated growth.
Survival of PCF and BSF cells for a number of days after the start of
RNAi treatment could be due to sufficient glycosomal activity being
maintained for a period of time despite reduced numbers of gly-
cosomes, increased glycosome fragmentation, and mislocalization
of glycosomal enzymes to the cytosol, until a tipping point in
glycosome functionality is reached and a precipitous reduction in
cell survival occurs. Our results are consistent with the findings of a
global RNAi analysis in which T. brucei BSF cells knocked down for
the TbPex3 gene did not show a significant loss of fitness after 3 d of
RNAi treatment but did show a significant loss of fitness after 6 d of
treatment (Alsford et al, 2011).

In summary, we have identified the first trypanosomatid Pex3
through the use of the HHpred bioinformatics platform that looks
for similarities in protein secondary structure rather than for
similarities in protein primary structure. Despite its divergence in
primary structure from characterized Pex3 proteins, TbPex3 nev-
ertheless acts like a canonical Pex3 in that it binds Pex19 through
conserved residues, which also mediate the interaction between
Pex3 and Pex19 in other organisms. Like the necessity for Pex3
proteins in peroxisome biogenesis, TbPex3 is necessary for gly-
cosome biogenesis. Reduction in TbPex3 amounts led to reduced
numbers of enlarged glycosomes in both PCF cells and BSF cells

Figure 3. TbPex3 is a glycosomal protein.
(A) TbPex3 is a glycosomal protein. PCF and BSF cells expressing TbPex3 C-
terminally tagged with the HA epitope were fixed with formaldehyde and
processed for immunofluorescence microscopy with mouse anti-HA antibodies
and Alexa Fluor 488 rabbit antimouse IgG (top panels, green) and with rabbit
anti-aldolase antibodies and Alexa Fluor 568 goat antirabbit IgG (middle panels,
red). Merged images are presented in bottom panels. Bar, 2 μm. (B) TbPex3
cofractionates with glycosomal enzymes. Postnuclear lysates of PCF cells
expressing Pex3-HA were fractionated on a discontinuous sucrose gradient.
Equivolume fractions collected from the bottom of the gradient were analyzed by
immunoblotting with antibodies to HA, aldolase, GAPDH, lipoamide
dehydrogenase, and BiP.
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and to the mislocalization of glycosomal matrix enzymes to the
cytosol. Notably, reduction in the amounts of Pex3 led to the death
of all PCF and BSF cells following Pex3-RNAi. This absolute lethality
stands in contrast to the results of other studies in which cell
growth recovered after an initial drop in cell numbers after RNAi
reduction of a trypanosomal Pex gene transcript (Banerjee et al,
2005; Krazy & Michels, 2006; Kalel et al, 2015). We conclude that
TbPex3 is an essential gene in T. brucei.

Materials and Methods

Identification of a candidate TbPex3

Attempts at identifying a candidate trypanosomatid Pex3 by con-
ventional blastp (protein–protein BLAST) analysis of known Pex3
proteins as queries were unsuccessful. HHpred is a rapid interactive
server for protein homology detection and structure detection. We

Figure 4. TbPex3 is essential for glycosome biogenesis and trypanosome viability.
(A) RNAi eliminates the TbPex3 transcript. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) analysis of transcript levels for TbPex3 and
Tubulin (control) from uninduced (−Tet) and RNAi-induced (+Tet) PCF and BSF cells of T. brucei on day 3 of culture. (B) TbPex3-RNAi leads to mislocalization of the
glycosomal matrix enzyme aldolase to the cytosol. Uninduced (−Tet) and RNAi-induced (+Tet) PCF and BSF cells of T. brucei on day 3 of treatment were processed for
immunofluorescence microscopy with rabbit anti-aldolase antibodies and Alexa Fluor 488 goat antirabbit IgG. Bar, 2 μm. (C) TbPex3-RNAi–treated cells release
glycosomal matrix enzymes at lower amounts of the detergent, digitonin, than do uninduced cells. Aliquots of untreated (−Tet) and RNAi-treated (+Tet) T. brucei PCF cells
were incubated with increasing concentrations of digitonin and subjected to centrifugation. Supernatants were analyzed for the presence of aldolase, GAPDH, and tubulin.
(D) Transmission EM of TbPex3-RNAi cells. Uninduced (−Tet) and RNAi-induced (+Tet) PCF cells and PSF cells of T. brucei were visualized on day 3 of treatment. Red
arrowheads point to glycosomes. Bar, 5 μm. Quantification of EM images is presented in Table 1. (E) Pex3 is essential for cell viability of T. brucei. Growth curves of
uninduced (−Tet) and TbPex3-RNAi–induced (+Tet) PCF cells and BSF cells. Error bars present SEM of triplicate readings.

Pex3 is essential for trypanosome viability Banerjee et al. https://doi.org/10.26508/lsa.201900421 vol 2 | no 4 | e201900421 6 of 9

https://doi.org/10.26508/lsa.201900421


used HHpred (https://toolkit.tuebingen.mpg.de/#/tools/hhpred)
to query the T. brucei gambiense genome with human and yeast S.
cerevisiae Pex3 proteins. Both queries identified the T. brucei
gambiense protein XP_011780297.1 of unknown function encoded by
the Tbg972.11.11520 gene as a potential trypanosomatid Pex3 ho-
mologue with greater than 95% probability. Subsequent experi-
mentation demonstrated the homologous protein XP_829090.1 of T.
brucei brucei encoded by the Tb927.11.10260 gene to be the Pex3
protein of T. brucei.

Trypanosome cell culture and transgenic lines

PCF cells of T. brucei Lister 427 29-13 (TetR T7RNAP), which co-
express the tetracycline (Tet) repressor and T7 RNA polymerase,
were maintained in SDM-79 medium (Invitrogen) containing 10%
fetal bovine serum, 50 μg hygromycin ml−1 and 2.5 μg G-418 ml−1, at
25°C with 5% CO2 in a water-saturated incubator. Transgenic lines
were generated by the limiting dilution method (Krazy & Michels,
2006) and selection with 2.5 μg phleomycin ml−1. For RNAi studies,
PCF cells were grown in glucose-free medium (Wickstead et al,
2002).

BSF cells of T. brucei Lister 427 VSG 221 (TetR T7RNAP) were
maintained in HMI-9 medium containing 10% fetal bovine serum,
10% Serum Plus (Sigma-Aldrich), and 2.5 μg G-418 ml−1. The cultures
were maintained at 37°C with 5% CO2 in a water-saturated in-
cubator. Transgenic lines were obtained by the limiting dilution
method and selection using 2.5 μg phleomycin ml−1.

Yeast two-hybrid analysis

PCR products encoding full-length TbPex3 and mutants TbPex3-
L89A, TbPex3-K98A, TbPex3-F102A, TbPex3-L105A, and TbPex3-Y118A
and PCR products encoding amino acids 51–441 of wild-type S.
cerevisiae (Sc) Pex3 and mutants ScPex3-L100A, ScPex3-K124A,
ScPex3-W128A, ScPex3-L131A, and ScPex3-Y144A were cloned in-
frame and downstream of the DNA-binding domain (BD) of the
GAL4 transcriptional activator in pGBT9 (Clontech). Full-length
TbPex3, TbPex19, and ScPex19 were cloned in-frame and down-
stream of the activation domain (AD) of the GAL4 transcriptional
activator in pGAD424 (Clontech). Plasmids were transformed into
S. cerevisiae strain HF7c, and transformed cells were grown on
synthetic dropout medium agar lacking leucine and tryptophan
(−Leu −Trp) to determine total cell growth and on synthetic
dropout medium agar lacking histidine, leucine, and tryptophan

(−His −Leu −Trp) to determine the growth of cells exhibiting
protein–protein interaction between the AD-fusion and BD-fusion
constructs.

Assay for protein binding

Binding between TbPex3 and TbPex19 was examined essentially as
described (Knoblach et al, 2013). GST fusion to TbPex19 was con-
structed in pGEX4T-1 (GE Healthcare). MBP fusions to TbPex3 and to
mutants TbPex3-F102A and TbPex3-L105A were constructed in
pMAL-c2 (New England Biolabs). Recombinant proteins were
expressed in the Escherichia coli strain BL21 (Invitrogen). GST alone
or GST-TbPex19 was immobilized on glutathione-sepharose beads
and incubated with E. coli lysates containing MBP-TbPex3 or MBP-
TbPex3-F102A or MBP-TbPex3-L105A in binding buffer (20 mM
Tris–HCl, pH 7.5, 100 mM KCl, 5 mM MgCl2, and 0.5% (vol/vol) Triton
X-100). Unbound proteins were removed by washing five times in
binding buffer. Immobilized proteins were eluted in sample buffer
(50 mM Tris–HCl, pH 6.8, 2% SDS, 5% [vol/vol] glycerol, 0.002%
bromophenol blue, 100 mM 2-mercaptoethanol) and subjected to
SDS–PAGE and immunoblotting.

Cloning of the TbPex3 gene

The TbPex3 gene (Tb927.11.10260) was amplified from genomic
DNA using primers 5ʹ-CCCAAGCTTATGTGTGACGAGTTCTTTGGAG and
5ʹ-CGACTAGTTAAATCGCGGCATGTAACTCTAA. To tag TbPex3 with three
copies of the HA tag at its C terminus, genomic DNA was amplified
using primers 5ʹ-CCCAAGCTTATGTGTGACGAGTTCTTTGGAG and
5ʹ-GCGGGATCCTTAGGCGGCCGGAGCGTAATCTGGAACGTCATATGGAT-
AGGATCCTGCATAGTCCGGGACGTCATACGGATAGCCCGCATAGTCAGG-
AACATCGTATGGGTAAACGGCCGCTAAATCGCGGCATGTAACTCTAA, and the
resultant product cloned into vector pDEX577-C (Kelly et al, 2007) for
expression.

Immunofluorescence microscopy

PCF and BSF cells were harvested by centrifugation, washed in PBS,
pH 7.4, and spread onto coverslips coated with poly-L-lysine. The
cells were fixed in PBS containing 4% paraformaldehyde for 10 min
and permeabilized/blocked using 50 mM Tris–HCl, pH 7.5, 0.25%
Triton X-100, and 2% FBS for 30min. The cells were washed with PBS,
incubated with primary antibody in PBS containing 2% FBS for 2 h,
washed with PBS, and incubated with fluorescent secondary an-
tibody (Alexa Fluor 488 rabbit antimouse IgG, Alexa Fluor 488 goat
antirabbit IgG, or Alexa Fluor 568 goat antirabbit IgG) for 1 h. The
cells were washed in PBS and mounted in 50% glycerol/n-propyl
gallate. Images were acquired with an LSM710 confocal fluores-
cence microscope (Carl Zeiss) equipped with an oil immersion
objective and ZEN 2009 acquisition software (Carl Zeiss).

Acquired fluorescence images were deconvolved using algo-
rithms provided by Huygens Professional Software (Scientific
Volume Imaging BV). 3D data sets were processed to remove noise
and re-assign blur through an iterative Classic Maximum Likelihood
Estimation algorithm and an experimentally derived point spread

Table 1. Glycosome number and average area in uninduced cells and
TbPex3-RNAi–induced cells.

Form (number of cells
analyzed)

Glycosome number/
cell volume (μm3)

Glycosome average
area ± SEM (μm2)

PCF uninduced (n = 99) 0.078 0.46 ± 0.15

PCF induced (n = 99) 0.006 0.68 ± 0.36

BSF uninduced (n = 103) 0.078 0.78 ± 0.26

BSF induced (n = 103) 0.011 1.05 ± 0.31
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function. The transmission image was treated differently. A
Gaussian filter and blue color were applied to the transmission
image using Imaris software (v.7.7.2) (Bitplane). The level of the
transmission image was modified, and the image was processed
until only the circumference of the cell was visible. Internal
structures were removed in Adobe Photoshop to prevent in-
terference by internal structures captured in the transmission
images. Imaris software was then used to display the deconvolved
data set with the processed transmission image and to prepare the
image files before final figure assembly in Adobe Photoshop and
Adobe Illustrator.

Subcellular fractionation and immunoblot analysis

PCF cells were pelleted by centrifugation and washed once with
PBS, pH 7.4, and once with homogenization buffer (25 mM Tris–HCl,
pH 8.0, 250 mM sucrose, 1 mM EDTA, 1 mM DTT, and 1× complete
protease inhibitors [Roche]). Washed cells were disrupted in ho-
mogenization buffer containing silicon carbide (400 mesh; Sigma-
Aldrich) and subjected to centrifugation at 1,000g for 10 min at 4°C
to remove cell debris and unbroken cells. The postnuclear su-
pernatant was loaded onto a 30-ml discontinuous sucrose gradient
consisting of 25, 50, and 60% sucrose steps and a 70% sucrose
cushion (all sucrose solutions, wt/vol) and subjected to centrifu-
gation at 216,000g for 90 min in a VTi50 rotor (Beckman) at 4°C.
Equivolume fractions were collected, and proteins were pre-
cipitated by addition of trichloroacetic acid.

Immunoblot analysis was performed using standard protocols.
Immunoreactive proteins were visualized with the SuperSignal
West Femto Maximum Sensitivity Substrate chemiluminescence
detection system (Thermo Fisher Scientific).

RNAi and semiquantitative reverse transcription polymerase
chain reaction (RT-PCR)

An RNAi stem-loop construct for the TbPex3 gene was made by PCR
amplification using primers 5ʹ-GCGGGATCCGACCGGAGCATCATTGCCG
and 59-GGAATTCTGTAGGCACN50GAGTGTCTGCAACATGAAATTC. The PCR
product, which has a randomized 3ʹ end containing an EcoRI site, was
digested with EcoRI and ligated to form a stem-loop region. The
ligated product was purified, digested with BamHI, and inserted into
vector p2T7-177 (Wickstead et al, 2002) at the BamHI site.

RNAi was induced in PCF cells by addition of tetracycline to
2 μg⋅ml−1 final concentration in glucose-free medium essentially as
described (Wickstead et al, 2002). After 2 d, glucose was added to
10 mM, and culturing continued until day 14. Parasites were diluted
every 24 h, and fresh tetracycline and glucose were added to in-
duced cultures.

RNAi was induced in BSF cells by addition of tetracycline to
2 μg⋅ml−1 final concentration in HMI-9 medium containing 10% FBS,
10% serum plus, 2.5 μg G-418 ml−1, and 2.5 μg phleomycin ml−1

essentially as described (Wickstead et al, 2002). The growth of
uninduced and RNAi-induced cultures was monitored for 9 d.

Total RNA was isolated from uninduced and induced PCF cells or
BSF cells using Trizol reagent (Invitrogen) and then treated with
DNase I. cDNA was made using reverse transcriptase and amplified
by PCR using primers 5ʹ-GGAATTCATGTGTGACGAGTTCTTTGGAG and

5ʹ-GCGGGATCCTTATAAATCGCGGCATGTAACTC (Fig 4A) or primers 5ʹ-
GGAAAAGGGCCCGCAAAGCGAAGATCGGTTGGGGGCTGCTTCTCTA and
5ʹ-GCAACGGTAG (Figs S1 and 1A) for the TbPex3 gene or primers 5ʹ-
CACCTCGAGATGCGTGAGGCTATCTGCATC and 5ʹ-CACAAGCTTTGGA-
TACACCGTGTAGCCGAG for the gene for α-Tubulin (Tb927.1.2380).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900421.
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