Compartmentalization of mammalian pantothenate kinases

PLoS One. 2012;7(11):e49509. doi: 10.1371/journal.pone.0049509. Epub 2012 Nov 13.

Abstract

The pantothenate kinases (PanK) catalyze the first and the rate-limiting step in coenzyme A (CoA) biosynthesis and regulate the amount of CoA in tissues by differential isoform expression and allosteric interaction with metabolic ligands. The four human and mouse PanK proteins share a homologous carboxy-terminal catalytic domain, but differ in their amino-termini. These unique termini direct the isoforms to different subcellular compartments. PanK1α isoforms were exclusively nuclear, with preferential association with the granular component of the nucleolus during interphase. PanK1α also associated with the perichromosomal region in condensing chromosomes during mitosis. The PanK1β and PanK3 isoforms were cytosolic, with a portion of PanK1β associated with clathrin-associated vesicles and recycling endosomes. Human PanK2, known to associate with mitochondria, was specifically localized to the intermembrane space. Human PanK2 was also detected in the nucleus, and functional nuclear localization and export signals were identified and experimentally confirmed. Nuclear PanK2 trafficked from the nucleus to the mitochondria, but not in the other direction, and was absent from the nucleus during G2 phase of the cell cycle. The localization of human PanK2 in these two compartments was in sharp contrast to mouse PanK2, which was exclusively cytosolic. These data demonstrate that PanK isoforms are differentially compartmentalized allowing them to sense CoA homeostasis in different cellular compartments and enable interaction with regulatory ligands produced in these same locations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Active Transport, Cell Nucleus / drug effects
  • Amino Acid Sequence
  • Animals
  • Cell Compartmentation* / drug effects
  • Cell Nucleolus / drug effects
  • Cell Nucleolus / enzymology
  • Chromosomes, Mammalian / metabolism
  • Clathrin / metabolism
  • Cytosol / drug effects
  • Cytosol / enzymology
  • Endosomes / drug effects
  • Endosomes / metabolism
  • Fatty Acids, Unsaturated / pharmacology
  • Humans
  • Isoenzymes / chemistry
  • Isoenzymes / metabolism
  • Mammals / metabolism*
  • Mice
  • Mitochondria / drug effects
  • Mitochondria / enzymology
  • Mitosis / drug effects
  • Molecular Sequence Data
  • Mutagenesis / genetics
  • Nuclear Export Signals
  • Nuclear Localization Signals / metabolism
  • Phosphotransferases (Alcohol Group Acceptor) / chemistry
  • Phosphotransferases (Alcohol Group Acceptor) / metabolism*
  • Sequence Alignment

Substances

  • Clathrin
  • Fatty Acids, Unsaturated
  • Isoenzymes
  • Nuclear Export Signals
  • Nuclear Localization Signals
  • Phosphotransferases (Alcohol Group Acceptor)
  • pantothenate kinase
  • leptomycin B