Genome-wide comparison of DNA hydroxymethylation in mouse embryonic stem cells and neural progenitor cells by a new comparative hMeDIP-seq method

Nucleic Acids Res. 2013 Apr;41(7):e84. doi: 10.1093/nar/gkt091. Epub 2013 Feb 13.

Abstract

The genome-wide distribution patterns of the '6th base' 5-hydroxymethylcytosine (5hmC) in many tissues and cells have recently been revealed by hydroxymethylated DNA immunoprecipitation (hMeDIP) followed by high throughput sequencing or tiling arrays. However, it has been challenging to directly compare different data sets and samples using data generated by this method. Here, we report a new comparative hMeDIP-seq method, which involves barcoding different input DNA samples at the start and then performing hMeDIP-seq for multiple samples in one hMeDIP reaction. This approach extends the barcode technology from simply multiplexing the DNA deep sequencing outcome and provides significant advantages for quantitative control of all experimental steps, from unbiased hMeDIP to deep sequencing data analysis. Using this improved method, we profiled and compared the DNA hydroxymethylomes of mouse ES cells (ESCs) and mouse ESC-derived neural progenitor cells (NPCs). We identified differentially hydroxymethylated regions (DHMRs) between ESCs and NPCs and uncovered an intricate relationship between the alteration of DNA hydroxymethylation and changes in gene expression during neural lineage commitment of ESCs. Presumably, the DHMRs between ESCs and NPCs uncovered by this approach may provide new insight into the function of 5hmC in gene regulation and neural differentiation. Thus, this newly developed comparative hMeDIP-seq method provides a cost-effective and user-friendly strategy for direct genome-wide comparison of DNA hydroxymethylation across multiple samples, lending significant biological, physiological and clinical implications.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 5-Methylcytosine / analogs & derivatives
  • Animals
  • Cell Lineage
  • Cells, Cultured
  • Cytosine / analogs & derivatives*
  • Cytosine / analysis
  • Cytosine / metabolism
  • DNA Methylation
  • Embryonic Stem Cells / cytology
  • Embryonic Stem Cells / metabolism*
  • Gene Expression
  • Genome
  • High-Throughput Nucleotide Sequencing / methods*
  • Immunoprecipitation*
  • Mice
  • Neural Stem Cells / metabolism*
  • Sequence Analysis, DNA / methods*

Substances

  • 5-hydroxymethylcytosine
  • 5-Methylcytosine
  • Cytosine