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Building de novo genome assemblies for complex genomes is
possible thanks to long-read DNA sequencing technologies.
However, maximizing the quality of assemblies based on long
reads is a challenging task that requires the development of
specialized data analysis techniques. We present new algorithms
for assembling long DNA sequencing reads from haploid and
diploid organisms. The assembly algorithm builds an undirected
graph with two vertices for each read based on minimizers se-
lected by a hash function derived from the k-mer distribution.
Statistics collected during the graph construction are used as
features to build layout paths by selecting edges, ranked by a
likelihood function. For diploid samples, we integrated a reim-
plementation of the ReFHap algorithm to perform molecular
phasing. We ran the implemented algorithms on PacBio HiFi and
Nanopore sequencing data taken from haploid and diploid
samples of different species. Our algorithms showed competitive
accuracy and computational efficiency, compared with other
currently used software. We expect that this new development
will be useful for researchers building genome assemblies for
different species.
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Introduction

Contiguous and accurate assembly of complex eukaryotic genomes
is one of the most challenging tasks in current biotechnology and
bioinformatics (Baker, 2012; Nurk et al, 2022). Bioinformatic tools for
genome assembly are used to sort and orient partial reads pro-
duced by various sequencing technologies. Partial genome as-
semblies, includingmost gene-rich regions, have been generated in
the last decade. However, contiguous and high-quality assemblies
are required to integrate synteny information in genome-scale

comparative genomics and pangenomics, to study evolution and
dynamics of mobile elements, for population genomic analysis,
such as genome-wide association studies, and for the discovery of
genomic footprints of selection (Amiri et al, 2018; Xu et al, 2020).
High-quality assemblies are also useful to understand the genome
evolution of species (Hu et al, 2021), to identify structural variations
(Ouzhuluobu et al, 2020), and to define the gene repertoire in-
cluding targets for resistance in plants and animals, and virulence
factors and effectors in pathogens (Bhadauria et al, 2019). This
complete gene catalog is key for identifying interesting genomic
target regions for plant and animal breeding (Low et al, 2020; Song
et al, 2021), and for personalized medicine. Large assembly efforts,
such as that performed by the Vertebrate Genomes Project,
highlight the importance of building high-quality genome as-
semblies (Rhie et al, 2021) to preserve genetic information of life.
Moreover, genome assemblies have been useful in pathogen
surveillance for public health (Taylor et al, 2019).

The production of sequencing data has grown exponentially in
the last years, and genome assembly has become a routine task;
however, most of the currently available genomes have been se-
quenced using high-quality short-read technologies such as Illu-
mina. Currently, long-read technologies, such as PacBio and
Nanopore, have improved the quality of data and allowed a better
de novo assembly of genomes, haplotype phasing, and structural
variant identification (Hon et al, 2020). Nanopore sequencing
technologies offer the advantage of producing the longest read
lengths (Mbp range), the more common lengths being 10–30 Kb, as
these are limited by the quality and size of the DNA delivered to the
sequencing pore (Amarasinghe et al, 2020). Furthermore, some of
the Nanopore sequencers can be portable and generate data in
real time, proving useful for field research and diagnostics (Xu &
Seki, 2019). In contrast, following the continuous long read (CLR)
protocol, PacBio single-molecule real-time sequencing delivers
reads of 30 Kb on average, but it has a low coverage bias across
different values of G + C content, and allows for the direct detection
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of DNA base modifications (Nakano et al, 2017). One important
difficulty in the analysis of both Nanopore and PacBio CLR data was
that the reads produced by both technologies initially had an
average error rate of ~15%. Both platforms have made further ef-
forts to reduce this error rate. One important step forward in the
case of PacBio was the development of a new protocol, called
circular consensus sequencing, to generate high-fidelity reads with
an average error rate of ~0.5% (Wenger et al, 2019). This enabled
the assembly of complete chromosomes, even for diploid or
polyploid organisms. Despite the high assembly contiguity
achieved with long reads, other strategies can be used to improve
assemblies, such as Hi-C (Zhou et al, 2019; Kronenberg et al, 2021;
Cheng et al, 2022), parental information (Koren et al, 2018), and
Strand-seq (Hills et al, 2021). An important achievement in ge-
nome assembly, which combines these technologies, is the recent
telomere-to-telomere assembly of the diploid HG002 human indi-
vidual (Jarvis et al, 2022).

Most of the commonly used tools to assemble long-read
datasets implement the overlap–layout–consensus (OLC) algo-
rithm. These were developed to assemble reads with high error
rates, such as the Nanopore and PacBio CLR reads. Canu (Koren
et al, 2017) uses a MinHash overlapping strategy (Berlin et al, 2015)
with a tf-idf weighting to identify overlaps. Then, a linear graph is
constructed using a greedy best-overlap algorithm. WTDBG (Ruan &
Li, 2019) implements minimizers for efficient identification of
overlaps. Flye (Kolmogorov et al, 2019) implements an algorithm to
resolve repeats from a possibly inaccurate initial assembly. FALCON
(Chin et al, 2016) implements a simple haplotype phasing algorithm
to perform read clustering and to generate phased assemblies.
After the emergence of PacBio HiFi reads, new algorithms have
been developed to perform error correction. These algorithms aim
for perfect reads in which single-nucleotide differences can be
used to resolve differences between repetitive elements (Nurk et al,
2020; Cheng et al, 2021). HiCanu is an improvement of Canu that
implements homopolymer compression to align and correct reads
having base counts on homopolymer tracts as main source of error
(Nurk et al, 2020). Hifiasm integrates haplotype phasing to perform
haplotype-aware error correction (Cheng et al, 2021). Error cor-
rection of long reads, especially Nanopore reads, remains an
important step during genome assembly and is usually a
computationally expensive process. NECAT was developed as an
error corrector and de novo assembler for Nanopore reads (Chen
et al, 2021). In NECAT, error correction is based on a two-step
progressive method by which low-error-rate subsequences of
reads are corrected first, and then, they are used to correct high-
error-rate subsequences.

In this work, we introduce a new software implementation for
genome assembly from long-read sequencing data. It includes new
algorithmic approaches to build OLC assembly graphs and to
identify layout paths. Benchmark experiments on PacBio HiFi and
Nanopore data from organisms of different species including
Escherichia coli, yeast, Drosophila melanogaster, rice, maize, and
humans show that our algorithms are competitive and, in some
cases, more accurate, compared with previous solutions. These
algorithms are implemented as part of the Next Generation Se-
quencing Experience Platform (NGSEP) (Tello et al, 2019), allowing
tight integration with genome comparison and detection of genomic

variants within a single easy-to-use tool for analysis of both short-
and long-read DNA sequencing data.

Results

k-Mer count–based hashing for efficient and accurate
construction of assembly graphs

We implemented a new hashing scheme for minimizers to effi-
ciently identify overlaps and build OLC graphs. Fig 1 shows the
implemented algorithm to build an overlap graph and a layout. The
graph construction is similar to that of the best-overlap graph
(Miller et al, 2008), having two vertices for each read representing
the start (59-end) and the end (39-end) of the read. In this repre-
sentation, the graph does not need to be a multigraph. Let Xs and Xe

be the two vertices generated from each read X. If the end of read A
has an overlap with the start of read B, this overlap is represented
with the edge {Ae,Bs}. Conversely, if the end of read A has an overlap
with the start of the reverse complement of B, this overlap will be
represented by the edge {Ae,Be}. In our representation, the graph is
completely undirected to take into account that reads are se-
quenced from the two strands of the initial template with equal
probability, and hence, there is no a priori information on which
one should be considered the positive strand.

Similar to the graph construction implemented in WTDBG (Ruan
& Li, 2019), we built a minimizer table from the reads, to identify
overlaps in linear time relative to the total number of sequenced
base pairs. However, we implemented a different procedure to
calculate hash codes that changes the priority to select k-mers as
minimizers. Before calculating minimizers, we first build a 15-mer
spectrum table, calculating the count distribution across the reads.
Analyzing this distribution, the algorithm infers the mode that
corresponds to the average read depth and estimates the assembly
size. To achieve an efficient calculation of the k-mer distribution,
the spectrum table is built with a fixed k-mer length of 15 (instead of
the input k-mer length used later), because that is the maximum
length to create the table as a fixed array of length 230 in which the
index of the array corresponds to a unique encoding of each
possible DNA k-mer. The data type of this array is a two-byte integer
to store a count per k-mer up to 215, which is enough for real whole-
genome sequencing datasets. This implementation ensures a fixed
memory usage of 231 bytes (about 2 gigabytes), regardless of the
input size and genome complexity. The 15-mer spectrum allows not
only to approximate the assembly length and average read depth,
but also to calculate the hash value of read k-mers.

To identify overlaps, k-mers of a user-defined length (up to 31)
are calculated for each read. Each k-mer is uniquely encoded as a
62-bit number b, and the count x of the 15-mer suffix on the 15-mer
spectrum is calculated. A rank r(x) is calculated from the count, as
two times the distance from themode corresponding to the haploid
number. The hash value h(b) is calculated as the number of k-mers
with rankings smaller than r(x) plus the module of the division
between b and the smallest prime number larger than x. This last
term is a simple scheme to simulate randomness for k-mers within
the same rank. This hashing scheme allows the prioritization of real
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k-mers that are likely to come from single-copy regions of the
haploid genome during the calculation of minimizers. At the same
time, k-mers from repetitive regions have larger hash codes, which
reduces their priority to become minimizers but does not discard
them completely.

We implemented a simulated alignment of each candidate
overlap to calculate different measures associated with each edge
in the overlap graph, avoiding a complete pairwise alignment
between candidate pairs at this stage of the process. First, matching
k-mers (minimizers) between a subject (longer) read and a query
(shorter) read are clustered based on consistency of the prediction
of overlap start that can be inferred from the relative location of the
k-mer in the subject sequence. Assuming that insertion and de-
letion errors have a similar probability of occurrence (mainly within
homopolymer runs), the inferred starting point for k-mers corre-
sponding to a real overlap should be consistent (have a low var-
iance). Conversely, inferred starting points for matching k-mers
supporting false-positive overlaps because of repetitive structures
(up to a certain length) should have a larger variance. We imple-
mented a clustering procedure similar to k-means to group k-mer
hits that are likely to support the same alignment, using the
inferred starting points as centroids. The average number of k-mer
hits for each k-mer is used to infer the number of different clusters
that can be expected. Up to two clusters with the largest k-mer
count are retained as long as they support two of the four possible

alignment configurations (start–start, start–end, end–start, and
end–end). Because an overlap length can also be inferred from
each matching k-mer, the overlap for a cluster of matching k-mers
is inferred as the average of the inferences performed from each
matching k-mer.

Layout construction as an edge selection problem

The statistics collected during the simulated alignment step are
used during the layout stage to select edges that will be part of the
assembly paths. For each edge, derived from a k-mer cluster,
relevant statistics include the predicted overlap, the number of
shared k-mers building the overlap, the number of base pairs from
the subject sequence covered by the shared k-mers (CSK), and the
first and the last position of both the subject and the query se-
quences having k-mers supporting the possible overlap. The layout
algorithm ranks and selects edges based on the knowledge that can
be inferred from the distribution of the different statistics. Although
in a real experiment true layout edges are unknown, we first identify
edges that are reciprocal best for their corresponding vertices, in
terms of both overlap length and CSK, and that connect vertices
with a total degree less than three standard deviations from the
average. These edges are termed “safe,” and it is assumed that they
will be part of the layout. Because they are reciprocal best, these
edges will generate an initial series of paths within the graph.

Figure 1. Overview of the graph construction algorithm implemented in NGSEP for de novo assembly of long reads.
(A) Fixed array to calculate counts of 15-mers. (B) Distribution of k-mer frequencies is used to rank edges based on their distance from the peak corresponding to single-
copy regions. (C) Hash value is calculated from the rank to select minimizers and identify overlaps. Dynamic programming is used to cluster k-mer hits.
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Moreover, it is assumed that the distribution of overlap length and
CSK calculated from these edges would be a good representation of
the distributions calculated from all true layout edges. The cost of
each remaining edge is calculated as a likelihood of the edge
features given the distributions inferred from the safe edges. Whereas
a normal distribution is fitted for the overlap and the CSK, a beta
distribution is fitted for the proportion of overlap calculated from the
first and the last overlap positions supported by k-mers. Likelihoods
are calculated as P-values of the edge features. Log likelihoods of
the features are added to calculate the total edge likelihood and
sort edges based on this feature. Edges are then traversed in a
descending order to augment the paths initially derived from safe
edges. An edge is selected if it does not include an internal path
vertex and if it does not create a cycle. Fig 2 shows a schematic
diagram of this procedure.

Once paths are constructed, an initial consensus is built con-
catenating layout vertices. On each step, the next read is aligned to
the consensus end to recalculate the true overlap and the con-
sensus is augmented with the substring corresponding to the
overhang of the alignment. At the same time, embedded reads are
recovered and mapped to the consensus contigs. In order to im-
prove the per base quality of the assembly, once all input reads are
mapped to the assembly, the following polishing algorithm is ex-
ecuted on the aligned long reads: first, pileups are calculated for
each position to identify the base with the largest count and update
the consensus if needed. Then, similar to the process to call var-
iants, a second step calculates “active regions” across the align-
ment, which are defined as contiguous regions in which each base
pair is at most 5 bp away from an indel call. Once active regions are
calculated, a de Bruijn graph is built from the read segments
spanning the active region and a mini-assembly is executed to
calculate the corrected segment.

Benchmark with PacBio HiFi data

To test the performance of NGSEP with PacBio HiFi data, we as-
sembled genomes from publicly available HiFi reads of the indica
rice variety Minghui63 (15- and 20-kbp reads), the B73 maize inbred
line, and the human haploid cell line CHM13 using NGSEP and three
commonly used tools (Canu, Flye, and Hifiasm). Fig 3 shows the
results of these benchmark experiments. The contiguity of each
assembly, measured as the Nx curve, is contrasted with the number
of misassemblies against a curated reference genome, as mea-
sured by Quast (Gurevich et al, 2013). The complete statistics are
available in Table S1.

Regarding the rice data, the assemblies generated by Hifiasm
and NGSEP have the highest N50 values for the 15- and 20-kbp
datasets, respectively. In both cases, at least 95% of the genome
(395 Mbp) was assembled in less than 20 contigs. Canu ranks third,
close to NGSEP for the 15-kbp dataset and close to Hifiasm for the
20-kbp data. Flye shows the lowest contiguity in all datasets (Fig 3A).
N50 and NG50 values were identical for all rice assemblies with the
exception of the Canu assembly for the 15-kbp dataset and the
Hifiasm assemblies (Fig S1). The reason behind the observed dif-
ferences is that these assemblies have a total length between 20
Mbp and 50 Mbp greater than the length of the reference (Table S1).

Conversely, for the maize and the CHM13 datasets, the assem-
blies generated by NGSEP have a lower contiguity compared with
those generated by Hifiasm and Canu; however, they have better
contiguity compared with the assemblies generated using Flye (Fig
3A). For the maize dataset, all the tools assembled the genome in
more than 500 contigs with a minimum length of 50 kbp. In these
assemblies, the N50 value ranged from 6.1 Mbp (Flye) to 37.5 Mbp
(Hifiasm). The lower contiguity of the NGSEP and Flye assemblies,
compared with those of Canu and Hifiasm is probably caused by a
lower average read length (12 kbp), lower read depth (23×), and
higher genome complexity, compared with the rice datasets. The
same ranking was observed in the human cell line, which was
sequenced at a mean read length of 15 kbp and read depth of 33×.
The higher read depth yielded an improvement of at least 20 Mbp in
N50 values for all assemblers. In this case, the N50 value ranged
from 29.1 Mbp (Flye) to 86.8 Mbp (Hifiasm). In both samples (maize
and CHM13), the NG50 values of the Canu assemblies were longer
than the N50, again because of the difference between assembly
length and the reference genome length. Conversely, the NG50 is
between 1 Mbp and 4 Mbp smaller for the CHM13 assemblies
generated by NGSEP, Flye, and Hifiasm.

Fig 3B shows the number of misassembly errors identified by
Quast, using a curated reference genome for comparison. Errors
are classified as long-range misassemblies (m1) and local mis-
assemblies (m2). The proportion of m1 errors, relative to the total,
ranged from 0.15 (NGSEP, rice 15-kbp sample) to 0.79 (Hifiasm, rice
20-kbp sample). The number of m1 errors grew with the genome
length for the assemblies generated by NGSEP and Flye. The
number of m1 errors for the CHM13 assemblies of Canu and
Hifiasm was lower than that of assemblies of plant samples
generated by these tools. For the plant samples, the assemblies
generated by Flye, NGSEP, and Canu reported similar numbers of
total errors and each tool ranked first in one sample. Whereas
Hifiasm plant assemblies ranked last, having between 1.38 and 2.2
times more misassemblies, the Hifiasm assembly of the CHM13
sample has the lowest number of errors. NGSEP ranked last for
CHM13.

We also calculatedmeasures of NA50 and NGA50, which estimate
contiguity after structural inaccuracies are removed (Fig S1).
Comparing NA50 and NGA50 values, we observed the same patterns
described in the comparison of N50 and NG50 values. Contrasting
NGA50 values with NG50 values, the NGSEP assemblies had the
largest percentage of reduction for the rice samples (32%) and for
CHM13 (20%; Table S1). In contrast, the Canu assemblies of the rice
20-kbp sample and the CHM13 preserved the same NG50 value as
NGA50, regardless of the detected misassemblies. The Hifiasm
assembly of the maize sample had the largest percentage of re-
duction (42%), followed by the Canu assembly (27%). The high
number of errors observed in the Hifiasm assemblies of the rice
samples translated into a reduction of 6 and 21% for the 15- and 20-
kbp datasets, respectively. These numbers were lower than those of
NGSEP and Flye, which suggests that the errors identified in the
Hifiasm assemblies are located in small contigs, whereas errors in
the other assemblies are more spread out across different contig
lengths. Based on this measure, Canu ranked first in the rice 20-kbp
sample, whereas Hifiasm ranked first in the other samples. NGSEP
ranked third, and Flye ranked last in all samples.
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Regarding base pair–level quality, the number of mismatches
and indel errors per 100 kbp was small in absolute numbers (less
than 15 total errors per 100 kbp), which is a consequence of low
base pair error rate of HiFi reads (Fig S2). The Flye assemblies
consistently had the lowest total number of these errors, and in
particular, they had up to three indel errors per 100 kbp. The
greatest number of errors was observed in the CHM13 assemblies of
NGSEP, Canu, and Hifiasm; in the Canu assembly of the rice 15-kbp
dataset; and in the NGSEP assembly of maize. The number of
mismatches in NGSEP assemblies seems to be correlated with the
read depth of the samples.

Regarding computational efficiency, Fig 3C shows a comparison
of the runtimes (having available 32 threads) required by each tool
to assemble each of the datasets. Hifiasm and Canu are consis-
tently the fastest and the slowest tools, respectively. NGSEP re-
quires a lower runtime than Flye in all datasets except for the rice
15-kbp dataset, where Flye finishes 24 min faster than NGSEP. In
absolute numbers, NGSEP is able to assemble the rice datasets in
less than 4 h, the maize dataset in less than 8 h, and the CHM13
dataset in less than 18 h.

Combining the evaluation of accuracy and efficiency, NGSEP has
better computational efficiency than Flye and Canu, and the as-
semblies have better contiguity than those of Flye and fewer

misassemblies than some of those assembled using Canu and
Hifiasm.

Assembly and haplotyping of diploid samples

We integrated our previous implementation of the ReFHap and the
DGS algorithms to perform single-individual haplotyping of diploid
heterozygous samples (Duitama et al, 2012). Unlike the previous
implementation, which received a non-standard file with base calls
for each heterozygous site, the two algorithms can now be executed
from the VCF file with individual genotype calls and a BAM file with
long reads aligned to the reference genome and sorted by refer-
ence coordinates. Moreover, we integrated the ReFHap algorithm
within the assembly process of diploid samples to obtain phased
genome assemblies from HiFi reads. ReFHap is executed inde-
pendently on reads aligned to an initial assembly, which is gen-
erated using the methods described above for haploid samples.
The goal of this phase is to identify and break edges in the assembly
graph connecting reads sequenced from different haplotypes.
Large deletions and regions of homozygosity larger than the read
length usually break each contig into haplotype blocks (Cheng et al,
2021). Read depth within each block and between block boundaries
is calculated to break the contig in contiguous regions classified as

Figure 2. Layout algorithm.
(A) Safe edges (blue) are selected as reciprocal best in both overlap and coverage of shared k-mers. The red edge represents a false positive. Bold solid black edges
connect vertices of the same read. Bold dashed edges are true layout edges that are not reciprocal best. Other dashed lines represent true non-layout
edges. (B) Distributions of overlap, coverage of shared k-mers, and proportion of evidence for safe edges of the rice 20-kbp PacBio HiFi data (details in the
next section). (C) Log likelihoods are calculated for each edge based on the distributions; layout edges not selected in the first step are selected based on their ranking.
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true phased regions, large heterozygous deletions, or regions with
high homozygosity. Edges connecting reads within true phased
regions and assigned to different haplotype clusters are removed
from the assembly graph.

To validate the accuracy of the complete process to assemble
phased genomes, we first simulated two single-chromosome
diploid genomes. The first was constructed from two publicly
available MHC alleles. The second was constructed from the copies
of the rice chromosome 9 corresponding to the Nipponbare and the
MH63 assemblies. A high heterozygosity rate is expected in both
cases. We assembled simulated reads from both individuals using
both NGSEP and Hifiasm. For the MHC haplotypes, NGSEP was able
to reconstruct the reference allele in two contigs of lengths 4.4 Mbp
and 0.3 Mbp, and the alternative allele in three contigs of lengths
3.5, 0.5, and 0.2 Mbp (Fig S3). No switch errors (changes between real
alleles within a contig) were detected in this assembly. Conversely,
three contigs assembled by Hifiasm, with lengths of 4.4, 0.8, and 1.6
Mbp, mapped to the alternative MHC allele and one contig of 2.8
Mbp mapped to the reference MHC allele. Hence, the alternative
allele was overrepresented, having the two smaller contigs em-
bedded within the largest contig. The largest contig was also larger
than the original allele because the left 100 kbp could not be
mapped and the right 200 kbp was duplicated. In contrast, the

reference allele was subrepresented. Fig 4 shows the reconstruc-
tion of the rice alleles by NGSEP and Hifiasm. NGSEP assembled one
large contig having three switch errors and five additional contigs
covering the regions not covered by the first contig. Hifiasm as-
sembled most of the MH63 chromosome in two contigs and most of
the Nipponbare chromosome also in two contigs. Three switch
errors were detected in this case. It also produced four small
contigs (about 200 kbp), two of them overlapping with longer
contigs.

To further assess the performance of NGSEP assembling diploid
samples, we assembled publicly available HiFi reads of the human
individual HG002. We obtained phased assemblies running NGSEP,
Hifiasm, and Canu (Table S2). To compare statistics between phased
assemblies and haploid assemblies merging the two haplotypes,
we analyzed the primary assembly generated by Hifiasm and we
also built a haploid assembly running Flye. NGSEP generated a
phased assembly with a total length of 5.59 Gbp and an N50 of 1.1
Mbp, whereas Hifiasm and Canu produced phased assemblies of
5.98 and 6.16 Gbp, respectively. While the Hifiasm was highly
contiguous (N50 = 67.02 Mbp), the N50 of the Canu assembly was 2.11
Mbp. This is consistent with the phasing strategy implemented in
Canu, which generates a contiguous primary assembly and rela-
tively small alternative haplotypes (Nurk et al, 2020). Regarding

Figure 3. Assembly results for haploid or inbred samples.
(A) Nx curve. (B) Misassemblies (m1 error) and local misassemblies (m2 error) reported versus reference genomes. Rice15k corresponds to Oryza sativa 15-kbp HiFi
reads, rice20k corresponds toO. sativa 20-kbp HiFi reads, maize corresponds to Zeamays B73 HiFi reads, and CHM13 corresponds to the human cell line CHM13 HiFi reads.
(C) Execution time (in minutes) for each experiment.
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haploid assemblies, whereas the total length of the primary as-
sembly of Hifiasm was 3.11 Gbp, the length of the Flye assembly was
2.96 Gbp. The N50 of the primary assembly of Hifiasm was two times
larger than the N50 of the Flye assembly (87.06 Mbp versus 45.03
Mbp).

To assess accuracy, we compared these assemblies with the
current gold-standard phased assembly for this sample (Jarvis et al,
2022) running Quast (Gurevich et al, 2013). The three phased as-
semblies had a small reduction in NG50, relative to N50. The smaller
total length of the NGSEP assembly produced genome coverage of
82.48%. This value was lower than the coverage of the Hifiasm
assembly (94.46%) but higher than the coverage of the assembly
generated running Canu (81.97%). The low genome coverage of the
Canu assembly can be explained because the total length of contigs
larger than 50 kbp is reduced to 5.53 Gbp. As expected, the genome
coverage of the haploid assemblies was around 50%. Regarding
errors, according to Quast, the ranking among phased assemblies
in almost all error types was first, Canu; second, Hifiasm; and third,
NGSEP. The two exceptions were the number of indels per 100 kbp,
in which Hifiasm ranked first, and the number of m2 errors, in which
Hifiasm ranked last. In absolute values, the number of m1 errors
ranged between 1,500 (Canu) and 2,591 (NGSEP) and the number of
m2 errors ranged between 1,092 (Canu) and 1,480 (Hifiasm). The

numbers of errors were between 3 and 29 times larger than those
observed for CHM13. M1 and m2 errors for haploid assemblies were
lower than errors in phased assemblies, except for m2 errors
observed in the Flye assembly, but the values were within the same
order of magnitude. The number of mismatch errors per 100 kbp
was about twice the number observed in the CHM13 sample, and the
number of indels per 100 kbp grew up to seven times in proportion
(~20 indels per 100 kbp). Combining contiguity with accuracy, al-
though the best NGA50 was obtained by Hifiasm (5.55 Mbp), this
value is only 8.9% of the original NG50. Canu and NGSEP had similar
NGA50 (0.925 and 0.871 Mbp, respectively).

Understanding that in this comparison some of the misassembly
errors could be due to switch errors between the gold-standard
haplotypes, we estimated the number of switch errors by two
different methods based on parental-specific k-mers. First, we ran
the algorithm implemented inMerqury (Rhie et al, 2020). For phased
assemblies, the number of switch errors ranged from 41,818 (Canu)
to 66,230 (Hifiasm). In contrast, highly diverging values were ob-
served in the haploid assemblies (Hifiasm: 33,872; Flye: 1,749,585).
The switch error rate was around 0.1%, except in the Flye assembly
(6.09%). However, in absolute numbers, switch errors were much
larger than misassembly errors reported by Quast. Hence, we
decided to implement an alternative algorithm to infer switch

Figure 4. Results of a diploid assembly of a
simulated diploid individual built from the
chromosome 9 sequences of the rice japonica
accession Nipponbare and the indica accession
Minghui63.
Blue blocks show Nipponbare haplotypes, whereas red
blocks indicate Minghui63 haplotypes. Changes in color
in the same row represent switch errors.
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errors from parental-specific k-mers (see the Materials and
Methods section for details). With this method, the number of
predicted switch errors was reduced to a range between 1,146 and
3,807, which is more comparable with the number of misassembly
errors. Comparing genome assemblies, the tool ranking was the
same as that derived from the number of switch errors reported by
Merqury.

We also collected some of the metrics proposed by Cheng et al
(2021), related to the ability of the assembly to reconstruct the two
alleles of each gene present in the diploid sample. Over 98% of the
18,558 single-copy protein-coding genes in the reference genome
were recovered at least one time in all assemblies (phased and
haploid). However, two or more alleles were mapped for 17,679
genes (95.26%) in the Hifiasm assembly, whereas this number was
14,294 (77.02%) for the NGSEP assembly, and 14,100 (75.98%) for the
Canu assembly. As expected, the percentages for the haploid as-
semblies were below 0.5%. From the remaining 1,386 multicopy
genes in the reference genome, more than two alleles weremapped
for 1,236 genes (89.18%) in the Hifiasm assembly, for 1,002 genes
(72.29%) in the NGSEP assembly, and for 1,219 genes (87.95%) in the
Canu assembly. These numbers are consistent with the observed
genome coverage. In terms of computational efficiency, NGSEP and
Hifiasm were able to reconstruct the genome in about 50 h using 32
threads, whereas Flye took 79 h and Canu took 158 h.

Benchmark with ONT data

To test the performance of our algorithms with Nanopore reads,
we downloaded and assembled datasets of Nanopore reads
sequenced from samples of E. coli, Saccharomyces cerevisiae, D.
melanogaster, and the CHM13 human cell line. We compared the
assemblies obtained using Canu, Flye, and NECAT, and the assembly

obtained by NGSEP on the reads corrected by NECAT. Fig 5 shows the
statistics of these assemblies comparing these tools. Complete as-
sembly statistics are shown in Table S3. For E. coli and S. cerevisiae, all
tools generated nearly perfect assemblies in terms of contiguity, except
Flye, which reported two contigs for the E. coli sample (Fig 5A). In the
E. coli sample, the misassemblies were negligible and the NGA50 of 3.3
Mbp is likely produced by disagreement on the start of the circular
chromosome. On the yeast assemblies, between 100 and 200 mis-
assemblies identified consistently reduce the NGA50 to about 400 kbp.

The fruit fly genome assemblies produced by the different tools
were more divergent and contained the largest differences be-
tween N50 and NG50 across the datasets (Fig S4). NECAT produced
an assembly of 251 contigs with an N50 of 1.36 Mbp. However, the
total assembly length was only 126 Mbp (143 Mbp expected),
resulting in a reduced NG50 of 1.09 Mbp. The Flye assembly was
similar, having a total length of 128 Mbp and an NG50 of 1.11 Mbp. In
contrast, Canu reported 577 contigs with an N50 of 0.48 Mbp and an
NG50 of 0.45 Mbp. The NGSEP assembly had an N50 of 1.05 Mbp but a
total length of 139 Mbp, which was the closest to the expected
length. As a result, the NG50 was only reduced to 1.0 Mbp. Re-
garding misassembly errors, the NGSEP assembly had the largest
number of m1 errors and Canu had the largest number of total
errors (Fig 5B). As a consequence, the Flye assembly retained an
NGA50 value of 1.01 Mbp, whereas the NGA50 value of the NGSEP
assembly was reduced to 0.66 Mbp, slightly larger than the
NGA50 of NECAT.

Regarding base pair errors, the values were in general one order
of magnitude larger than those obtained from HiFi reads (Fig S5).
Only themismatch errors of the E. coli assemblies were comparable
to those obtained using HiFi reads. The Flye assemblies had the
smallest numbers of errors, and the Canu assemblies had the
largest number of errors. The NGSEP and NECAT assemblies had a

Figure 5. Haploid genome assembly results using ONT reads.
(A) Nx curve. (B) Misassemblies (m1 error) and local misassemblies (m2 error) reported for each genome versus reference genomes.
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similar intermediate behavior, with NGSEP making more mismatch
errors and NECAT making more indel errors.

Finally, we assembled ultralong Nanopore reads (average over
200 kbp) sequenced from the human haploid cell line CHM13.
Unfortunately, Flye and Canu failed to assemble these sequences
with the available computational resources, requiring more than
512 GB of memory for this process. Hence, we compared our re-
sults with publicly available assemblies (https://github.com/
marbl/CHM13/blob/master/Sequencing_data.md corresponding
to rel3) generated using these tools. The Canu assembly had the
largest N50 value (78 Mbp), and the NECAT assembly had the
lowest value (61 Mbp). The Canu assembly also had the largest
total assembly length (2.97 Gbp), which was also the closest to the
expected length of 3.12 Gbp. However, the Canu and the Flye
assemblies had between two and three times more m1 errors,
compared with the NGSEP and the NECAT assemblies. Although
the NGSEP assembly had the largest number of m2 errors, the
resulting NGA50 of NGSEP was the highest, followed by Canu (Fig
S4). The NGSEP and the NECAT assemblies also had a small
number of base pair errors (about 10 mismatches and 50 indels
per 100 kbp) compared with the assemblies of Flye and Canu,
which had over 300 errors per 100 kbp.

Other related features

Based on the development of the genome assembler, version 4 of
NGSEP also includes a module to calculate the spectrum of k-mer
counts, either from sequencing reads or from a genome assembly.
For a k-mer size less or equal to 15, the k-mer counts are stored in a
fixed array of 2-byte integers of size 230. This allows to create the
spectrum with a fixed RAM usage of 2 gigabytes for an arbitrary
number of input reads. Based on this spectrum of k-mers, we in-
cluded a functionality for error correction in which substitution
errors can be corrected by looking at single changes producing
k-mers within the distribution of k-mer counts. Moreover, the
minimizer table generated to perform efficient identification of
read overlaps was also used to create a reference alignment tool
for long reads. To keep the algorithmmemory tractable, minimizers
appearing 1,000 or more times within the reference sequence are
discarded. Minimizers for each read are calculated and searched in
the minimizer table corresponding to the reference sequence.
Minimizer hits are interpreted as k-mer ungapped alignments and
clustered according to the read start site predicted for each read.
We assessed the performance of the minimizer algorithm imple-
mented in NGSEP for aligning simulated long reads, comparing the
results with the alignments obtained usingMinimap2 (Li, 2018). Both
tools achieved almost perfect accuracy for Saccharomyces aureus
and S. cerevisiae genomes. Minimap2 showed 3% higher mapping
accuracy for the experiment with the human chr20, but NGSEP
reported lower root mean squared error values (Fig S6).

Finally, for circular genomes we implemented a circularization
feature as an option of the genome assembler. Given an input set of
possible origin sequences, NGSEP maps these sequences to the
assembled contigs using the long-read alignment algorithm. Each
presumably circular contig is rotated and oriented based on the
best alignment of an origin sequence.

Discussion

In this work, we present the results of our latest developments to
facilitate de novo construction of genome assemblies using long
reads, which includes novel algorithmic approaches to perform the
different steps of the overlap–layout–consensus model. In sum-
mary, we formalize the construction of an undirected graph to
handle the different types of overlaps taking into account the
sequencing strand of each read. For the graph construction step, we
propose an informed hash function based on the distribution of
k-mer counts to improve the selection of minimizers. We also
propose a new algorithm to build layouts from our assembly graph
in which layout edges are selected based on a Bayesian scoring
function. Finally, we integrated previous works on haplotyping to
filter edges in the assembly graph and to build phased assemblies.
Experiments with a wide variety of datasets indicate that our ap-
proach achieves competitive accuracy and efficiency, compared
with state-of-the-art tools. From the user perspective, NGSEP
achieves nearly perfect assemblies for several species and it is able
to reconstruct most gene-rich regions, even in complex genomes.
One major advantage of our software is that, combined with
previous developments, it offers an easy-to-use, open-source, and
platform-independent framework to run a complete analysis of
high-throughput sequencing reads, including de novo assembly,
read mapping, variant detection, genotyping, and downstream
analysis of genomic variation datasets.

The algorithms designed and implemented in NGSEP contribute
new alternatives to identify solutions to the genome assembly
problem. Although the graph construction with two vertices per
read has been used in previous works (Miller et al, 2008; Koren et al,
2017), current software tools seem to implement the classical di-
rected string graph, which requires taking early decisions on the
orientation of each read (Cheng et al, 2021). We believe that the
undirected graph used in this work makes a better representation
of DNA sequences compared with the string graph because it takes
into account that DNA is double-stranded, and hence, it captures
more information from the input reads. This allows devising al-
gorithmic approaches different from a greedy traversal of a curated
string graph. Moreover, to achieve improved computational effi-
ciency, we avoided complete alignments between reads. Instead,
we performed estimations of different types of information
(overlap, CSK, and percentage of the overlap supported by evi-
dence), which can be used as features to select edges building
assembly paths based on a likelihood calculation for each edge.
The layout algorithm of NGSEP is inspired by the classical Chris-
tofides algorithm for the travel salesman problem, treating the path
construction as an edge selection process. Edge features are
combined based on their likelihood, replacing edge filtering with
edge prioritization. This approach eliminates the need of hard
filtering decisions and makes the algorithm adaptable to genomic
regions with different repeat structures and to the analysis of reads
with variable sequencing error rates.

Taking Nx curves and misassemblies into consideration, NGSEP
produces high-quality assemblies with higher contiguity than Flye
and, in some cases, a lower number of errors compared with Canu
and Hifiasm. These statistics suggest that NGSEP can be used as an
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accurate alternative to assemble PacBio HiFi reads. Although fur-
ther work is required to improve N50 in complex assemblies (es-
pecially human diploid samples), our results indicate that the
NGSEP assemblies are able to reconstruct the two copies for over
70% of the genes in the human genome. Recent works indicate that
assembling phased complex genomes with chromosome-level
accuracy still requires the integration of data from technologies
or strategies that provide scaffolding and phasing information such
as Hi-C or parental sequencing (Garg et al, 2021; Kronenberg et al,
2021; Porubsky et al, 2021; Cheng et al, 2022; Jarvis et al, 2022; Nurk
et al, 2022). We plan to implement alternatives to integrate these
data in future releases of NGSEP. However, our experiments with
diploid samples indicate that new algorithms implemented in
existing or novel tools could significantly improve the accuracy of
phased assemblies directly from long reads.

Regarding Oxford Nanopore reads with high error rates, NGSEP
was able to perform accurate assemblies after reads were cor-
rected by running the specialized algorithm implemented in NECAT.
This error correction step is crucial in the assembly process of
current ONT reads. However, upcoming improvements in the read
quality are likely to produce ONT HiFi reads, eliminating the need of
a specialized error correction step. The highly contiguous and
structurally correct assembly of the CHM13 sample obtained from
ultralong ONT reads suggests that this is a promising alternative to
achieve chromosome-level assemblies. Improvements in base pair
quality are needed not only to improve the base pair accuracy, but
also to identify heterozygous variants accurately and to achieve
phased assemblies, as it can be done using HiFi reads.

We believe that the new algorithms presented in this study
make a significant contribution to the development of bio-
informatic algorithms and tools for genome assembly. Moreover,
the new functionalities of NGSEP facilitate the construction of
genome assemblies for researchers working on a wide range of
species.

Materials and Methods

Benchmark datasets

PacBio and Nanopore publicly available raw datasets were re-
trieved from NCBI. Haploid datasets included PacBio HiFi/circular
consensus sequence 20-kbp reads from the Oryza sativa indica
MH63 accession (PRJNA558396) (Song et al, 2021), 15-kbp reads from
the O. sativa indica MH63 accession (SRR10188372), the Zea mays
B73 accession (PRJNA627939) (Hon et al, 2020), and the CHM13
human haploid cell line (PRJNA530776) (Nurk et al, 2022). As a
diploid benchmark dataset, we downloaded reads from the human
male HG002/NA24385 (PRJNA586863). Nanopore reads for E. coli
K12 were obtained from the Loman Lab available at http://
lab.loman.net/2015/09/24/first-sqk-map-006-experiment/ (Loman
et al, 2015). We selected run MAP-006-1, which also corresponds to
the dataset used by Canu in their tutorial. Nanopore reads for S.
cerevisiae and D. melanogaster were directly downloaded from
http://www.tgsbioinformatics.com/necat/ (Chen et al, 2021).
Nanopore reads for the human cell line CHM13 corresponding to

the release 8 (rel8) were downloaded from https://github.com/
marbl/CHM13/blob/master/Sequencing_data.md

Comparison of long-read haploid genome assembly tools

We compared the performance of the algorithm described in this
work with the algorithms implemented in HiCanu (Nurk et al, 2020),
Flye (Kolmogorov et al, 2019), and Hifiasm (Cheng et al, 2021) for
PacBio HiFi reads; and with the algorithms implemented in Canu,
Flye, and NECAT (Chen et al, 2021) for Nanopore reads. WTDBG (Ruan
& Li, 2019) was not included because in some initial benchmark
experiments, it reported a much lower accuracy for complex ge-
nomes, compared with other tools, and because it seems to be
replaced by Hifiasm. All PacBio assemblies were run in a Microsoft
Azure Standard E64as_v4 (64 vCPUs, 512 GiB memory) virtual ma-
chine. The parameters used for each tool are detailed in Tables S4
and S5.

Comparison of genome assemblies with reference genomes

To compare the assembly achieved by each tool against a reference
genome, we used Quast (Gurevich et al, 2013) with default pa-
rameters for the E. coli and S. cerevisiae samples, and with the
following parameters for genomes larger than 100 Mb: --eukaryote
--min-contig 25,000 --min-identity 99 (98 for ONT reads) --min-
alignment 5,000 --extensive-mis-size 20,000. Whereas reference
coverage, assembly length, and N50 were used as sensitivity
measures, the number and type of misassemblies were used as
specificity measures. We calculated and compared these statistics
among all assemblies per dataset. The Nx curve was also calculated
for each assembly. The reference genomes used in the comparison
were O. sativa indica MH63 (CP054676–CP054688) (Song et al, 2021),
Z. mays B73 v.5 (GCA_902167145.1) (Jiao et al, 2017), the recently
published telomere-to-telomere assembly of the human haploid
line CHM13 v2.0 (GCA_009914755.4) (Nurk et al, 2022), and the ge-
nomes of D. melanogaster v.6, E. coli K12, and S. cerevisiae S288c,
which were downloaded from the NECAT web site (Chen et al, 2021).

Diploid genome benchmarking

Simulations: To assess the accuracy of the algorithm implemented
in NGSEP for reconstruction of diploid samples, we simulated two
single-chromosome individuals. First, we built a synthetic indi-
vidual joining two different MHC alleles: the reference allele
extracted from GRCh38, and an alternative reconstruction available
at the NCBI nucleotide database (accession NT_167249), generated
as part of the MHC haplotype project (Horton et al, 2008). Second,
we built an individual joining the rice chromosome 9 reconstruc-
tions of the reference genome (Nipponbare) and MH63. We sim-
ulated 10,000 and 125,000 reads, respectively, from each simulated
diploid individual using the SingleReadsSimulator of NGSEP with an
average length of 20 kbp, an SD of 5 kbp, a substitution error rate of
0.5%, and an indel error rate of 1%.

HG002: NGSEP v4.3.1. Hifiasm v0.16.0 (Cheng et al, 2021), Canu 2.1.1
(Nurk et al, 2020), and Flye v2.8.3 (Kolmogorov et al, 2019) were
executed to obtain phased and haploid assemblies for the Personal
Genome Project Ashkenazi Jewish son HG002 (four runs with
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accession numbers SRR10382244, SRR10382245, SRR10382248, and
SRR10382249). We registered execution time over a node with an
AMD EPYC 7402 2.80 Hz, 24C/48T, 128M Cache, a DDR4-3200 pro-
cessor, 32 cores, and 512 Gb of RAM. We converted the output files
from HiFiAsm (*ctg.gfa) to fasta (*.fa) and merged the haplotypes
(*hap1.p_ctg.fa and *hap2.p_ctg.fa) to calculate the main metrics
and compare against the NGSEP diploid assembly. We ran Quast
v5.0.2 (Gurevich et al, 2013) to assess the accuracy of the as-
semblies, using as reference the HG002 diploid assembly reported
by Jarvis et al (2022). Because structural errors reported by Quast
can really be the product of switch errors, we calculated the
number and proportion of switch errors using the k-mer–based
method implemented in Merqury (Rhie et al, 2020). We also
implemented a script available in NGSEP (class ngsep.bench-
mark.KmerBasedSwitchErrorsFinder), which divides the genome
in overlapping windows of 20 kbp (10-kbp overlap), assigns
windows to parental haplotypes based on parental-specific
k-mers, and identifies neighbor windows providing evidence of
switch errors.

We also calculated the protein-coding genes that can be
identified in the assemblies and the number of alleles identified
for each gene, following a procedure similar to that explained in
Cheng et al (2021). We mapped the main transcripts of 19,944
protein-coding genes to each assembly using Minimap2 (Li,
2018). After sorting alignment (.paf) files by query name, we
built a script within NGSEP to calculate the number of alleles
identified for each gene (class ngsep.benchmark.AssembliesAligned-
TranscriptStatistics). Results of this script are available in Table S2.
Assuming that phased assemblies should have two copies of unique
genes and more than two copies of genes with paralogs, gene
mapping can be used to evaluate the completeness of phased
genome assemblies. A gene is considered as a single copy (SC) if
only one match is identified in the reference genome (at 99%
identity). Otherwise, it is considered a multicopy (MC) gene.

Accuracy assessment for long-read alignment

Simulated reads were aligned against their respective reference
sequence using Minimap2 v2.17 (Li, 2018) and the ReadsAligner
command of NGSEP v4.2.1 with k-mer lengths of 15 (default
mode) and 20. Default parameters were used for all aligners. For
time performance evaluation, we conducted all alignments
using four cores of processing and 20 GB of memory. We eval-
uated the accuracy of the aligners using the percentage of
aligned reads, and sensitivity and false-positive rate metrics.
These metrics were calculated using a script that, taking an
alignment file as input, infers the real position in the reference
genome for each aligned read from the read name and calcu-
lates the difference with the position where the read is aligned.
Total alignment rate and root mean squared error are calculated
after the total number of aligned reads is counted and the
square error rate is totalized over the alignments. This script is
available with the NGSEP distribution (class ngsep.bench-
mark.QualityStatisticsAlignmentSimulatedReads). Accuracy met-
rics were computed for bam files filtered by alignment quality
values from 0 to 80.

Data Availability

The software described in this study is available as part of the open-
source software product NGSEP. Stable versions are available in
SourceForge (http://ngsep.sf.net). The version under development is
available on GitHub (https://github.com/NGSEP). All the experiments
presented in this study were performed using previously available
public data from different repositories. The Materials and Methods
section includes the specific database and accession id for each
dataset and each reference genome. Assemblies generated using
NGSEP v4.3.1 are available in SourceForge (https://sourceforge.net/
projects/ngsep/files/benchmarkAssembler/).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202201719
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