Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme

Abstract

Glioblastoma multiforme (GBM) is an aggressive brain tumor for which there is no cure. Overexpression of wild-type epidermal growth factor receptor (EGFR) and loss of the tumor suppressor genes Ink4a /Arf and PTEN are salient features of this deadly cancer. Surprisingly, targeted inhibition of EGFR has been clinically disappointing, demonstrating an innate ability for GBM to develop resistance. Efforts at modeling GBM in mice using wild-type EGFR have proven unsuccessful to date, hampering endeavors at understanding molecular mechanisms of therapeutic resistance. Here, we describe a unique genetically engineered mouse model of EGFR-driven gliomagenesis that uses a somatic conditional overexpression and chronic activation of wild-type EGFR in cooperation with deletions in the Ink4a/Arf and PTEN genes in adult brains. Using this model, we establish that chronic activation of wild-type EGFR with a ligand is necessary for generating tumors with histopathological and molecular characteristics of GBMs. We show that these GBMs are resistant to EGFR kinase inhibition and we define this resistance molecularly. Inhibition of EGFR kinase activity using tyrosine kinase inhibitors in GBM tumor cells generates a cytostatic response characterized by a cell cycle arrest, which is accompanied by a substantial change in global gene expression levels. We demonstrate that an important component of this pattern is the transcriptional activation of the MET receptor tyrosine kinase and that pharmacological inhibition of MET overcomes the resistance to EGFR inhibition in these cells. These findings provide important new insights into mechanisms of resistance to EGFR inhibition and suggest that inhibition of multiple targets will be necessary to provide therapeutic benefit for GBM patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Andl CD, Mizushima T, Nakagawa H, Oyama K, Harada H, Chruma K et al. (2003). Epidermal growth factor receptor mediates increased cell proliferation, migration, and aggregation in esophageal keratinocytes in vitro and in vivo. J Biol Chem 278: 1824–1830.

    Article  CAS  Google Scholar 

  • Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A et al. (2009). Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4: e7752.

    Article  Google Scholar 

  • Busse D, Doughty RS, Ramsey TT, Russell WE, Price JO, Flanagan WM et al. (2000). Reversible G(1) arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27(KIP1) independent of MAPK activity. J Biol Chem 275: 6987–6995.

    Article  CAS  Google Scholar 

  • Cheng J, Huang H, Zhang ZT, Shapiro E, Pellicer A, Sun TT et al. (2002). Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Res 62: 4157–4163.

    CAS  PubMed  Google Scholar 

  • Ciardiello F, McGeady ML, Kim N, Basolo F, Hynes N, Langton BC et al. (1990). Transforming growth factor-alpha expression is enhanced in human mammary epithelial cells transformed by an activated c-Ha-ras protooncogene but not by the c-neu protooncogene, and overexpression of the transforming growth factor-alpha complementary DNA leads to transformation. Cell Growth Differ 1: 407–420.

    CAS  Google Scholar 

  • Coleman JE, Huentelman MJ, Kasparov S, Metcalfe BL, Paton JF, Katovich MJ et al. (2003). Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 12: 221–228.

    Article  CAS  Google Scholar 

  • Di Fiore PP, Pierce JH, Fleming TP, Hazan R, Ullrich A, King CR et al. (1987). Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51: 1063–1070.

    Article  CAS  Google Scholar 

  • Di Marco E, Pierce JH, Aaronson SA, Di Fiore PP . (1990). Mechanisms by which EGF receptor and TGF alpha contribute to malignant transformation. Nat Immun Cell Growth Regul 9: 209–221.

    CAS  PubMed  Google Scholar 

  • Di Marco E, Pierce JH, Fleming TP, Kraus MH, Molloy CJ, Aaronson SA et al. (1989). Autocrine interaction between TGF alpha and the EGF-receptor: quantitative requirements for induction of the malignant phenotype. Oncogene 4: 831–838.

    CAS  PubMed  Google Scholar 

  • Ding H, Shannon P, Lau N, Wu X, Roncari L, Baldwin RL et al. (2003). Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 63: 1106–1113.

    CAS  PubMed  Google Scholar 

  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP . (1991). Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51: 2164–2172.

    CAS  PubMed  Google Scholar 

  • Engelman JA, Settleman J . (2008). Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr Opin Genet Dev 18: 73–79.

    Article  CAS  Google Scholar 

  • Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039–1043.

    Article  CAS  Google Scholar 

  • Fan QW, Cheng CK, Nicolaides TP, Hackett CS, Knight ZA, Shokat KM et al. (2007). A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res 67: 7960–7965.

    Article  CAS  Google Scholar 

  • Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L . (2000). Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25: 217–222.

    Article  CAS  Google Scholar 

  • Friedman HS, Bigner DD . (2005). Glioblastoma multiforme and the epidermal growth factor receptor. N Engl J Med 353: 1997–1999.

    Article  CAS  Google Scholar 

  • Guillamo JS, de Bouard S, Valable S, Marteau L, Leuraud P, Marie Y et al. (2009). Molecular mechanisms underlying effects of epidermal growth factor receptor inhibition on invasion, proliferation, and angiogenesis in experimental glioma. Clin Cancer Res 15: 3697–3704.

    Article  CAS  Google Scholar 

  • Huang PH, Cavenee WK, Furnari FB, White FM . (2007). Uncovering therapeutic targets for glioblastoma: a systems biology approach. Cell Cycle 6: 2750–2754.

    Article  CAS  Google Scholar 

  • Huang TT, Sarkaria SM, Cloughesy TF, Mischel PS . (2009). Targeted therapy for malignant glioma patients: lessons learned and the road ahead. Neurotherapeutics 6: 500–512.

    Article  CAS  Google Scholar 

  • Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H et al. (2002). Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32: 148–149.

    Article  CAS  Google Scholar 

  • Liang H, O'Reilly S, Liu Y, Abounader R, Laterra J, Maher VM et al. (2004). Sp1 regulates expression of MET, and ribozyme-induced down-regulation of MET in fibrosarcoma-derived human cells reduces or eliminates their tumorigenicity. Int J Oncol 24: 1057–1067.

    CAS  PubMed  Google Scholar 

  • Ling YH, Li T, Yuan Z, Haigentz Jr M, Weber TK, Perez-Soler R . (2007). Erlotinib, an effective epidermal growth factor receptor tyrosine kinase inhibitor, induces p27KIP1 up-regulation and nuclear translocation in association with cell growth inhibition and G1/S phase arrest in human non-small-cell lung cancer cell lines. Mol Pharmacol 72: 248–258.

    Article  CAS  Google Scholar 

  • Maruno M, Kovach JS, Kelly PJ, Yanagihara T . (1991). Transforming growth factor-alpha, epidermal growth factor receptor, and proliferating potential in benign and malignant gliomas. J Neurosurg 75: 97–102.

    Article  CAS  Google Scholar 

  • McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis M et al. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.

    Article  CAS  Google Scholar 

  • Mellinghoff IK, Cloughesy TF, Mischel PS . (2007). PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res 13: 378–381.

    Article  CAS  Google Scholar 

  • Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ et al. (2005). Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353: 2012–2024.

    Article  CAS  Google Scholar 

  • Mishima K, Higashiyama S, Asai A, Yamaoka K, Nagashima Y, Taniguchi N et al. (1998). Heparin-binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol 96: 322–328.

    Article  CAS  Google Scholar 

  • Mueller KL, Hunter LA, Ethier SP, Boerner JL . (2008). Met and c-Src cooperate to compensate for loss of epidermal growth factor receptor kinase activity in breast cancer cells. Cancer Res 68: 3314–3322.

    Article  CAS  Google Scholar 

  • Mueller KL, Yang ZQ, Haddad R, Ethier SP, Boerner JL . (2010). EGFR/Met association regulates EGFR TKI resistance in breast cancer. J Mol Signal 5: 8.

    Article  Google Scholar 

  • Peng D, Fan Z, Lu Y, DeBlasio T, Scher H, Mendelsohn J . (1996). Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer Res 56: 3666–3669.

    CAS  Google Scholar 

  • Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9: 157–173.

    Article  CAS  Google Scholar 

  • Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H et al. (2006). Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res 66: 867–874.

    Article  CAS  Google Scholar 

  • Rosenthal A, Lindquist PB, Bringman TS, Goeddel DV, Derynck R . (1986). Expression in rat fibroblasts of a human transforming growth factor-alpha cDNA results in transformation. Cell 46: 301–309.

    Article  CAS  Google Scholar 

  • Samuels V, Barrett JM, Bockman S, Pantazis CG, Allen Jr MB . (1989). Immunocytochemical study of transforming growth factor expression in benign and malignant gliomas. Am J Pathol 134: 894–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkaria JN, Yang L, Grogan PT, Kitange GJ, Carlson BL, Schroeder MA et al. (2007). Identification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel. Mol Cancer Ther 6: 1167–1174.

    Article  CAS  Google Scholar 

  • Schlegel U, Moots PL, Rosenblum MK, Thaler HT, Furneaux HM . (1990). Expression of transforming growth factor alpha in human gliomas. Oncogene 5: 1839–1842.

    CAS  PubMed  Google Scholar 

  • Seol DW, Zarnegar R . (1998). Structural and functional characterization of the mouse c-met proto-oncogene (hepatocyte growth factor receptor) promoter. Biochim Biophys Acta 1395: 252–258.

    Article  CAS  Google Scholar 

  • Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA . (1996). Role of the INK4a locus in tumor suppression and cell mortality. Cell 85: 27–37.

    Article  CAS  Google Scholar 

  • Shankar V, Ciardiello F, Kim N, Derynck R, Liscia DS, Merlo G et al. (1989). Transformation of an established mouse mammary epithelial cell line following transfection with a human transforming growth factor alpha cDNA. Mol Carcinogen 2: 1–11.

    Article  CAS  Google Scholar 

  • Shimshek DR, Kim J, Hubner MR, Spergel DJ, Buchholz F, Casanova E et al. (2002). Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32: 19–26.

    Article  CAS  Google Scholar 

  • Shin KJ, Wall EA, Zavzavadjian JR, Santat LA, Liu J, Hwang JI et al. (2006). A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc Natl Acad Sci USA 103: 13759–13764.

    Article  CAS  Google Scholar 

  • Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R et al. (2007). Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318: 287–290.

    Article  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  Google Scholar 

  • Suzuki R, Shimodaira H . (2006). Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22: 1540–1542.

    Article  CAS  Google Scholar 

  • Tang P, Steck PA, Yung WK . (1997). The autocrine loop of TGF-alpha/EGFR and brain tumors. J Neurooncol 35: 303–314.

    Article  CAS  Google Scholar 

  • Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E et al. (2010). Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17: 77–88.

    Article  CAS  Google Scholar 

  • van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MC, Kros JM, Carpentier AF et al. (2009). Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 27: 1268–1274.

    Article  CAS  Google Scholar 

  • van der Valk P, Lindeman J, Kamphorst W . (1997). Growth factor profiles of human gliomas. Do non-tumour cells contribute to tumour growth in glioma? Ann Oncol 8: 1023–1029.

    Article  CAS  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110.

    Article  CAS  Google Scholar 

  • Watanabe S, Lazar E, Sporn MB . (1987). Transformation of normal rat kidney (NRK) cells by an infectious retrovirus carrying a synthetic rat type alpha transforming growth factor gene. Proc Natl Acad Sci USA 84: 1258–1262.

    Article  CAS  Google Scholar 

  • Woolfenden S, Zhu H, Charest A . (2009). A Cre/LoxP conditional luciferase reporter transgenic mouse for bioluminescence monitoring of tumorigenesis. Genesis 47: 659–666.

    Article  CAS  Google Scholar 

  • Yung WK, Zhang X, Steck PA, Hung MC . (1990). Differential amplification of the TGF-alpha gene in human gliomas. Cancer Commun 2: 201–205.

    Article  CAS  Google Scholar 

  • Zennou V, Serguera C, Sarkis C, Colin P, Perret E, Mallet J et al. (2001). The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nat Biotechnol 19: 446–450.

    Article  CAS  Google Scholar 

  • Zhu H, Acquaviva J, Ramachandran P, Boskovitz A, Woolfenden S, Pfannl R et al. (2009). Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci USA 106: 2712–2716.

    Article  CAS  Google Scholar 

  • Zhu X, Santat LA, Chang MS, Liu J, Zavzavadjian JR, Wall EA et al. (2007). A versatile approach to multiple gene RNA interference using microRNA-based short hairpin RNAs. BMC Mol Biol 8: 98.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Drs Bill Chiu and Ken Hung for helpful comments and Dr Robert R Langley (MD Anderson Cancer Center, Houston, TX, USA) for human TGFα cDNA. Dr Jason Coleman (MIT, Cambridge, MA, USA) for the pTyf vector and iCre cDNA. Dr John Alberta (DFCI, Boston, MA, USA) for the Olig2 antibody. This work was supported by NIH Grant NCI U01 CA141556 (AC and FW), American Cancer Society Research Scholar Award 117409 (AC), NIH Grant U54 CA119349 (DH and AC), NINDS P30 NS047243 (LI) and NCI T32 CA009429 (DC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Charest.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, H., Acquaviva, J., Chi, D. et al. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme. Oncogene 31, 3039–3050 (2012). https://doi.org/10.1038/onc.2011.474

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.474

Keywords

This article is cited by

Search

Quick links