Skip to main content
Log in

The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Luciferases are the enzymes that catalyze the reactions that produce light in bioluminescence. The bioluminescence color of firefly luciferases is determined by the luciferase structure and assay conditions. Amongst different beetle luciferases, those from phrixothrix rail-road worm with a unique additional residue (Arg353) emit red bioluminescence color naturally. Insertion of Arg356 in Lampyris turkestanicus luciferase changed the emitted light to red with a bimodal bioluminescence spectrum. By insertion and substitution of positively-charged residues, different specific mutation (E354R/Arg356, E354K/Arg356, E354R, E354K) lead to changes of the bioluminescence color. Bioluminescence emission spectra indicate that substitution of E354 by R along with insertion of Arg356 produces a luciferase that emits red light with a single peak bioluminescence spectrum. The comparison of mutants with native luciferase shows that mutations of firefly luciferase resulted in structural and functional thermostability. Comparative study of native and mutant luciferase (E354R/Arg356) by intrinsic and extrinsic fluorescence, CD spectropolarimetry, and homology modeling revealed mutation brought about an increase in content of secondary structure and globular compactness of L. turkestanicus luciferase. On the other hand, pKa of amino acids in the flexible loop decreased upon introducing of positive charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SOE-PCR:

Splicing overlap extension-polymerase chain reaction

PhRE:

Phrixothrix hirtus red light emitter

Mg2+:

Magnesium

rLuc:

Recombinant native luciferase

Arg356:

Recombinant mutant luciferase containing Arg insertion

BL:

Bioluminescence

CD:

Circular dichroism

RLU:

Relative light unit

ANS:

8-Anilino-naphthalene-1-sulfonic acid

Ni-NTA:

Nickel nitrilotriacetic acid

References

  1. M. Deluca and W. D. McElroy, Purification and properties of firefly luciferase, Methods Enzymol., 1978, 57, 3–15.

    Article  CAS  Google Scholar 

  2. H. H. Seliger and W. D. McElroy, Quantum yield in the oxidation of firefly luciferin, Biochem. Biophys. Res. Commun., 1959, 1, 21–24.

    Article  CAS  Google Scholar 

  3. H. H. Seliger and W. D. McElroy, Spectral emission and quantum yield of firefly bioluminescence, Arch. Biochem. Biophys., 1960, 88, 136–141.

    Article  CAS  PubMed  Google Scholar 

  4. W. H. Biggley, H. J. E. Lloyd and H. H. Seliger, The Spectral Distribution of Firefly Light, J. Gen. Physiol., 1967, 50, 1681–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N. P. Colepicolo, C. Costa and E. J. Bechara., Brazilian species of elaterid luminescent beetles. Luciferin identification and bioluminescence spectra, Insect Biochem., 1986, 16, 803–810.

    Article  Google Scholar 

  6. V. R. Viviani and E. J. Bechara., Biophysical and biochemical aspects of phengodid (railroad-worm) bioluminescence, Photochem. Photobiol., 1993, 58, 615–622.

    Article  CAS  Google Scholar 

  7. V. R. Viviani and E. J. Bechara., Bioluminescence of Brazilian fireflies (Coleoptera: Lampyridae): spectral distribution and pH effect on luciferase-elicited colors. Comparison with elaterid and phengodid luciferases, Photochem. Photobiol., 1995, 62, 490–495.

    Article  CAS  Google Scholar 

  8. T. Arslan, S. V. Mamaev, N. V. Mamaeva and S. M. Hecht, Structurally Modified Firefly Luciferase. Effects of Amino Acid Substitution at Position 286, J. Am. Chem. Soc., 1997, 119, 10877–10887.

    Article  CAS  Google Scholar 

  9. N. Kajiyama and E. Nakano, Isolation and characterization of mutants of firefly luciferase which produce different colors of light, Protein Eng., Des. Sel., 1991, 4, 691–693.

    Article  CAS  Google Scholar 

  10. N. k. Tafreshi, M. Sadeghizadeh, R. Emamzadeh, B. Ranjbar, H. Naderi-Manesh and S. Hosseinkhani, Site-directed mutagenesis of firefly luciferase: Implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases, Biochem. J., 2008, 412, 27–33.

    Article  CAS  PubMed  Google Scholar 

  11. K. V. Wood, A. Y. Lam, H. H. Seliger and W. D. McElroy, Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors, Science, 1989, 244, 700–702.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Ohmiya, T. Hirano and M. Ohashi, The structural origin of the color differences in the bioluminescence of firefly luciferase, FEBS Lett., 1996, 384, 83–86.

    Article  CAS  PubMed  Google Scholar 

  13. V. R. Viviani, A. J. S. Neto and Y. Ohmiya, The influence of the region between residues 220 and 344 and beyond in Phrixotrix railroad worm luciferases green and red bioluminescence, Protein Eng., Des. Sel., 2004, 17, 113–117.

    Article  CAS  Google Scholar 

  14. N. N. Ugarova and L. Y. Brovko, Relationship between the structure of the protein globule and bioluminescence spectra of firefly luciferase, Russ. Chem. Bull., 2001, 50, 1752–1761.

    Article  CAS  Google Scholar 

  15. M. Deluca, Hydrophobic nature of the active site of firefly luciferase, Biochemistry, 1969, 8, 160–166.

    Article  CAS  PubMed  Google Scholar 

  16. E. H. White and B. Branchini, Modification of firefly luciferase with a luciferin analog. A red light producing enzyme, J. Am. Chem. Soc., 1975, 97, 1243–1245.

    Article  CAS  PubMed  Google Scholar 

  17. F. McCapra, D. J. Gilfoyle, D. W. Young, N. J. Church and P. Spencer, in Bioluminescence and Chemiluminescence, Fundamental and Applied Aspects, ed. A. K. Campbell, L. J. Kricka and P. E. Stanley, 1994, Wiley, Chichester, pp. 387–391.

  18. B. R. Branchini, T. L. Southworth, M. H. Murtiashaw, R. A. Magyar, S. A. Gonzalez, M. C. Ruggiero and J. G. Stroh, An alternative mechanism of bioluminescence color determination in firefly luciferase, Biochemistry, 2004, 43, 7255–7262.

    Article  CAS  PubMed  Google Scholar 

  19. E. Conti, N. P. Franks and P. Brick, Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes, Structure, 1996, 4, 287–298.

    Article  CAS  PubMed  Google Scholar 

  20. T. Nakatsu, S. Ichiyama, J. Hiratake, A. Saldanha, N. Kobashi, K. Sakata and H. Kato, Structural basis for the spectral difference in luciferase bioluminescence, Nature, 2006, 440, 372–376.

    Article  CAS  PubMed  Google Scholar 

  21. A. Lundin, Optimized assay of firefly luciferase with stale light emission, in Bioluminescence and Chemiluminescence: Status Report, ed. A. Szalay, L.J. Kricka and P. E. Stanley, 1993, John Wiley, Chichester, UK, pp. 291–295.

    Google Scholar 

  22. S. J. Gould and S. Subramani, firefly luciferase as a tool in molecular and cell biology, Anal. Biochem., 1988, 175, 5–13.

    Article  CAS  PubMed  Google Scholar 

  23. C. H. Contag and M. H. Bachmann, Advances in in vivo bioluminescence imaging of gene expression, Annu. Rev. Biomed. Eng., 2002, 4, 235–260.

    Article  CAS  PubMed  Google Scholar 

  24. T. C. Doyle, S. M. Burns and C. h. Contag, In vivo Bioluminescence imaging for integrated studies of infection, Cell. Microbiol., 2004, 6, 303–317.

    Article  CAS  PubMed  Google Scholar 

  25. A. Roda, P. Pasini, M. Mirasoli, E. Michelini and M. Guardigli, Biotechnological application of bioluminescence, Trends Biotechnol., 2004, 22, 295–303.

    Article  CAS  PubMed  Google Scholar 

  26. B. R. Branchini, T. R. Southworth, N. F. Khattak, E. Michelini and A. Roda, Red and green emitting firefly luciferase mutants for bioluminescence reporter application, Anal. Biochem., 2005, 345, 140–148.

    Article  CAS  PubMed  Google Scholar 

  27. P. J. White, D. J. Squirrell, P. Arnaud, C. R. Lowe and J. A. Murray, Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354, Biochem. J., 1996, 319, 343–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. H. H. Seliger and W. D. McElroy, The colors of firefly bioluminescence: enzyme configuration and species specificity, Proc. Natl. Acad. Sci. U. S. A., 1964, 52, 75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. N. Kajiyama and E. Nakano, Thermostabilization of firefly luciferase by a single amino acid substitution at position 217, Biochemistry, 1993, 32, 13795–13799.

    Article  CAS  PubMed  Google Scholar 

  30. L. C. Tisi, P. J. White, D. J. Squirrell, P. Arnaud, C. R. Lowe and J. A. Murray, Development of a thermostability firefly luciferase, Anal. Chim. Acta, 2002, 457, 115–123.

    Article  CAS  Google Scholar 

  31. N. K. Tafreshi, S. Hosseinkhani, M. Sadeghizadeh, M. Sadeghi, B. Ranjbar, H. Naderi-Manesh, The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase, J. Biol. Chem., 2007, 282, 8641–8647.

    Article  CAS  PubMed  Google Scholar 

  32. R. M. Horton, H. d. Hun, S. N. Ho, J. K. Pullen and L. R. Pease, Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension, Gene, 1989, 77, 61–68.

    Article  CAS  PubMed  Google Scholar 

  33. B. S. Alipour, S. Hosseinkhani, M. Nikkhah, H. Naderi-Manesh, M. J. Chaichi and S. Kazempour, Molecular cloning, sequence analysis, and expression of a cDNA encoding the luciferase from the glow-worm Lampyris turkestanicus, Biochem. Biophys. Res. Commun., 2004, 325, 215–222.

    Article  PubMed  CAS  Google Scholar 

  34. M. M. Bradford, A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  35. S. Hosseinkhani, R. Szittner, M. Nemat-Gorgani and E. A. Meighen, Adsorptive immobilization of bacterial luciferases on alkyl-substituted Sepharose 4B, Enzyme Microb. Technol., 2003, 321, 86–93.

    Google Scholar 

  36. M. R. Eftink and C. A. Ghiron, Exposure of tryptophanyl residues and protein dynamics, Biochemistry, 1977, 16, 5546–5551.

    Article  CAS  PubMed  Google Scholar 

  37. M. Mehrabi, S. Hosseinkhani and S. Ghobadi, Stabilization of firefly luciferase against thermal stress by osmolytes, Int. J. Biol. Macromol., 2008, 43, 187–91.

    Article  CAS  PubMed  Google Scholar 

  38. J. Y. Cassim and J. T. Yang, A computerized calibration of the circular dichromate, Biochemistry, 1969, 8, 1947–1951.

    Article  CAS  PubMed  Google Scholar 

  39. T. Schwede, J. Kopp, N. Guex and M. C. Peitsch, SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Res., 2003, 31, 3381–3385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. H. Northrup, MacroDox, v.2.0.2, Software for the prediction of macromolecular interaction, Tennessee Technological University, Cookeville, TN, 1995.

    Google Scholar 

  41. G. Vriend, WHAT IF: A molecular modeling and drug design program, J. Mol. Graph., 1990, 8, 52–56.

    Article  CAS  PubMed  Google Scholar 

  42. A. Riahi Madvar, S. Hosseinkhani, K. Khajeh, B. Ranjabr and A. Asoodeh, Implication of a critical residue (Glu175) in structure and function of bacterial luciferase, FEBS Lett., 2005, 579, 4701–4706.

    Article  CAS  Google Scholar 

  43. J. R. Lakowicz and G. Weber, Quenching of fluorescence by oxygen. A probe for Structural fluctuations in macromolecules, Biochemistry, 1973, 12, 4171–4179.

    Article  CAS  PubMed  Google Scholar 

  44. A. Moradi, S. Hosseinkhani, H. Naderi-Manesh, M. Sadeghizadeh and B. S. Alipour, Effect of Charge Distribution in a Flexible Loop on the Bioluminescence Color of Firefly Luciferases, Biochemistry, 2009, 48, 575–582.

    Article  CAS  PubMed  Google Scholar 

  45. A. Kitayama, H. Yoshizaki, Y. Ohmiya, H. Ueda and T. Nagamune, Creation of a thermostable firefly luciferase with a pH-insensitive luminescence colour, Photochem. Photobiol., 2003, 77, 333–338.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Ando, K. Niwa, N. Yamayda, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya and H. Akiyama, Firefly bioluminescence quantum yield and color change by pH- sensitive green emission, Nat. Photonics, 2008, 2, 44–47.

    Article  CAS  Google Scholar 

  47. V. Viviani, A. Uchida, N. Suenaga, M. Ryufuka and Y. Ohmiya, Thr 226 is a key residue for bioluminescence spectra determination in beetle luciferases, Biochem. Biophys. Res. Commun., 2001, 280, 1286–1291.

    Article  CAS  PubMed  Google Scholar 

  48. S. Hosseinkhani, R. Szittner and E. A. Meighen, Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay, Biochem. J., 2005, 385, 575–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. B. Baggett, R. Roy, S. Momen, S. Morgan, L. Tisi, D. Morse and R. J. Gillies, Thermostability of firefly luciferases affects efficiency of detection by in vivo bioluminescence, Mol. Imaging, 2004, 3, 324–332.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Hosseinkhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alipour, B.S., Hosseinkhani, S., Ardestani, S.K. et al. The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase. Photochem Photobiol Sci 8, 847–855 (2009). https://doi.org/10.1039/b901938c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b901938c

Navigation